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1 Introduction

Imagine that you have just been appointed to a top managing position in your field, say, the

editor of a top-tier academic journal. In an effort to promote your journal, you turn to the

editorial board for suggestions concerning ways to improve the journal’s screening process. Now

an editorial member approaches you claiming that there is a rather simple method to strictly

improve the screening. Specifically, the member advises you to use a “lucky coin toss” whose

result would be weighed into the evaluation process. Hearing this, you will quite possibility

consider the suggestion to be a joke, and for good reasons. It does seem absurd that one could

improve a screening by introducing additional independent noise to the process. Nonetheless,

in this paper we substantiate the potential superiority of the mentioned proposal, and we do

so by studying the impact of different noisy signals on various screening problems.

This research begins with a screening problem in which one decision maker (DM) performs

a screening based on noisy unbiased evaluations. The DM could be, for example, a manager

reviewing job applicants, an editor of a peer-reviewed academic journal screening for insightful

papers, or even a rating agency trying to asset the default risk of various borrowers. In all

these scenarios (and, obviously, various others), the decision problem is based on some noisy

evaluation upon which the DM decides whether to accept or reject an element from a general

set.

Following a basic screening model, we assume that the accurate values of the elements in

question are distributed according to an impact variable V and there exists a noise variable

N , such that the DM observes V � N . The DM strives to maximize the expected impact of

accepted elements through a proper decision rule (i.e., a screening strategy) which depends on

V �N . To ensure non-trivial results, we assume that the DM has a capacity constraint such

that a certain volume of elements must eventually be accepted.

The search for optimal screening strategies typically begins by examining threshold strate-

gies for a few obvious reasons: threshold strategies are simple, commonly used, and, in the

absence of noise, they are indeed optimal. In this paper, we also adhere to this line of thinking.

Indeed, our first observation roughly states that, under threshold strategies, one can strictly

improve a screening by adding independent binary noise to the evaluations. In other words,

we establish the possibility of generating “lucky coins” that improve a screening process. To

provide some intuition for this statement, we highlight two key conditions that are essential for

the mentioned result. The first is that threshold strategies be applied, and the second is that

the original noise N can generate non-trivial ordinal changes among values of V , conditional
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on V � N . Once some ordinal changes occur, the additional noise can partially correct the

applied screening strategy.

This preliminary observation is merely the overture to a much broader question concerning

the way different noisy signals impact screening processes, a question that stands at the core of

the current work. We address this research question by examining the superiority of one noise

variable over another. That is, we ask whether, ceteris paribus, a screening under one noise

variable produces a better result than under a different one. More formally, we refer to this

situation as screening dominance, and say that one noise variable S-dominates another if the

expected value of accepted elements given the former noise is at least as high as the expected

value given the latter, while holding the capacity fixed.

Our first main result provides a characterization of screening dominance under threshold

strategies. We fix two non-atomic noises and define a percentile-transformation (PT) mapping

between the two noises. Our equivalence result shows that one noise S-dominates another if

and only if the PT mapping is contracting. This result establishes a new method to compare

noise variables, namely a contraction mapping, which differs from commonly known methods

such as the mean-preserving spread (see literature review below for more details).

The next stage of our analysis focuses on optimal screening strategies. Assuming that

optimal screening strategies are applied, we prove that additional noise can only damage the

screening process. This result leads to a characterization of screening dominance between

normally distributed noises. That is, we consider two normally distributed noises N1 and N2,

and prove that N1 S-dominates N2 if and only if N1 could be generated by the sum of N2 and

another normally distributed and independent noise. This characterization strongly relates to

our contraction notion, since the mentioned condition (for normal distributions) is equivalent

to N1 being a contraction of N2.

The last part of our analysis combines the previously mentioned results by proving that

threshold strategies are optimal once uniform non-atomic noises are considered. In this class

of noises, we show that screening dominance is not fully characterized by additive noise, but

follows from the previously mentioned contraction property. Overall, our contraction charac-

terization accounts for optimal screening under at least two (presumably, the more important)

classes of noises: normal and uniform distributions.

1.1 Related literature and main contribution

The economic research on screening and noisy signals ranges from job-market signaling and

education to insurance and credit markets (see, e.g., Spence (1973), Stiglitz (1975), Rothschild
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and Stiglitz (1976), Stiglitz and Weiss (1981), Sah and Stiglitz (1986, 1988, 1991), and Meyer

(1991) among many others). Note that these papers typically focus on costly screening and

strategic signaling, while we consider a non-strategic and costless signaling model. So, in the

relevant literature, the papers that are closest to ours are those of Blackwell (1951, 1953),

Lehmann (1988), Quah and Strulovici (2009), and Rothschild and Stiglitz (1970, 1971).

