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1 Introduction

Imagine that you have just been appointed to a top managing position in your field, say, the
editor of a top-tier academic journal. In an effort to promote your journal, you turn to the
editorial board for suggestions concerning ways to improve the journal’s screening process. Now
an editorial member approaches you claiming that there is a rather simple method to strictly
improve the screening. Specifically, the member advises you to use a “lucky coin toss” whose
result would be weighed into the evaluation process. Hearing this, you will quite possibility
consider the suggestion to be a joke, and for good reasons. It does seem absurd that one could
improve a screening by introducing additional independent noise to the process. Nonetheless,
in this paper we substantiate the potential superiority of the mentioned proposal, and we do
so by studying the impact of different noisy signals on various screening problems.

This research begins with a screening problem in which one decision maker (DM) performs
a screening based on noisy unbiased evaluations. The DM could be, for example, a manager
reviewing job applicants, an editor of a peer-reviewed academic journal screening for insightful
papers, or even a rating agency trying to asset the default risk of various borrowers. In all
these scenarios (and, obviously, various others), the decision problem is based on some noisy
evaluation upon which the DM decides whether to accept or reject an element from a general
set.

Following a basic screening model, we assume that the accurate values of the elements in
question are distributed according to an impact variable V and there exists a noise variable
N, such that the DM observes V 4+ N. The DM strives to maximize the expected impact of
accepted elements through a proper decision rule (i.e., a screening strategy) which depends on
V + N. To ensure non-trivial results, we assume that the DM has a capacity constraint such
that a certain volume of elements must eventually be accepted.

The search for optimal screening strategies typically begins by examining threshold strate-
gies for a few obvious reasons: threshold strategies are simple, commonly used, and, in the
absence of noise, they are indeed optimal. In this paper, we also adhere to this line of thinking.
Indeed, our first observation roughly states that, under threshold strategies, one can strictly
improve a screening by adding independent binary noise to the evaluations. In other words,
we establish the possibility of generating “lucky coins” that improve a screening process. To
provide some intuition for this statement, we highlight two key conditions that are essential for
the mentioned result. The first is that threshold strategies be applied, and the second is that

the original noise N can generate non-trivial ordinal changes among values of V', conditional



on V 4+ N. Once some ordinal changes occur, the additional noise can partially correct the
applied screening strategy.

This preliminary observation is merely the overture to a much broader question concerning
the way different noisy signals impact screening processes, a question that stands at the core of
the current work. We address this research question by examining the superiority of one noise
variable over another. That is, we ask whether, ceteris paribus, a screening under one noise
variable produces a better result than under a different one. More formally, we refer to this
situation as screening dominance, and say that one noise variable S-dominates another if the
expected value of accepted elements given the former noise is at least as high as the expected
value given the latter, while holding the capacity fixed.

Our first main result provides a characterization of screening dominance under threshold
strategies. We fix two non-atomic noises and define a percentile-transformation (PT) mapping
between the two noises. Our equivalence result shows that one noise S-dominates another if
and only if the PT mapping is contracting. This result establishes a new method to compare
noise variables, namely a contraction mapping, which differs from commonly known methods
such as the mean-preserving spread (see literature review below for more details).

The next stage of our analysis focuses on optimal screening strategies. Assuming that
optimal screening strategies are applied, we prove that additional noise can only damage the
screening process. This result leads to a characterization of screening dominance between
normally distributed noises. That is, we consider two normally distributed noises N1 and No,
and prove that N; S-dominates Vs if and only if Ny could be generated by the sum of N2 and
another normally distributed and independent noise. This characterization strongly relates to
our contraction notion, since the mentioned condition (for normal distributions) is equivalent
to N7 being a contraction of Ns.

The last part of our analysis combines the previously mentioned results by proving that
threshold strategies are optimal once uniform non-atomic noises are considered. In this class
of noises, we show that screening dominance is not fully characterized by additive noise, but
follows from the previously mentioned contraction property. Overall, our contraction charac-
terization accounts for optimal screening under at least two (presumably, the more important)

classes of noises: normal and uniform distributions.

1.1 Related literature and main contribution

The economic research on screening and noisy signals ranges from job-market signaling and

education to insurance and credit markets (see, e.g., Spence (1973), Stiglitz (1975), Rothschild



and Stiglitz (1976), Stiglitz and Weiss (1981), Sah and Stiglitz (1986, 1988, 1991), and Meyer
(1991) among many others). Note that these papers typically focus on costly screening and
strategic signaling, while we consider a non-strategic and costless signaling model. So, in the
relevant literature, the papers that are closest to ours are those of Blackwell (1951, 1953),
Lehmann (1988), Quah and Strulovici (2009), and Rothschild and Stiglitz (1970, 1971).

Starting with the former, Blackwell (1951, 1953) compares different information structures
for the purpose of maximizing the expected payoff in a decision problem. In terms of the main
focus and classification in the literature, our study is quite close to Blackwell’s work. How-
ever, there are two key differences between the studies. First, in Blackwell’s model, the DM
observes noisy signals and aims to maximize his expected utility. In contrast, in our model,
the DM strives to maximize the conditional expectation of V. Second, there is a significant dif-
ference concerning the comparison in question. Blackwell compares two information structure
defined on the same state-space. We, however, allow the underlying state-space (namely, the
impact variable) to vary. In our framework, every noise variable generates different informa-
tion structures, based on the different impact variables. Thus, we actually compare different
information-structure generators (the noises) rather than information structures per se. These
differences eventually lead to two well-distinct characterizations — Blackwell’s garbling notion
versus our contraction mapping.

Despite the clear differences in motivation and modeling choices, our main result in this
paper, namely the characterization of screening dominance through a contraction mapping,
is related to the studies of Lehmann (1988) and Quah and Strulovici (2009) — both in the
vast literature of statistical decision theory and information economics. In the earlier study,
Lehmann (1988) defines a notion of comparison between two experiments such that one is more
informative than the other (or more accurate, following the terminology of Persico (2000)). In
our model of additive noise, one can show that our contraction property and Lehmann’s notion
of informativeness coincide (see Theorem 5.2 in Lehmann (1988)). Yet, a crucial distinction
is that Lehmann requires either strongly unimodal densities (in Theorem 5.2), or a monotone
likelihood ratio property (in Theorem 5.1), which are irrelevant in our model. In addition,
we provide a characterization in the context of screening problems where the decision maker
tries to maximize some goal function, whereas Lehmann adopts a more statistical approach of
comparing information structure in general.