Starting with the former, Blackwell (1951, 1953) compares different information structures

for the purpose of maximizing the expected payoff in a decision problem. In terms of the main

focus and classification in the literature, our study is quite close to Blackwell’s work. How-

ever, there are two key differences between the studies. First, in Blackwell’s model, the DM

observes noisy signals and aims to maximize his expected utility. In contrast, in our model,

the DM strives to maximize the conditional expectation of V . Second, there is a significant dif-

ference concerning the comparison in question. Blackwell compares two information structure

defined on the same state-space. We, however, allow the underlying state-space (namely, the

impact variable) to vary. In our framework, every noise variable generates different informa-

tion structures, based on the different impact variables. Thus, we actually compare different

information-structure generators (the noises) rather than information structures per se. These

differences eventually lead to two well-distinct characterizations — Blackwell’s garbling notion

versus our contraction mapping.

Despite the clear differences in motivation and modeling choices, our main result in this

paper, namely the characterization of screening dominance through a contraction mapping,

is related to the studies of Lehmann (1988) and Quah and Strulovici (2009) — both in the

vast literature of statistical decision theory and information economics. In the earlier study,

Lehmann (1988) defines a notion of comparison between two experiments such that one is more

informative than the other (or more accurate, following the terminology of Persico (2000)). In

our model of additive noise, one can show that our contraction property and Lehmann’s notion

of informativeness coincide (see Theorem 5.2 in Lehmann (1988)). Yet, a crucial distinction

is that Lehmann requires either strongly unimodal densities (in Theorem 5.2), or a monotone

likelihood ratio property (in Theorem 5.1), which are irrelevant in our model. In addition,

we provide a characterization in the context of screening problems where the decision maker

tries to maximize some goal function, whereas Lehmann adopts a more statistical approach of

comparing information structure in general.

A second study in this field, which follows the work of Lehmann (1988) and also relates to

ours, is by Quah and Strulovici (2009). In Lemma 3 therein, Quah and Strulovici show that

for any threshold strategy in a less informative screening problem (in the sense of Lehmann),
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one can devise a superior threshold strategy in the more information screening problem. For

that purpose they consider a general utility function and a different signaling system (specif-

ically, they do not confine themselves to additive noise, but require a fully supported set of

signals in every state of the world). Other than the underlying goal and motivation, the two

crucial differences between our result and the results of Quah and Strulovici (2009) are: (i) we

provide a characterization (rather than a necessary condition); and (ii) we follow a (binding)

capacity constraint on the set of accepted elements, which typically does not appear in this

line of research. Evidently, a capacity constraint is rather natural in screening problems, in

comparison to general decision problems.

A more recent study in this field is by Di Tillio et al. (2020). They follow the work of

Lehmann (1988) and Quah and Strulovici (2009), and ask whether it is beneficial for the DM

to observe a given set of i.i.d. signals, or to first strategically select them from a larger set of

signals. Similarly to our analysis, their core results focus on threshold strategies and additive

noise (called location experiments; see Section 4 therein).

Moving on to the work of Rothschild and Stiglitz (1970, 1971), the first aspect that asso-

ciates our work to theirs is the underlying goal: relating probabilistic properties of random

variables to the preferences of a rational decision maker. Rothschild and Stiglitz (1970, 1971)

achieve this goal by introducing the notion of a mean-preserving spread (MPS), which induces

a partial order over lotteries, and then relating this order to the preferences of a risk-averse

expected-utility maximizer. In contrast, we consider an additive independent noise and pro-

vide several equivalence results between the induced partial order (over noises) and screening

dominance.

This first similarity naturally leads to the second important connection between the in-

dicated studies — the origin of the partial orders in question. We, similarly to Rothschild

and Stiglitz (1970, 1971), use additive independent noise as the basis for our partial order

and analysis. However, Rothschild and Stiglitz use this noise to define the notion of a MPS,

whereas we use it to introduce a contraction mapping between noises which entails superior

screening capabilities, either through threshold strategies or through optimal ones. In addi-

tion, we provide a combination of positive and negative results, specifically because we do not

confine ourselves to optimal screening, but allow for commonly used threshold strategies.

Another main similarity between the studies in question is the ability to provide a wide

range of applications for the given theoretical results. Rothschild and Stiglitz (1971) apply

their earlier results (from the 1970 paper) to various investment and production problems. To

compare, we follow the model of Lagziel and Lehrer (2019) with its broad set of applications,
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which range from peer-reviewed academic publishing to credit ratings.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we present the basic screening model. In

Section 3 we study screening problems under threshold strategies and, in Section 4, we focus

on screening problems under optimal strategies. In Section 4.2, we combine the results of

Sections 3 and 4 by analyzing screening problems with uniform noises. Concluding remarks

are given in Section 5.

2 Preliminaries

We follow a basic screening model with one decision maker (DM) who performs a screening.

Consider a set of elements whose values are distributed according to a non-constant random

variable V , referred to as an impact variable. The individual values of the elements are private,

so every element with private value v goes through a noisy evaluation process and is evaluated

by v � N , where N is an unbiased noise variable, i.e., it is symmetrically distributed around

zero and independent of V .1

The DM uses the noisy evaluation to perform a screening subject to a capacity constraint.