A second study in this field, which follows the work of Lehmann (1988) and also relates to
ours, is by Quah and Strulovici (2009). In Lemma 3 therein, Quah and Strulovici show that

for any threshold strategy in a less informative screening problem (in the sense of Lehmann),



one can devise a superior threshold strategy in the more information screening problem. For
that purpose they consider a general utility function and a different signaling system (specif-
ically, they do not confine themselves to additive noise, but require a fully supported set of
signals in every state of the world). Other than the underlying goal and motivation, the two
crucial differences between our result and the results of Quah and Strulovici (2009) are: (i) we
provide a characterization (rather than a necessary condition); and (ii) we follow a (binding)
capacity constraint on the set of accepted elements, which typically does not appear in this
line of research. Evidently, a capacity constraint is rather natural in screening problems, in
comparison to general decision problems.

A more recent study in this field is by Di Tillio et al. (2020). They follow the work of
Lehmann (1988) and Quah and Strulovici (2009), and ask whether it is beneficial for the DM
to observe a given set of i.i.d. signals, or to first strategically select them from a larger set of
signals. Similarly to our analysis, their core results focus on threshold strategies and additive
noise (called location experiments; see Section 4 therein).

Moving on to the work of Rothschild and Stiglitz (1970, 1971), the first aspect that asso-
ciates our work to theirs is the underlying goal: relating probabilistic properties of random
variables to the preferences of a rational decision maker. Rothschild and Stiglitz (1970, 1971)
achieve this goal by introducing the notion of a mean-preserving spread (MPS), which induces
a partial order over lotteries, and then relating this order to the preferences of a risk-averse
expected-utility maximizer. In contrast, we consider an additive independent noise and pro-
vide several equivalence results between the induced partial order (over noises) and screening
dominance.

This first similarity naturally leads to the second important connection between the in-
dicated studies — the origin of the partial orders in question. We, similarly to Rothschild
and Stiglitz (1970, 1971), use additive independent noise as the basis for our partial order
and analysis. However, Rothschild and Stiglitz use this noise to define the notion of a MPS,
whereas we use it to introduce a contraction mapping between noises which entails superior
screening capabilities, either through threshold strategies or through optimal ones. In addi-
tion, we provide a combination of positive and negative results, specifically because we do not
confine ourselves to optimal screening, but allow for commonly used threshold strategies.

Another main similarity between the studies in question is the ability to provide a wide
range of applications for the given theoretical results. Rothschild and Stiglitz (1971) apply
their earlier results (from the 1970 paper) to various investment and production problems. To

compare, we follow the model of Lagziel and Lehrer (2019) with its broad set of applications,



which range from peer-reviewed academic publishing to credit ratings.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we present the basic screening model. In
Section 3 we study screening problems under threshold strategies and, in Section 4, we focus
on screening problems under optimal strategies. In Section 4.2, we combine the results of
Sections 3 and 4 by analyzing screening problems with uniform noises. Concluding remarks

are given in Section 5.

2 Preliminaries

We follow a basic screening model with one decision maker (DM) who performs a screening.
Consider a set of elements whose values are distributed according to a non-constant random
variable V', referred to as an impact variable. The individual values of the elements are private,
so every element with private value v goes through a noisy evaluation process and is evaluated
by v + N, where N is an unbiased noise variable, i.e., it is symmetrically distributed around
zero and independent of V.1

The DM uses the noisy evaluation to perform a screening subject to a capacity constraint.
For this purpose, the DM sets a screening strategy o : R — {0, 1}, where 1 denotes acceptance
of a specific valuation and 0 denotes rejection.? To avoid trivial solutions, we fix an acceptance
rate, a capacity level p € (0,1), which defines the share of accepted elements so that every
screening strategy o must ensure that Pr(c(V + N) =1) =p

To motivate this model, one can think of the DM as an editor of a peer-reviewed academic
journal who approaches referees to evaluate a set of academic papers: V denotes the papers’
potential impact, V + N are the referees’ evaluations, and ¢ is the editor’s decision rule to
accept or reject a paper. Other possible scenarios include a trader facing different investment
opportunities, a manager screening potential employees, or even a sports scout searching for
potential Hall-of-Fame players. In all these scenarios, the DM establishes a noisy screening
process in order to maximize the expected value of the accepted elements, subject to some
capacity constraint.

We generally refer to the triplet SP = (V, N, p) as a screening problem. Given a screening

! Throughout this paper and unless stated otherwise, the notations N and N; refer to unbiased noise variables.
2We henceforth assume that all measurability requirements hold.



problem SP and a screening strategy o, the expected value of accepted elements is
Igp(o) = E[V|o(V+ N)=1].

The DM’s goal is to maximize IIsp. We denote the DM’s optimal screening strategy and opti-
mal expected payoff by o&p and IIp, respectively. To be clear, all definitions and statements
hold almost surely (i.e., hold up to a measure-zero deviation).

The search for optimal screening typically begins by analyzing the class of threshold strate-
gies, and this for two main reasons. The first reason is that, in the absence of noise, threshold
strategies are optimal. The second is that, given a capacity p, threshold strategies are rather
simple to implement, since they are characterized by a unique threshold value which captures
the top 100p percentile of the distribution. Thus, we will devote a portion of our analysis to
study threshold strategies and the non-trivial cases in which they are optimal.

Formally, a screening strategy o is a threshold strategy if there exists a value s such that,
with probability one, every noisy valuation (i.e., signal) above s is accepted and every noisy
valuation below s is rejected. Given a screening problem SP, we denote a threshold strategy
and the expected payoff under a threshold strategy by &gp and ﬁsp, respectively.

Since we incorporate general distributions in this model, one final clarification is needed
for the case of atomic ones. Should V + N have an atomic distribution and to meet the
capacity constraint p, the DM may need to impose a partially random screening such that
valuations that are subject to an atom are randomly split. In such cases, one should consider
a more general screening strategy where o : R — [0,1]. We typically abstract from these
cases by assuming that (through an appropriate randomization) the DM can “split the atom”
(in a mathematical sense) and capture the expected value given that atom, with the needed

proportion.

2.1 Screening dominance and noisy amplifications

There are two noise-related notions that govern our analysis: screening dominance and noisy

amplifications. Let us define and explain each of these notions.

Definition 1. [Screening dominance|. We say that a noise variable Ni S-dominates a
noise variable No if, for every impact variable V' and every capacity p, an optimal screening in
SP, = (V, N1, p) produces a higher expected value than an optimal screening in SPy = (V, Na, p).
That is, N1 S-dominates No if

E3 ES
lgp, = Ugp,

and the inequality is strict for some impact variable and capacity.



In simple terms, a noise variable N1 S-dominates N» if, ceteris paribus, an optimal screening
under N, is at least as good as an optimal screening under Ny (and, in some cases, strictly
better), independently of the impact or the capacity.

The notion of screening dominance is rather demanding in the sense that it requires supe-
riority for every impact variable and every capacity under optimal strategies. In some cases
we shall use a weaker notion where optimal screening strategies are replaced with thresh-
old ones. For such purposes, we say that Ny S-dominates Ny under threshold strategies if
ﬁ(V, Nip) = ﬁ(v, Nap) for every pair (V,p), and the inequality is strict for some pair (V p).