For this purpose, the DM sets a screening strategy σ : RÑ t0, 1u, where 1 denotes acceptance

of a specific valuation and 0 denotes rejection.2 To avoid trivial solutions, we fix an acceptance

rate, a capacity level p P p0, 1q, which defines the share of accepted elements so that every

screening strategy σ must ensure that PrpσpV �Nq � 1q � p.

To motivate this model, one can think of the DM as an editor of a peer-reviewed academic

journal who approaches referees to evaluate a set of academic papers: V denotes the papers’

potential impact, V � N are the referees’ evaluations, and σ is the editor’s decision rule to

accept or reject a paper. Other possible scenarios include a trader facing different investment

opportunities, a manager screening potential employees, or even a sports scout searching for

potential Hall-of-Fame players. In all these scenarios, the DM establishes a noisy screening

process in order to maximize the expected value of the accepted elements, subject to some

capacity constraint.

We generally refer to the triplet SP � pV,N, pq as a screening problem. Given a screening

1Throughout this paper and unless stated otherwise, the notations N and Ni refer to unbiased noise variables.
2We henceforth assume that all measurability requirements hold.
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problem SP and a screening strategy σ, the expected value of accepted elements is

ΠSPpσq � E rV |σpV �Nq � 1s .

The DM’s goal is to maximize ΠSP. We denote the DM’s optimal screening strategy and opti-

mal expected payoff by σ�SP and Π�
SP, respectively. To be clear, all definitions and statements

hold almost surely (i.e., hold up to a measure-zero deviation).

The search for optimal screening typically begins by analyzing the class of threshold strate-

gies, and this for two main reasons. The first reason is that, in the absence of noise, threshold

strategies are optimal. The second is that, given a capacity p, threshold strategies are rather

simple to implement, since they are characterized by a unique threshold value which captures

the top 100p percentile of the distribution. Thus, we will devote a portion of our analysis to

study threshold strategies and the non-trivial cases in which they are optimal.

Formally, a screening strategy σ is a threshold strategy if there exists a value s such that,

with probability one, every noisy valuation (i.e., signal) above s is accepted and every noisy

valuation below s is rejected. Given a screening problem SP, we denote a threshold strategy

and the expected payoff under a threshold strategy by σ̂SP and pΠSP, respectively.

Since we incorporate general distributions in this model, one final clarification is needed

for the case of atomic ones. Should V � N have an atomic distribution and to meet the

capacity constraint p, the DM may need to impose a partially random screening such that

valuations that are subject to an atom are randomly split. In such cases, one should consider

a more general screening strategy where σ : R Ñ r0, 1s. We typically abstract from these

cases by assuming that (through an appropriate randomization) the DM can “split the atom”

(in a mathematical sense) and capture the expected value given that atom, with the needed

proportion.

2.1 Screening dominance and noisy amplifications

There are two noise-related notions that govern our analysis: screening dominance and noisy

amplifications. Let us define and explain each of these notions.

Definition 1. [Screening dominance]. We say that a noise variable N1 S-dominates a

noise variable N2 if, for every impact variable V and every capacity p, an optimal screening in

SP1 � pV,N1, pq produces a higher expected value than an optimal screening in SP2 � pV,N2, pq.

That is, N1 S-dominates N2 if

Π�
SP1

¥ Π�
SP2

and the inequality is strict for some impact variable and capacity.
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In simple terms, a noise variable N1 S-dominates N2 if, ceteris paribus, an optimal screening

under N! is at least as good as an optimal screening under N2 (and, in some cases, strictly

better), independently of the impact or the capacity.

The notion of screening dominance is rather demanding in the sense that it requires supe-

riority for every impact variable and every capacity under optimal strategies. In some cases

we shall use a weaker notion where optimal screening strategies are replaced with thresh-

old ones. For such purposes, we say that N1 S-dominates N2 under threshold strategies ifpΠpV,N1,pq ¥
pΠpV,N2,pq for every pair pV, pq, and the inequality is strict for some pair pV, pq.

The second notion we shall use is termed noisy amplification, and it suggests that one noise

could be reproduced by another, through an independent lottery.

Definition 2. [Noisy amplification]. A noise variable N2 is a noisy amplification of a noise

variable N1 if N2 � N1 �N3 and the noise variable N3 is independent of N1.

In other words, N2 is a noisy amplification of N1 if one can produce the distribution of N2

using the sum ofN1 and an independent lotteryN3. This notion will prove useful when debating

the dominance of one noise over another. We conclude by noting that a noisy amplification

is also an MPS (as noise variables have zero mean and the added noise N3 is independent of

N1), whereas the converse is not true.

3 Screening under threshold strategies

This section is divided into two parts, each presenting one key result of the paper. The first

part, in Section 3.1, shows how additional noise can strictly improve a screening process. The

second part, in Section 3.2, presents the first characterization of screening dominance. In both

parts we restrict our attention to threshold strategies that will be later combined, in Section

4.2, with the optimal ones.

3.1 Adding noise to a screening problem

The concept of a lucky coin toss is ambivalent. On the one hand, the procedure itself is

simple, not to say trivial: Once a DM approaches some screening problem, she can simply

toss a coin and incorporate the result into her decision. On the other hand, how can a simple

lottery improve a screening if we are merely introducing random noise into the process? In

this section, we shall attempt to resolve this puzzle.

We begin with a straightforward result stating that lucky coins exist, and later motivate

it with a simple example. Proposition 1 below shows that, for every bounded impact variable
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V and every capacity p, one can devise a noise variable N1 such that a lucky coin exists for

the screening problem SP � pV,N1, pq. The introduction of a lucky coin toss is manifested

through a different noise variable, N2, which is a noisy amplification of N1.

Proposition 1. For every bounded impact variable V and every capacity p, there exist noise

variables N1 and N2 such that N2 is a noisy amplification of N1 and pΠpV,N2,pq ¡
pΠpV,N1,pq.

The implications of Proposition 1 are clear: In some cases one can strictly improve a

screening by inserting additional noise. To clarify the last statement and explain our use of

the lucky-coin terminology, we remark that the proof of Proposition 1 uses an amplification of

N1, namely N2 � N1 �N3, where N3 is a binary symmetric noise.

To exemplify this result, consider the following (rather stylized) example. Assume that the

SAT scores of a large group of students is distributed uniformly on r800, 1200s. In addition,

assume that only half of the students are accepted to undergraduate studies and acceptance

is set according to some cut-off value. Now, due to some computational error, grades are ran-

domly distorted by �200 points, with equal probabilities, so the observed grades are uniformly

distributed on r600, 1400s. With and without this error, the screening is set from 1000 and

above, thus capturing half of the population. However, the error completely distorts the origi-

nal distribution and the average score of accepted students is 1000, compared to 1100 without

the error. In terms of the average score, note that this “noisy” screening is rather useless since

it preforms as good as random acceptance. However, if the same computational error occurs

twice (independently), the aggregate error is distributed according to

N �

#
�400, with probability 0.25,

0, with probability 0.5.

In words, the double error produces an accurate evaluation with probability 0.5, and combined

with the original uniform distribution on r800, 1200s, the average score of accepted students is

1050. Therefore, screening under these two independent errors is better than screening under

a single error (although the former is considered riskier in the sense of Rothschild and Stiglitz).

We will now explain the driving force behind this result. First, recall the key observation

of Lagziel and Lehrer (2019) that pΠpV,N,pq is not necessarily a monotone function of p. In other

words, the DM can enforce a more restrictive screening and the expected average level can

actually decrease. The non-monotonicity of pΠpV,N,pq w.r.t. p is due to the fact that unbiased

noise has a different nominal effect over different-size sets, to the point that it significantly

distorts the impact variable’s conditional distribution. That is, an unbiased noise imposed

over a large set of mediocre elements will produce a significant amount of upwards shifting,
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whereas the same noise imposed over a small set of superior elements produces a relatively small

amount of upwards shifting. In such cases, the probability masses matter, and an unbiased

noise can distort the distribution, so that the noisy valuations do not reflect the “true” ordering

of the elements’ impact. The additional noise can partially rectify this distortion, at least to

some extent, by “re-ordering” the values of V .

An important component of this result is that we are applying threshold strategies. Should

the DM have the ability to apply optimal strategies, the same example would show how the

additional noise only damages the screening process. We will return to this issue in Section 4

when discussing screening under optimal strategies. In the meantime, let us point out that the

following results (specifically, Theorem 1 and Theorem 2) do not depend on the optimality of

threshold strategies.

3.1.1 Robustness of Proposition 1

We wish to discuss two robustness concerns regarding the result of Proposition 1.

First, the noises used in the proof of Proposition 1 depend only on whether p ¥ 0.5 or

p   0.5, and on the support of V , rather than on its entire distribution. In addition, the

dependence on p hinges on the need to sustain symmetric noises. Therefore, if one allows for

asymmetric noises, the result of Proposition 1 becomes rather general, in that one can generate

a strictly better screening for every impact variable V (with the same support) and for every

capacity p, while holding N1 and N3 fixed.

Second, the support of the additive noise used in the proof is quite narrow relative to the

support of V . Therefore, the lucky coin can improve the screening although its magnitude, in

general, is rather small. The fact that the ordinal changes are locally generated and the use

of threshold strategies suggest that even if additional valuations are introduced (enlarging the

support of V ), the result of Proposition 1 remains valid.