The second notion we shall use is termed noisy amplification, and it suggests that one noise

could be reproduced by another, through an independent lottery.

Definition 2. [Noisy amplification]. A noise variable Ny is a noisy amplification of a noise

variable Ny if No ~ N1 + N3 and the noise variable N3 is independent of Nj.

In other words, Ny is a noisy amplification of N7 if one can produce the distribution of Ny
using the sum of N; and an independent lottery N3. This notion will prove useful when debating
the dominance of one noise over another. We conclude by noting that a noisy amplification
is also an MPS (as noise variables have zero mean and the added noise N3 is independent of

Ny), whereas the converse is not true.

3 Screening under threshold strategies

This section is divided into two parts, each presenting one key result of the paper. The first
part, in Section 3.1, shows how additional noise can strictly improve a screening process. The
second part, in Section 3.2, presents the first characterization of screening dominance. In both
parts we restrict our attention to threshold strategies that will be later combined, in Section

4.2, with the optimal ones.

3.1 Adding noise to a screening problem

The concept of a lucky coin toss is ambivalent. On the one hand, the procedure itself is
simple, not to say trivial: Once a DM approaches some screening problem, she can simply
toss a coin and incorporate the result into her decision. On the other hand, how can a simple
lottery improve a screening if we are merely introducing random noise into the process? In
this section, we shall attempt to resolve this puzzle.

We begin with a straightforward result stating that lucky coins exist, and later motivate

it with a simple example. Proposition 1 below shows that, for every bounded impact variable



V and every capacity p, one can devise a noise variable N7 such that a lucky coin exists for
the screening problem SP = (V, Ny,p). The introduction of a lucky coin toss is manifested

through a different noise variable, No, which is a noisy amplification of Nj.

Proposition 1. For every bounded impact variable V' and every capacity p, there exist noise

variables N1 and No such that Ns is a noisy amplification of N1 and ﬁ(V,Nz,p) > ﬁ(V,th).

The implications of Proposition 1 are clear: In some cases one can strictly improve a
screening by inserting additional noise. To clarify the last statement and explain our use of
the lucky-coin terminology, we remark that the proof of Proposition 1 uses an amplification of
N1, namely No ~ Nj 4+ N3, where N3 is a binary symmetric noise.

To exemplify this result, consider the following (rather stylized) example. Assume that the
SAT scores of a large group of students is distributed uniformly on [800,1200]. In addition,
assume that only half of the students are accepted to undergraduate studies and acceptance
is set according to some cut-off value. Now, due to some computational error, grades are ran-
domly distorted by +£200 points, with equal probabilities, so the observed grades are uniformly
distributed on [600,1400]. With and without this error, the screening is set from 1000 and
above, thus capturing half of the population. However, the error completely distorts the origi-
nal distribution and the average score of accepted students is 1000, compared to 1100 without
the error. In terms of the average score, note that this “noisy” screening is rather useless since
it preforms as good as random acceptance. However, if the same computational error occurs

twice (independently), the aggregate error is distributed according to

N = +400, with probability 0.25,
0, with probability 0.5.

In words, the double error produces an accurate evaluation with probability 0.5, and combined
with the original uniform distribution on [800, 1200], the average score of accepted students is
1050. Therefore, screening under these two independent errors is better than screening under
a single error (although the former is considered riskier in the sense of Rothschild and Stiglitz).

We will now explain the driving force behind this result. First, recall the key observation
of Lagziel and Lehrer (2019) that ﬁ(‘/’ N,p) 18 not necessarily a monotone function of p. In other
words, the DM can enforce a more restrictive screening and the expected average level can
actually decrease. The non-monotonicity of ﬁ(V, Np) W.I.t. p is due to the fact that unbiased
noise has a different nominal effect over different-size sets, to the point that it significantly
distorts the impact variable’s conditional distribution. That is, an unbiased noise imposed

over a large set of mediocre elements will produce a significant amount of upwards shifting,



whereas the same noise imposed over a small set of superior elements produces a relatively small
amount of upwards shifting. In such cases, the probability masses matter, and an unbiased
noise can distort the distribution, so that the noisy valuations do not reflect the “true” ordering
of the elements’ impact. The additional noise can partially rectify this distortion, at least to
some extent, by “re-ordering” the values of V.

An important component of this result is that we are applying threshold strategies. Should
the DM have the ability to apply optimal strategies, the same example would show how the
additional noise only damages the screening process. We will return to this issue in Section 4
when discussing screening under optimal strategies. In the meantime, let us point out that the
following results (specifically, Theorem 1 and Theorem 2) do not depend on the optimality of
threshold strategies.

3.1.1 Robustness of Proposition 1

We wish to discuss two robustness concerns regarding the result of Proposition 1.

First, the noises used in the proof of Proposition 1 depend only on whether p > 0.5 or
p < 0.5, and on the support of V, rather than on its entire distribution. In addition, the
dependence on p hinges on the need to sustain symmetric noises. Therefore, if one allows for
asymmetric noises, the result of Proposition 1 becomes rather general, in that one can generate
a strictly better screening for every impact variable V' (with the same support) and for every
capacity p, while holding Ny and N3 fixed.

Second, the support of the additive noise used in the proof is quite narrow relative to the
support of V. Therefore, the lucky coin can improve the screening although its magnitude, in
general, is rather small. The fact that the ordinal changes are locally generated and the use
of threshold strategies suggest that even if additional valuations are introduced (enlarging the
support of V'), the result of Proposition 1 remains valid.

Third, though this require some more work, one can also extend Proposition 1 to unbounded
impact variables. Specifically, using Lemma 2 of Lagziel and Lehrer (2019), one can construct
a screening bias for an unbounded impact variable. Then, to partially correct this bias, one
can add an i.i.d. noise, and follow a similar computation as the one given in the previously

discussed SAT example.?

3Note that the SAT example itself could be extended to general distributions (rather than uniform) on a
broader support than the current one; this should provide additional intuition for the extension of Proposition
1 to unbounded variables.



3.2 A partial characterization of screening dominance

To characterize screening dominance under threshold strategies, we begin by defining a map-
ping that transforms any non-atomic noise into another non-atomic noise using percentiles
translation. This mapping will be used to compare a threshold strategy under one noise vari-
able with a different threshold strategy under another noise variable. As it turns out, the key
property to determine whether one noise variable S-dominates another is whether our mapping
is a contraction or not. If the mapping is a contraction, meaning that one noise transforms
to another using some form of contraction, then the condensed noise is superior for screening
purposes.

Formally, consider two noise variables N7 and Ny with CDFs F} and Fb, respectively. For
the sake of simplicity, assume both noises are non-atomic with convex supports such that
percentiles are uniquely defined. Given such noises, define the Percentile-Translation (PT)
mapping T;; by

Tyy(n) = F7 L (F(n), ¥ e Supp(N;),

(2

In other words, the PT mapping receives as input any 100p-percentile of noise IV; and generates
the 100p-percentile of noise N;.