Third, though this require some more work, one can also extend Proposition 1 to unbounded

impact variables. Specifically, using Lemma 2 of Lagziel and Lehrer (2019), one can construct

a screening bias for an unbounded impact variable. Then, to partially correct this bias, one

can add an i.i.d. noise, and follow a similar computation as the one given in the previously

discussed SAT example.3

3Note that the SAT example itself could be extended to general distributions (rather than uniform) on a

broader support than the current one; this should provide additional intuition for the extension of Proposition

1 to unbounded variables.
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3.2 A partial characterization of screening dominance

To characterize screening dominance under threshold strategies, we begin by defining a map-

ping that transforms any non-atomic noise into another non-atomic noise using percentiles

translation. This mapping will be used to compare a threshold strategy under one noise vari-

able with a different threshold strategy under another noise variable. As it turns out, the key

property to determine whether one noise variable S-dominates another is whether our mapping

is a contraction or not. If the mapping is a contraction, meaning that one noise transforms

to another using some form of contraction, then the condensed noise is superior for screening

purposes.

Formally, consider two noise variables N1 and N2 with CDFs F1 and F2, respectively. For

the sake of simplicity, assume both noises are non-atomic with convex supports such that

percentiles are uniquely defined. Given such noises, define the Percentile-Translation (PT)

mapping Tij by

Tijpnq � F�1
i pFjpnqq , @n P SupppNjq.

In other words, the PT mapping receives as input any 100p-percentile of noise Nj and generates

the 100p-percentile of noise Ni.

Let us now review the key properties of the PT mapping. Since both noises are non-atomic

with convex supports, the CDFs are strictly increasing on these sets and the mapping Tijpnq

is well defined and strictly increasing. Second, it is straightforward to verify that T12 is the

inverse of T21 and both are bijective maps (one-to-one correspondences) between the relevant

supports. In that case, T21 � T�1
12 and T 121pnq �

1
T 1

12pT21pnqq
.

To simplify the exposition, we introduce two additional definitions: (i) Ni and Nj are

called continuous if both noises are non-atomic with convex supports, and if Tij and Tji are

continuously differentiable; and (ii) Ni is called a contraction of Nj if T 1ijpnq ¤ 1 for every

n P SupppNjq and Tij is continuously differentiable. Roughly speaking, one noise variable is a

contraction of another if the percentiles of the former are closer together than the percentiles

of the latter.

A comparison between the contraction property and the notion of a MPS is clearly needed.

Given our symmetric-noise assumption, one can easily verify that a contracting PT mapping

Tij implies that Nj is a MPS of Ni,
4 whereas the converse is not true. Note, however, that the

mentioned symmetry assumption is not a necessary one for our main results. If this assumption

is omitted, then the notion of a MPS does not follow from the contraction property since the PT

4Given the symmetry assumption, MPS is also equivalent to second-order stochastic dominance.
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mapping can transform a symmetric noise variable into an asymmetric one (with a zero mean)

such that the original noise variable is not a MPS of the transformed one. We thus conclude

that the two notions are basically distinct and complementary. On the other hand, and as

already discussed in Subsection 1.1, our contraction property does coincide with the more-

informative notion of Lehmann (1988). We explicitly establish this connection in Appendix

A.2.

As follows from Theorem 1 below, the contraction property of the TP mapping is a necessary

and sufficient condition for screening dominance under threshold strategies. Our equivalence

result states that N1 S-dominates N2 under threshold strategies if and only if the TP mapping

T12 is a contraction.

Theorem 1. Fix two distinct continuous noise variables N1 and N2. Then, N1 is a contraction

of N2 if and only if N1 S-dominates N2 under threshold strategies.

Theorem 1 joins a long list of results that relate decision making to probabilistic properties,

which are later applied to various economic models (see, e.g., Holmstrom (1979) and Grossman

and Hart (1983), among others). Many of these studies trace back to the work of Blackwell

(1951, 1953), who characterized an information superiority through the garbling of signals.

The main focus of our study is the information needed to maximize the conditional expec-

tation of V . In Blackwell’s model, in contrast, the decision maker’s objective is to maximize the

(unconditional – over the entire state-space) expected state-dependent utility. The application

of different screening strategies to different screening problems typically induces different accep-

tance sets, which do not allow mean-spread comparison (garbling) as required by Blackwell’s

characterization.

Another significant difference between Blackwell’s work and ours is that Blackwell deals

with information structures that associate a noisy signal to every state. He then compares two

such structures, both defined on the same state-space. Here, the underlying state-space (in our

context, the impact variables V ) varies. Indeed, given V , a noise N generates an information

structure defined over V . However, the same noise N may generate an information structure

over every other impact variable. Allowing all possible impact variables, we actually compare

different noises as information-structure generators, rather than information structures.5

Due to these two significant differences, it is only natural that our characterization through

the notion of noise contraction is not directly connected to Blackwell’s garbling. In particular

5Related to this goal, one can find some similarity in a recent study by Di Tillio et al. (2020) in which the

DM needs to decide between a random sample of i.i.d. signals, or a strategically chosen sub-sample of i.i.d.

signals.
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our characterization cannot be derived from that of Blackwell, and vice versa.

Figure 1 provides intuition for the proof of Theorem 1. The graph on the left represents

threshold-screening under N2, where l2 denotes the threshold line for that screening. Using

the PT mapping, one can translate l2 to terms of N1, thus obtaining the l12 line in the right

graph. Note that the transformation along with the contraction property of T12 ensure that

l12 is decreasing with a slope greater than �1. When comparing the screening according to l12

with the threshold-screening with respect to N1 (given by the grey areas in the right figure

and the l1 line), we see that lower values of V are discarded in favor of higher ones (light grey

area B instead of area A). Hence, the threshold-screening under N1 is superior as stated.

V

N2

l2

V �N2 ¥ n2

pn2, 0q

p0, n2q

V

N1

l12

l1

A

B

V �N1 ¥ n1

Figure 1: Each graph li : V �Ni � ni represents threshold-screening in the screening problem SPi, and each

shaded area V �Ni ¥ ni represents the accepted valuations. Line l12 : N1 � T12pn2 � V q is the representation

of l2 in terms of N1 using the PT mapping T12. This translation maintains capacity, and its slope is greater

than �1. Given threshold-screening under N1, the set A (white area) is replaced by the set B (light grey area),

ensuring the screening dominance of N1.

What happens if the PT mapping is not a contraction? Assuming that noises are distinct

and unbiased, then T12 is not a linear mapping. Thus, there exists a point n such that

T 112pnq ¡ 1, which suggests that T12 is locally expanding in the neighborhood of n (recall

that the PT mapping is continuously differentiable) and T21 is locally contracting on some

interval. Hence, one can choose an arbitrary small-support impact variable such that the local

contraction of T21 generates the same effect as shown in Figure 1, but when translating N1 to

N2. This guarantees that there exist an impact variable and a capacity such that threshold

screening under N2 is superior (for a detailed proof, see Lemma 4 in the Appendix).

A simple example of a contracting PT mapping is provided by multiplying a noise variable

by any positive constant c P p0, 1q. Once this is done, the resulting noise is a contraction of the
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former. We shall return to this simple observation when discussing optimal screening under

uniform noises in Section 4.2.

Remark 1. Note that the statement of Theorem 1 holds whether threshold strategies are opti-

mal or not. This stands in contrast to Proposition 1, where threshold strategies are suboptimal.

Moreover, in Section 4.1 we extend Theorem 1 to S-dominance (under optimal strategies) given

normally distributed noises (see Observation 1 below).

3.2.1 Contraction may not imply S-dominance (under optimal strategies)

We conclude this section with an explanation concerning the problems that arise when reverting

to optimal (potentially, non-threshold) strategies. Consider, for example, two binary and

symmetric noise variables N1 and N2, where Ni � �i with equal probabilities. Now take an

impact variable V which equals either 0 or 2, again with equal probabilities. Under the N1

noise, the DM would get a signal s � 1, but she would not know whether it originated from

the combination pV,N1q � p2,�1q or from pV,N1q � p0, 1q. In contrast, such ambiguity does

not occur under the noise N2, which would generate four distinct signals s P t�2, 0, 2, 4u.

In order to compare this example to Theorem 1, take a capacity of p � 0.5 and note that

Π�
SP2

� 2 ¡ 1.5 �¥ Π�
SP1

.

That is, an optimal screening in SP2 � pV,N2, pq produces a strictly higher expected value

than an optimal screening under SP1 � pV,N1, pq, although N1 is a contraction of N2. In

other words, the information ambiguity that N1 produces in SP1 implies that N1 does not

S-dominate N2, and it also explains the need to take a different approach once dealing with

optimal strategies, as we do in the following section.

4 Screening under optimal strategies

In this section we focus on screening dominance under optimal strategies, for which purpose

we divide our analysis into two parts. In Section 4.1, we show that a noisy amplification is

a sufficient condition for screening dominance. Moreover, if we restrict attention to normally

distributed noises, we prove that the noisy amplification condition is, in fact, a characterization

of screening dominance. Then, in Section 4.2, we examine the noisy amplification condition

under uniform noises. Specifically, we prove that a noisy amplification is not a necessary

condition for screening dominance under such noises, whereas the contraction result of Theorem

1 does provide a necessary condition under uniform noises.
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4.1 A sufficient condition for screening dominance

The first result connects the two basic notions of noisy amplifications and S-dominance. Specif-

ically, Theorem 2 below states that a noisy amplification of one noise variable is dominated,

in terms of screening, by that variable.

Theorem 2. If N2 is a noisy amplification of N1, then N1 S-dominates N2.

In order to prove Theorem 2, one needs to devise an optimal screening strategy for general

screening problems. The proof of Theorem 2 does that based on the function

fipsq � ErV |V �Ni � ss,

for every signal s. This function provides the expected value of the impact variable conditional

on the received signal. For every capacity p, the optimal strategy accepts a noisy valuation s

if fipsq ¥ tSPi for some fixed value tSPi , which depends on the screening problem SPi. This

bears some resemblance to the Neyman–Pearson lemma, and one can also find some similarities

between the two proofs.