Let us now review the key properties of the PT mapping. Since both noises are non-atomic
with convex supports, the CDF's are strictly increasing on these sets and the mapping T;;(n)
is well defined and strictly increasing. Second, it is straightforward to verify that Tpo is the
inverse of T5; and both are bijective maps (one-to-one correspondences) between the relevant
supports. In that case, 151 = T1_21 and T4, (n) = m

To simplify the exposition, we introduce two additional definitions: (i) N; and N; are
called continuous if both noises are non-atomic with convex supports, and if 7;; and T}; are
continuously differentiable; and (ii) N; is called a contraction of Nj if T];(n) < 1 for every
n € Supp(lV;) and Tj; is continuously differentiable. Roughly speaking, one noise variable is a
contraction of another if the percentiles of the former are closer together than the percentiles
of the latter.

A comparison between the contraction property and the notion of a MPS is clearly needed.
Given our symmetric-noise assumption, one can easily verify that a contracting PT mapping
T;; implies that N; is a MPS of N;,* whereas the converse is not true. Note, however, that the
mentioned symmetry assumption is not a necessary one for our main results. If this assumption

is omitted, then the notion of a MPS does not follow from the contraction property since the PT

4Given the symmetry assumption, MPS is also equivalent to second-order stochastic dominance.
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mapping can transform a symmetric noise variable into an asymmetric one (with a zero mean)
such that the original noise variable is not a MPS of the transformed one. We thus conclude
that the two notions are basically distinct and complementary. On the other hand, and as
already discussed in Subsection 1.1, our contraction property does coincide with the more-
informative notion of Lehmann (1988). We explicitly establish this connection in Appendix
A2.

As follows from Theorem 1 below, the contraction property of the TP mapping is a necessary
and sufficient condition for screening dominance under threshold strategies. Our equivalence
result states that N; S-dominates Ny under threshold strategies if and only if the TP mapping

Tio is a contraction.

Theorem 1. Fix two distinct continuous noise variables N1 and No. Then, N1 is a contraction

of No if and only if N1 S-dominates No under threshold strategies.

Theorem 1 joins a long list of results that relate decision making to probabilistic properties,
which are later applied to various economic models (see, e.g., Holmstrom (1979) and Grossman
and Hart (1983), among others). Many of these studies trace back to the work of Blackwell
(1951, 1953), who characterized an information superiority through the garbling of signals.

The main focus of our study is the information needed to maximize the conditional expec-
tation of V. In Blackwell’s model, in contrast, the decision maker’s objective is to maximize the
(unconditional — over the entire state-space) expected state-dependent utility. The application
of different screening strategies to different screening problems typically induces different accep-
tance sets, which do not allow mean-spread comparison (garbling) as required by Blackwell’s
characterization.

Another significant difference between Blackwell’s work and ours is that Blackwell deals
with information structures that associate a noisy signal to every state. He then compares two
such structures, both defined on the same state-space. Here, the underlying state-space (in our
context, the impact variables V') varies. Indeed, given V', a noise N generates an information
structure defined over V. However, the same noise N may generate an information structure
over every other impact variable. Allowing all possible impact variables, we actually compare
different noises as information-structure generators, rather than information structures.’

Due to these two significant differences, it is only natural that our characterization through

the notion of noise contraction is not directly connected to Blackwell’s garbling. In particular

Related to this goal, one can find some similarity in a recent study by Di Tillio et al. (2020) in which the
DM needs to decide between a random sample of i.i.d. signals, or a strategically chosen sub-sample of i.i.d.
signals.

11



our characterization cannot be derived from that of Blackwell, and vice versa.

Figure 1 provides intuition for the proof of Theorem 1. The graph on the left represents
threshold-screening under Ny, where [y denotes the threshold line for that screening. Using
the PT mapping, one can translate la to terms of Ni, thus obtaining the I} line in the right
graph. Note that the transformation along with the contraction property of Tis ensure that
4 is decreasing with a slope greater than —1. When comparing the screening according to 1,
with the threshold-screening with respect to Ny (given by the grey areas in the right figure

and the [y line), we see that lower values of V' are discarded in favor of higher ones (light grey

area B instead of area A). Hence, the threshold-screening under N; is superior as stated.

(0,m2)

(n27 0)

Figure 1: Each graph l; : V 4+ N; = n; represents threshold-screening in the screening problem SP;, and each
shaded area V + N; > n; represents the accepted valuations. Line 5 : N1 = Ti2(n2 — V) is the representation
of Iz in terms of N; using the PT mapping Th2. This translation maintains capacity, and its slope is greater
than —1. Given threshold-screening under N1, the set A (white area) is replaced by the set B (light grey area),
ensuring the screening dominance of V;.

What happens if the PT mapping is not a contraction? Assuming that noises are distinct
and unbiased, then Tio is not a linear mapping. Thus, there exists a point n such that
T]5(n) > 1, which suggests that Tj2 is locally expanding in the neighborhood of n (recall
that the PT mapping is continuously differentiable) and T5; is locally contracting on some
interval. Hence, one can choose an arbitrary small-support impact variable such that the local
contraction of T generates the same effect as shown in Figure 1, but when translating N7 to
Ny. This guarantees that there exist an impact variable and a capacity such that threshold
screening under N, is superior (for a detailed proof, see Lemma 4 in the Appendix).

A simple example of a contracting PT mapping is provided by multiplying a noise variable

by any positive constant ¢ € (0,1). Once this is done, the resulting noise is a contraction of the
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former. We shall return to this simple observation when discussing optimal screening under

uniform noises in Section 4.2.

Remark 1. Note that the statement of Theorem 1 holds whether threshold strategies are opti-
mal or not. This stands in contrast to Proposition 1, where threshold strategies are suboptimal.
Moreover, in Section 4.1 we extend Theorem 1 to S-dominance (under optimal strategies) given

normally distributed noises (see Observation 1 below).

3.2.1 Contraction may not imply S-dominance (under optimal strategies)

We conclude this section with an explanation concerning the problems that arise when reverting
to optimal (potentially, non-threshold) strategies. Consider, for example, two binary and
symmetric noise variables N1 and Ns, where N; = 7 with equal probabilities. Now take an
impact variable V' which equals either 0 or 2, again with equal probabilities. Under the Ny
noise, the DM would get a signal s = 1, but she would not know whether it originated from
the combination (V,N1) = (2, —1) or from (V, N;) = (0,1). In contrast, such ambiguity does
not occur under the noise No, which would generate four distinct signals s € {—2,0,2,4}.