Remark 2. Note that S-dominance is based on the strict superiority of N1 over the noisy

amplification N2 for some impact variable V and capacity p. Thus, the construction and

implementation of an optimal screening strategy is necessary for the proof of Theorem 2.

Specifically, given SP1 � pV,N1, pq, one cannot simply assume that the DM replicates the

optimal screening strategy as in SP2 � pV,N2, pq, by using the original signal V � N1 and a

proper randomization rule. The latter merely produces the same expected value as in SP2.

An immediate conclusion from Theorem 2 is the equivalence between screening dominance

and noisy amplifications within the set of normally distributed noises. The driving force behind

this conclusion is the fact that the set of normally distributed unbiased noises is closed with

respect to additivity, and that for any two such distinct noises N1 and N2, either N1 is a noisy

amplification of N2, or vice versa.

Corollary 1. Fix two normally distributed noise variables N1 and N2. Then, N2 is a noisy

amplification of N1 if and only if N1 S-dominates N2.

The proof is straightforward (and thus omitted). One direction follows directly from The-

orem 2, so we need only consider the other direction, starting with the screening dominance

of N1 over N2. If N1 S-dominates N2, there exist an impact variable and capacity such that

screening under N1 is strictly better. Thus, the two noises are not distributed similarly and
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one has a higher variance than the other. The noise with the higher variance is a noisy am-

plification of the other, and it is evident (from Theorem 2) that N2 is a noisy amplification of

N1.

Corollary 1 along with the basic properties of normal distributions allow us to derive the

following observation regarding noise contraction under optimal strategies. Specifically, for

normally distributed noise variables, N2 is a noisy amplification of N1 if and only if N1 is a

contraction of N2. Hence, the characterization given in Corollary 1 applies for the contraction

property, as well.

Observation 1. Fix two normally distributed noise variables N1 and N2. Then, N1 is a

contraction of N2 if and only if N1 S-dominates N2.

This observation extends Theorem 1 and the counterexample given in Section 3.2.1, by

showing that, for some classes of noises, the contraction property does lead to S-dominance

(under optimal strategies). We pursue this goal in the following section.

4.2 Screening dominance under uniform noises

Corollary 1 naturally raises the following question: is there an equivalence between screening

dominance and noisy amplifications under general distributions? It appears that the answer

to this question is negative, since one cannot identify screening dominance by solely restricting

attention to noisy amplifications. We show this by focusing on the class of uniformly distributed

noises with convex support.

We begin our analysis by establishing, in Lemma 1 below, that under uniformly distributed

noises (with convex supports) threshold strategies are optimal.

Lemma 1. If N is uniformly distributed on an interval, then threshold strategies are optimal

for every V and p.

In view of this result, we can consider a simple transformation of noises, other than additive

noise, that damages the screening process. Specifically, we can multiply a noise variable by

a constant greater than one, and analyze how the expansion affects the screening. In other

words, we can fix two continuous noise variables N1 and N2 (as considered in Section 3.2),

where N2 � cN1 and c ¡ 1. It is easy to verify that N1 is a contraction of N2, thus N1

S-dominates N2 under (the optimal) threshold strategies. In the following lemma, we prove

this result for general distributions without confining ourselves to continuous noises.

Lemma 2. Fix two screening problems SPi � pV,Ni, pq, i � 1, 2, such that N2 � cN1 for some

c ¡ 1. Then, pΠpV,N1,pq ¥
pΠpV,N2,pq.
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Note that the statement of Lemma 2 is general, and independent of the distribution of N1.

In other words, this result is not limited to either uniform or continuous noises.

Using Lemma 1, Lemma 2, and Lemma 3 below, we can prove that noisy amplifications

do not provide a general characterization for dominance. Specifically, fix two uniformly dis-

tributed6 noises N1 � U r0, 1s and N2 � U r0, 3{2s. Lemma 1 states that the optimal screening

strategy in any screening problem (under these noises) is a threshold strategy. Lemma 2 es-

tablishes that N1 dominates N2 since N2 � p3{2qN1. Lemma 3 below proves that N2 is not a

noisy amplification of N1. Thus, we substantiate the existence of two noise variables such that

one noise S-dominates the other, while the noisy-amplification condition is violated.

Lemma 3. If N1 � U r0, 1s and N2 � U r0, 3{2s, then N2 is not a noisy amplification of N1.

Therefore, one cannot devise an independent noise N such that N2 � N1�N and, nonethe-

less, N1 S-dominates N2.

5 Conclusion

In this paper we provided several novel insights into the world of screening. Using our definition

of screening dominance, we showed that additional noise is not necessarily adversary for a DM,

assuming that threshold strategies are exercised. We compared various noises in the context

of screening, while accounting for threshold strategies as well as optimal ones. We were able

to provide several characterizations of screening dominance among different types of noises,

and most importantly, our main characterization result shows that some form of contraction

among the noises’ distributions is essential for screening dominance.

References

Blackwell, D. (1951): “Comparison of Experiments,” in Proceedings of the Second Berke-

ley Symposium on Mathematical Statistics and Probability, Berkeley, Calif.: University of

California Press, 93–102.