In order to compare this example to Theorem 1, take a capacity of p = 0.5 and note that

That is, an optimal screening in SPy = (V| Na,p) produces a strictly higher expected value
than an optimal screening under SP; = (V, Ny, p), although N; is a contraction of Na. In
other words, the information ambiguity that Ny produces in SP; implies that N; does not
S-dominate Ns, and it also explains the need to take a different approach once dealing with

optimal strategies, as we do in the following section.

4 Screening under optimal strategies

In this section we focus on screening dominance under optimal strategies, for which purpose
we divide our analysis into two parts. In Section 4.1, we show that a noisy amplification is
a sufficient condition for screening dominance. Moreover, if we restrict attention to normally
distributed noises, we prove that the noisy amplification condition is, in fact, a characterization
of screening dominance. Then, in Section 4.2, we examine the noisy amplification condition
under uniform noises. Specifically, we prove that a noisy amplification is not a necessary
condition for screening dominance under such noises, whereas the contraction result of Theorem

1 does provide a necessary condition under uniform noises.

13



4.1 A sufficient condition for screening dominance

The first result connects the two basic notions of noisy amplifications and S-dominance. Specif-
ically, Theorem 2 below states that a noisy amplification of one noise variable is dominated,

in terms of screening, by that variable.
Theorem 2. If Ny is a noisy amplification of Ny, then N1 S-dominates No.

In order to prove Theorem 2, one needs to devise an optimal screening strategy for general

screening problems. The proof of Theorem 2 does that based on the function
fz(s) = E[V|V + N; = S],

for every signal s. This function provides the expected value of the impact variable conditional
on the received signal. For every capacity p, the optimal strategy accepts a noisy valuation s
if fi(s) = tgp, for some fixed value tgp,, which depends on the screening problem SP;. This
bears some resemblance to the Neyman—Pearson lemma, and one can also find some similarities

between the two proofs.

Remark 2. Note that S-dominance is based on the strict superiority of N1 over the noisy
amplification No for some impact variable V and capacity p. Thus, the construction and
implementation of an optimal screening strategy is mecessary for the proof of Theorem 2.
Specifically, given SP1 = (V,Ni,p), one cannot simply assume that the DM replicates the
optimal screening strategy as in SPo = (V, Na,p), by using the original signal V + N1 and a

proper randomization rule. The latter merely produces the same expected value as in SPs.

An immediate conclusion from Theorem 2 is the equivalence between screening dominance
and noisy amplifications within the set of normally distributed noises. The driving force behind
this conclusion is the fact that the set of normally distributed unbiased noises is closed with
respect to additivity, and that for any two such distinct noises N1 and N», either Nj is a noisy

amplification of Ns, or vice versa.

Corollary 1. Fiz two normally distributed noise variables N1 and No. Then, Na is a noisy

amplification of N1 if and only if N1 S-dominates Ns.

The proof is straightforward (and thus omitted). One direction follows directly from The-
orem 2, so we need only consider the other direction, starting with the screening dominance
of N1 over No. If Ni S-dominates INo, there exist an impact variable and capacity such that

screening under NV is strictly better. Thus, the two noises are not distributed similarly and
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one has a higher variance than the other. The noise with the higher variance is a noisy am-
plification of the other, and it is evident (from Theorem 2) that Nj is a noisy amplification of
Ni.

Corollary 1 along with the basic properties of normal distributions allow us to derive the
following observation regarding noise contraction under optimal strategies. Specifically, for
normally distributed noise variables, Ns is a noisy amplification of N; if and only if Nj is a
contraction of No. Hence, the characterization given in Corollary 1 applies for the contraction

property, as well.

Observation 1. Fiz two normally distributed noise variables N1 and No. Then, Ny is a

contraction of No if and only if N1 S-dominates Ns.

This observation extends Theorem 1 and the counterexample given in Section 3.2.1, by
showing that, for some classes of noises, the contraction property does lead to S-dominance

(under optimal strategies). We pursue this goal in the following section.

4.2 Screening dominance under uniform noises

Corollary 1 naturally raises the following question: is there an equivalence between screening
dominance and noisy amplifications under general distributions? It appears that the answer
to this question is negative, since one cannot identify screening dominance by solely restricting
attention to noisy amplifications. We show this by focusing on the class of uniformly distributed
noises with convex support.

We begin our analysis by establishing, in Lemma 1 below, that under uniformly distributed

noises (with convex supports) threshold strategies are optimal.

Lemma 1. If N is uniformly distributed on an interval, then threshold strategies are optimal

for every V and p.

In view of this result, we can consider a simple transformation of noises, other than additive
noise, that damages the screening process. Specifically, we can multiply a noise variable by
a constant greater than one, and analyze how the expansion affects the screening. In other
words, we can fix two continuous noise variables N; and Na (as considered in Section 3.2),
where Ny ~ ¢Np and ¢ > 1. It is easy to verify that N7 is a contraction of Ny, thus Ny
S-dominates Ny under (the optimal) threshold strategies. In the following lemma, we prove

this result for general distributions without confining ourselves to continuous noises.

Lemma 2. Fiz two screening problems SP; = (V, Ny, p), i = 1,2, such that No ~ ¢Ny for some

¢ > 1. Then, H(V,lep) = H(V7N27p)'
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Note that the statement of Lemma 2 is general, and independent of the distribution of N.
In other words, this result is not limited to either uniform or continuous noises.

Using Lemma 1, Lemma 2, and Lemma 3 below, we can prove that noisy amplifications
do not provide a general characterization for dominance. Specifically, fix two uniformly dis-
tributed® noises N7 ~ U[0,1] and Ny ~ U[0,3/2]. Lemma 1 states that the optimal screening
strategy in any screening problem (under these noises) is a threshold strategy. Lemma 2 es-
tablishes that N; dominates Na since Ny ~ (3/2)N;. Lemma 3 below proves that Nj is not a
noisy amplification of N;. Thus, we substantiate the existence of two noise variables such that

one noise S-dominates the other, while the noisy-amplification condition is violated.
Lemma 3. If Ny ~ U[0,1] and Ny ~ U|0,3/2], then N3 is not a noisy amplification of Ny.

Therefore, one cannot devise an independent noise IV such that Ny ~ N7+ N and, nonethe-

less, N1 S-dominates No.

5 Conclusion

In this paper we provided several novel insights into the world of screening. Using our definition
of screening dominance, we showed that additional noise is not necessarily adversary for a DM,
assuming that threshold strategies are exercised. We compared various noises in the context
of screening, while accounting for threshold strategies as well as optimal ones. We were able
to provide several characterizations of screening dominance among different types of noises,
and most importantly, our main characterization result shows that some form of contraction

among the noises’ distributions is essential for screening dominance.
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A Appendices
A.1 Proof of Proposition 1

Proof. Fix an impact variable V" and a capacity p € (0,1). Assume, without loss of generality,
that V' is supported on [0, 1]. We examine separately three cases: p < 0.5, p = 0.5, and p > 0.5.
In general, denote the screening problem by SP; = (V, N;, p) for every i and every noise N;.

Starting with p < 0.5, define the noise variable Ny by

+1.1, with probability p,
1 =
0, with probability 1 — 2p.

Clearly, E[V|osp,(V + Ni) = 1] = E[V]. Now consider N3 = +0.1 with equal probabilities
and Ny ~ N1 + N3. The distribution of Ny is therefore

p/2, for k e {£1.2, £1},

Priz = k) = {1/2 —p, for ke {£0.1}.

Given V' + Ny, the threshold strategy ogp, accepts every assessment once Ny = 1.2 and only

partially accepts assessments once No = 1. The latter is due to the fact that, given Ny = 0.1,

some high values of V' are accepted instead of low values of V', given Ny = 1. We conclude
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that the threshold level is some ¢ € [1,1.1]. Thus,

E(V1
E[V|&SP2(V + Ng) = 1] — [ {\}/)JrNQ;t}]
= E [Vl{vﬂ'bt}] +5E [Vl{V+1>t}] + (% —p) E [Vl{v+0.1>t}]
p
E[V] 1

1
= —=+ E[V1yse1y]+ (2]9 — 1) E[V1ysio1}]

2
E[V] Pr(V>t-1
= [2]+ r . Vv =61

1
+ Pr(V=t-0.1) (219 - 1) E[V|V =t —0.1]

> E[V] BJrPr(Vit_l)JrPr(VZt—().l) (%-1)]

Therefore, E[V|osp,(V + N2) = 1] > E[V] = E[V|ésp, (V + N1) = 1].
For the case when p > 0.5, perform a similar computation with p replaced by 1 — p. This
will produce the same inequality E[V |6sp,(V + Na) = 1] > E[V] = E[V|6gp, (V + N1) = 1].
For the case when p = 0.5, set N1 = £0.6 with equal probabilities, and set N3 = £0.2 with
equal probabilities, as well. Hence, Ny € {£0.8, £0.4}, all with equal probabilities. Clearly,
E[V|ésp,(V + N1) = 1] = E[V], while the screening threshold under Ny is some value to €
[0.4,0.6], and

E[V|6SP2(V + NQ) = 1]

E[V|V + N > t9]

1 1 1
= ZE [V1ivst, o8] + ZE [Vivst, o4 + ZE [V1vs,r04]

1 Pr(V >ty — 0.4
= “E[V]+ x(v 42 04)

1
Pr(V >ty + 0.4
L PV ERE0D iy o
1 Pr(V >ty,—04) Pr(V =t +04
][ L Pr( 2 ), P 2 )]
]:

E[V|V >t — 0.4]

which concludes the proof. ]

A.2 The contracting PT mapping and Lehmann’s ordering of signals

Lehmann (1988) defines an ordering of signals in the following manner. Consider two noisy

signals X7 and X5 about some impact variable V. Note that we consider additive noises,
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so Lehmann’s signals translate to X; = V + Nj, for every 4, under our terminology. Let
Gi(-|v) be the conditional distribution of X;, given V' = v, and consider the mapping h,(z) =
G H(G2(z|v)|v) by Lehmann (1988); see Theorem 5.1 therein. Lehmann assumes that these
conditional distributions are differentiable and maintain the monotone likelihood ratio property
(MLRP) for every v, to establish that X; is more informative” than X if and only if h,(z) is
non-decreasing in v, for every .

To explicitly relate this informativeness notion to our contracting PT mapping, note that
Gi(z|v) = Fi(x — v) under an additive-noise set-up, where F; is the CDF of the noise variable

N;. Thus, G7'(ylv) = F{ ' (y) + v and h, () translates to
ho(x) = GTH(Ga(z|v)|v) = FT N (Go(z|v) + v = F7 (Fa(z — v)) + v = Tia(z — v) +v.

Therefore, under all needed differentiability assumptions, h,(z) is non-decreasing in v for every
x if and only if T{5(n) < 1 for every n.

Lehmann also considers an additive-noise set-up and assumes that the densities are strongly
unimodal (see Theorem 5.2 therein), to prove that one signal is more informative than another
if the updated h,(-) mapping is contracting. Therefore, the connection is straightforward. Yet,
one should note that the characterizations remain distinct as we require neither the MLRP, nor

strongly unimodal densities, whereas we do require a continuously differentiable PT mapping.

A.3 Proof of Theorem 1

For the proof of Theorem 1 we need the following auxiliary lemma.

Lemma 4. Consider two continuous noise variables N1 and Ny. For every n € Supp(Na)
such that T{5(n) < 1, there exists (V,p) such that ﬁ(V’NI’p) > ﬁ(V’NM). Moreover, if Tia is a

contraction, then ﬁ(V,th) > ﬁ(V’NQ,p) for every (V, p).

Proof. Take an interior point ny € Supp(Nz) such that T75(ng2) < 1. Since T} is contin-
uously differentiable, one can take an open interval I = (ny — e, ng2 + €) such that T7,(n) < 1
for every n € I. Define V' ~ U|[—¢,¢]|, and consider the screening problem SPy = (V| Na, p),
where p is fixed such that dgp,(s) = 1 if and only if s > ng. That is, the threshold-screening
for (V, N2, p) accepts every valuation given by the event {V + Na > no}.

Note that N1 ~ T12(N2) since, for every n € R, we have

Pr(Ti2(N2) < n) = Pr(F; ! (Fo(N2)) < n) = Pr(Nz < Fy ' (Fi(n))) = B(Fy ' (Fi(n))) = Fi(n).

"Lehmann uses the term more effective when restricting the discussion to a subset of decision problems.
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So, T1o transforms No to Ni. Hence,

E[V|V + Ny = ng] E[V|Ng = ng — V]

E[V|T12(N2) = T12(n2 - V)]

E[V|N1 2 T12(7”L2 - V)],

where the second equality holds because 712 is strictly increasing.

Consider the function f(v) = Ti2(ny — v) for v € (—e,¢e). Clearly, f is strictly decreasing,
differentiable, and f/(v) = —T{5(n2—v) > —1 for every v € (—¢, ). For every c € (—¢, ¢), define
the linear function g.(v) = —v + ¢ + T12(n2 — ¢). Note that g.(v) = —1, so the graphs of the
functions f(v) and g.(v) intersect exactly once, at (¢, T12(ng — ¢)). Specifically, g-(v) = f(v),
while g_.(v) < f(v).

We can now use g, to construct a threshold (screening) strategy for the screening problem
(V, N1,p). Observe that

Pr(Ny = g-(V)) < Pr(Ny = f(V)) = Pr(Ny = Tia(ng — V) = p,

while
Pr(Ni 2 g-o(V)) > Pr(N1 > f(V)) = Pr(N1 = Tia(nz — V)) = p.

So, by continuity, one can fix some c € (—¢,¢) such that p = Pr(N; > g.(V')). Note that
(N1 2 g.(V)} ={V + N1 > c+Tiz(no — ¢)} and {N1 > f(V)} = {N1 > Th2(n2 — V)},

and the former equality depicts a threshold strategy which strictly differs from the latter
screening condition N7 > Ti2(ng — V). Though both maintain the same capacity p, the single-
crossing property of f and g. together with the fact that f' > —1 = g/, suggest that the
screening condition N; > g.(V') omits lower values of V in-exchange for higher ones, relative

to the screening condition N7 > f(V). Thus, we get
E[V|V + N1 =c+ T12(n2 — C)] > E[V|N1 = Tlg(ng — V)] = E[V|V + Ng = ng],

and the first statement of the lemma holds.
To prove the second statement, fix any (V,p). Consider the screening problems SP; =

(V, Ni,p) and threshold strategies dsp, for every i. Denote the threshold value of 6gp, by n;
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for every ¢. Thus,

E[V]osp,(V + No) =1] = E[V|V + Ny > ng]
= E[V[N2 = ng — V]
= E[V|T12(N2) = Ti2(n2 — V)]
= E[V|N1 = Tia(ng — V)]

As before, we consider the functions f(v) = Tia(ne — v) and g.(v) = —v + ¢ + Ti2(n2 — ¢),
defined for every (v, c) € Supp(V'). Following the same continuity argument (replacing — and
¢ with sufficiently low and high values, respectively), one can fix ¢ such that {N; = ¢.(V)} =
{V 4+ N1 = ¢+ T12(n2 — ¢)} and both events are of probability p. In other words, ¢ is fixed so
ny = c+Tha(ne —c) and {ogp, (V+ N1) = 1} = {N1 = ¢g.(V)}. The fact that the single-crossing
property still holds and the inequality f’ > ¢/ ensure again that the threshold strategy dsp,
performs at least as well as the screening condition {N; = f(V)} = {6sp,(V + Na) = 1}.
Hence, we conclude that ﬁ(v’ Nip) = ﬁm Na.p)» as needed. ]

Proof of Theorem 1. We start by showing that S-dominance implies that T1o is a
contraction. Assume, by contradiction, that 775 is not a contraction, so there exists a point
n such that T7,(n) > 1. Recall that Tjo is the inverse mapping of T. 2*11, so the last inequality
suggests that there exists a point m such that T5,(m) < 1. By Lemma 4, there exists a pair
(V,p) such that ﬁ(V7 Nop) > ﬁ(V, Np,p) Which contradicts the S-dominance of Ny over N2. Thus,
we can conclude that 775 is indeed a contraction.

Let us now prove the second direction: assuming that 7312 is a contraction, we establish
the S-dominance of N7 over Ny. Since N7 and Ny are two distinct noise variables (namely,
symmetric around zero and independent) and since T2 is a contraction (and so a continuously
differentiable mapping), we deduce that there exists a point n such that 77,5(n) < 1. Thus, by
Lemma 4, we see that ﬁ(v, Naoyp) > ﬁ(V, N,,p) for some (V,p). In addition, the weak inequality

ﬁ(‘ﬂ Nop) = ﬁ(V7 Np,p) holds for every (V,p) by Lemma 4, thus concluding the proof. ]

A.4 Proof of Theorem 2

Proof. Fix an impact variable V', a capacity p € (0, 1), and two noises N1 and Ny such that
Ny is a noisy amplification of Nj. Denote SP; = (V| N;,p) for i = 1,2. We shall prove that
H§P1 > §P2'

For the noise variable N;, define the function f;(s) = E[V|V + N; = s], i = 1,2. In words,
the function f; produces the expected value of V' conditional on a signal s (i.e., on an event

{V +N; = s}). Since p is fixed, the optimal strategy odp. dictates that ofp (s) = 1if fi(s) = t;
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for some t; which depends on p and on the distribution of V' + N;. Otherwise, if there exist
two (positive-probability) sets of signals A and B such that ofp (a) = 1 > 0 = op (b) and
fila) < fi(b) for every a € A and b € B, then ogp. would not be optimal. Namely, the DM
can alternate odp. by rejecting signals from A and accepting signals from B (maybe partially,
to balance the acceptance ratio) and strictly improve the screening. To exactly sustain the
capacity p, the DM may need to randomize in case atoms are present where Pr(V + N; = s)
and E[V|V + N; = s] = t;. In such cases, the strategy would accept the threshold value with
the needed proportion, and otherwise reject the valuations to sustain p.

Define the event S; = {o&p (V + N;) = 1}, where Pr(S;) = p, and denote ¢ = Pr(S1 n S2).
Observe that IIgp = E[V[S1] = LE[V[S1 n S2] + %E [V1g,s,]- Let us consider the second

term, and use the law of iterated expectation (conditional on V' + Ni) to get

E[Vls,nss] = E[E[V1g 1]V + Ni]]
= E[E[V1g, |V + N]E[1s|V + Ni]]
> E[t115,E[1gg|V + Ni]]
= HE[E[1s,1s|V + M]]

= t1E[1lsnss] = ti(p — ),

where we used the fact that, conditional on V' + Ny, the random variables V1g, and 1gg are
independent (note that Sy depends solely on V' + Ny + N3 as N ~ Nj + N3, and all variables
are mutually independent). Thus, II§p > ZE[V|S1 n S] + 1274, Moving on to II§p,, one
can carry out a similar computation, using the law of iterated expectation, to get the following

upper bound:

Igp, = E[V]%]
= %E [V|SQ N Sl] + %E [Vlsngf]

< WIS ns]+ 1629
b b

We conclude that Igp > Ilgp, , as previously stated.

Now, let us show that there exist V and p such that the last inequality is strict. Take
a normally distributed impact variable V' ~ N(0, 1), a capacity p € (0,1), and consider the
previously used sets {S;};—12 and thresholds levels {t;};—1 2, all adjusted for the chosen V'
and p. Note that for every value s € R, the conditional distribution of V[{V + N; = s} is
non-atomic, and recall that No ~ Ny + N3.
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Next, the proof consists of two stages: first we will show that Pr(S{ n S2) > 0, and then
that E[V]S1 n S5] > E[V|S{ n S2]. Let a; = sup{s: Pr(S;|V + N; < s) = 0} be the maximal
value such that every signal below a; is rejected. Thus, there exists an ¢y > 0 such that for
every i and € € (0,¢) one has Pr(S;|V + N; € [a;,a; + €)) = 1. There are two possible cases to
consider: Pr(N3 < as —aq) > 0, and Pr(N3 < ag —ay) = 0.

If Pr(N3 < ag —ap) > 0, then for a small € € (0, €p),

Pr(S5nS1) = Pr(V+N;<a,V+N€la,a+5))
r(N3<a2—V N1,V + Ny € [a1,a1 + 5))
(

(

|
)—U

= Pr(N3 <az— %,V+N16[a1,a1+%))
= Pr N3<a2—a1—*)Pr(V+N1€[al,al—l— £)) >0,

where the last strict inequality follows from the assumptions on the distributions of N3 and e.
Therefore, Pr(S§ n S1) > 0, which implies Pr(Ss n S§) > 0, since Pr(S1) = Pr(S2) =p
Otherwise, Pr(N3 < as —a;) =0 =1 — Pr(N3 = az — a;) and, by the symmetry of N3, it

follows that as — a1 < 0. Thus, for a sufficiently small € > 0 we get

Pr(SonS5) = Pr(V+Na€lag,aa+5),V+ N <ar)
= Pr(V+N1+N3€[a2,a2+ 5).V+ N <ai)
= Pr(aa—Ns<V+Ny<as—N3s+5,V+N <a)
> Pr(ag—N3<V+N1<a2—N3+ , N3 > 0) >0,

where the last inequality holds since V' + Nj has full support over R and Pr(N3 = 0) > 0.5.
Hence, we have shown that Pr(Sy n Sy) > 0.

We move on to the second part. Assume that fi(s) = E[V|V + N; = s] is a non-constant
function of the signal s € R. Then, there exists p; € (0, 1) such that, for every capacity py > p1,

E[V]ofynypry (V + N1) = 1] > E[V]o?, y, ) (V + N1) = 1].

This holds by a straightforward convergence-to-the-mean argument, since a more selective and
limited choice of values increases the expected value of V relative to an increased capacity,
which necessarily introduces sub-optimal valuations. In other words, additional valuations of
V' are accepted (under capacity pp relative to pj), and the conditional expected value of V'
subject to these valuations is strictly lower. So, if indeed fi(s) = E[V|V + N; = s] is a non-
constant function, one can fix the capacity p such that E[V'|S1 n S§] > E[V|S{ n S2], as signals
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outside S7 yield a strictly lower expected value than the ones in S; (and, as already shown,

Pr(S; n S§) = Pr(S{ n S2) > 0). Therefore, by Lemma 5 below, we conclude that
lgp, = E[V[S]
q pP—q c
= ];E [V|51 N SQ] + TE [V|51 N SQ]

> %E [V[S: A S] + Z%E [V[SS A So]
= E[VI[S;] = lgp,,
as needed. m

Lemma 5. For every impact variable V' and noise variable N, the function f(s) = E[V|V +

N = s| is non-constant.

Proof. Fix an impact variable V and a noise variable N. Assume, with no loss of generality,
that E[V] = 0. Note that V' is non-degenerate (by definition), so one can fix a small € > 0 such
that Pr(V > €)Pr(V < —e) > 0. Take s = 0 such that Pr(N € (s — ¢, s + €)) > 0, and denote
I =(s—¢,s+e¢). Clearly, Pr(V+ N = s) € (0,1), and for every n € I, we get —e < s —n < €.
Thus,

E[VIV+n=s]=E[V|IV=s—n]>0=E[V].
The strict inequality follows from the fact that only low values of V' (below —e¢) are omitted

with strictly positive probability. By conditioning on N,
E[VIV+ N >=s] =E[E[V|V + N > s,N]| > 0= E[V],

and the strict inequality follows from a convex combination of strictly positive and non-negative
values. Since lim,_,_o E[V|V + N = s] = E[V] = 0, we conclude that f(s) = E[V|V + N = s]

is a non-constant function. [ ]

A.5 Proof of Lemma 1

Proof. Without loss of generality, assume that N ~ U[0,1] and denote Supp(V) = [V, V].
Fix two signals s; > s2, where s; € Supp(V + N) for every i. We will show that E[V|V + N =
s1] = E[V|V + N = sg|. If that is the case, then for any two sets A and B such that
Pr(V+ N e A)Pr(V + N € B) > 0 and A is point-wise strictly above B, we maintain the same
monotone relation E[V|V + N € A] > E[V|V + N € B], and the statement follows.

Note that N is uniformly distributed on [0, 1], so the random variable V' 4+ N has a non-

atomic distribution and

Supp(VI{V + N = s;}) = [max{s; — 1, V}, min{s;, V'}] .
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Since N supports all points in [0, 1] with equal weight, one can verify that the projection of

V + N = s; onto V preserves the distribution of V', conditional on the same support, so that
VI{V 4+ N = s;} ~ V{V € [max{s; — 1, V}, min{s;, V}]}.

Therefore, the deviation from s2 to s; increases (maybe weakly) the bounds max{s; — 1,V}
and min{s;, V}, which ensures that the Ineq. E[V|V + N = s1] = E[V|V + N = s3] holds. m

A.6 Proof of Lemma 2

Proof. Consider the screening problems SP; = (V, N;, p) for every i. Let s; be the threshold
value such that osp,(s) = 1i4>,). Introduce the events A; = {V +N; > s;} and the probabilities
p=Pr(A;) = Pr(Ag), p’ = Pr(A; n Ag).

We begin by showing that E[V|A; n AS] > E[V|A] n Ag]. The lines V + N; = s; and
V + AN = s9 intersect at (V, Ny) = (t1 — =52 Sl:ff), and

1-X 1

$1— S s —V
AlmAC={V>sl—i_/\2,N1€{91—Va 2)\ )}v

whereas

. ~V
A‘{mAgz{V<51—si_j\2,N1E {32)\,81—‘/) }

So, in terms of V', we get a point-wise dominance when conditioning on A; n A§ compared to
A§ N Ag, and E[V|A; n AS] = E[V]AS n Az]. Therefore,
E[V|é’sp2(v + NQ) = 1] = ]E[V|A2]

/ o
- %]E [V]A1 A As] + %E [V]AS A A

’ o
< %E [V]A; A As] + Z%E [V]A; A AS]
= E[V|A1] = E[V|5’SP1 (V + Nl) = 1]

Note that the inequality becomes strict whenever the two threshold strategies do not trivially

coincide (p > p’), and the statement holds. [

A.7 Proof of Lemma 3

Proof. Assume, by contradiction, that there exists a random variable N, independent of Ny,

such that Ny +N ~ Ny ~ U|[0,3/2]. Evidently, Supp(/N) € [0, 1/2], otherwise Supp(N; +N) #

[0,3/2], as needed. By conditioning on Ni, we get
1

. 1
3=FN1+N(§)=L Pr(Ns;—n)dnzflpr(Nsk)deJO Pr(N < k) dFk,



and

1 1 1 1
Fyon (1) = fPr(N<1—n)dn:J Pr(Ngk)dszQPr(N<k)dk+ﬁ 1dk

0

1 1 1
= P Q)+ g =343 -

contradicting the preliminary assumption which suggests that Fy, 1 n(1) = Fn,(1) =
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