——— (1953): “Equivalent Comparisons of Experiments,” The Annals of Mathematical Statis-

tics, 24, 265–272.

Di Tillio, A., M. Ottaviani, and P. Norman Sorensen (2020): “Strategic Sample

Selection,” .

6For the sake of simplicity, we do not consider symmetric noises. However, modifying the example to

symmetric noises is straightforward.

16



Grossman, S. J. and O. D. Hart (1983): “An Analysis of the Principal-Agent Problem,”

Econometrica, 51, 7.

Holmstrom, B. (1979): “Moral Hazard and Observability,” The Bell Journal of Economics,

10, 74.

Lagziel, D. and E. Lehrer (2019): “A Bias of Screening,” American Economic Review:

Insights, 1, 343—-356.

Lehmann, E. L. (1988): “Comparing Location Experiments,” The Annals of Statistics, 16,

521–533.

Meyer, M. A. (1991): “Learning from Coarse Information: Biased Contests and Career

Profiles,” The Review of Economic Studies, 58, 15.

Persico, N. (2000): “Information Acquisition in Auctions,” Econometrica, 68, 135–148.

Quah, J. K.-H. and B. Strulovici (2009): “Comparative Statics, Informativeness, and the

Interval Dominance Order,” Econometrica, 77, 1949–1992.

Rothschild, M. and J. Stiglitz (1976): “Equilibrium in Competitive Insurance Markets:

An Essay on the Economics of Imperfect Information,” The Quarterly Journal of Economics,

90, 629–649.

Rothschild, M. and J. E. Stiglitz (1970): “Increasing Risk: I. A Definition,” Journal of

Economic Theory, 2, 225–243.

——— (1971): “Increasing Risk II: Its Economic Consequences,” Journal of Economic Theory,

3, 66–84.

Sah, R. K. and J. E. Stiglitz (1986): “The Architecture of Economic Systems: Hierarchies

and Polyarchies,” .

——— (1988): “Economics of Committees,” Economic Journal, 98, 451–470.

——— (1991): “The Quality of Managers in Centralized Versus Decentralized Organizations,”

The Quarterly Journal of Economics, 106, 289–295.

Spence, M. (1973): “Job Market Signaling,” The Quarterly Journal of Economics, 87, 355–

374.

17



Stiglitz, J. E. (1975): “The Theory of “Screening,” Education, and the Distribution of

Income,” American Economic Review, 65, 283–300.

Stiglitz, J. E. and A. Weiss (1981): “Credit Rationing in Markets with Imperfect Infor-

mation,” The American Economic Review, 71, 393–410.

A Appendices

A.1 Proof of Proposition 1

Proof. Fix an impact variable V and a capacity p P p0, 1q. Assume, without loss of generality,

that V is supported on r0, 1s. We examine separately three cases: p   0.5, p � 0.5, and p ¡ 0.5.

In general, denote the screening problem by SPi � pV,Ni, pq for every i and every noise Ni.

Starting with p   0.5, define the noise variable N1 by

N1 �

#
�1.1, with probability p,

0, with probability 1� 2p.

Clearly, ErV |σ̂SP1pV � N1q � 1s � ErV s. Now consider N3 � �0.1 with equal probabilities

and N2 � N1 �N3. The distribution of N2 is therefore

PrpN2 � kq �

#
p{2, for k P t�1.2,�1u,

1{2� p, for k P t�0.1u.

Given V �N2, the threshold strategy σ̂SP2 accepts every assessment once N2 � 1.2 and only

partially accepts assessments once N2 � 1. The latter is due to the fact that, given N2 � 0.1,

some high values of V are accepted instead of low values of V , given N2 � 1. We conclude
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that the threshold level is some t P r1, 1.1s. Thus,

ErV |σ̂SP2pV �N2q � 1s �
E
�
V 1tV�N2¥tu

�
p

�
p
2E

�
V 1tV�1.2¥tu

�
� p

2E
�
V 1tV�1¥tu

�
�
�
1
2 � p

�
E
�
V 1tV�0.1¥tu

�
p

�
ErV s

2
�

1

2
E
�
V 1tV¥t�1u

�
�

�
1

2p
� 1



E
�
V 1tV¥t�0.1u

�
�

ErV s
2

�
PrpV ¥ t� 1q

2
ErV |V ¥ t� 1s

� PrpV ¥ t� 0.1q

�
1

2p
� 1



ErV |V ¥ t� 0.1s

¡ ErV s
�

1

2
�

PrpV ¥ t� 1q

2
� PrpV ¥ t� 0.1q

�
1

2p
� 1


�
� ErV s

PrpV �N2 ¥ tq

p
� ErV s.

Therefore, ErV |σ̂SP2pV �N2q � 1s ¡ ErV s � ErV |σ̂SP1pV �N1q � 1s.

For the case when p ¡ 0.5, perform a similar computation with p replaced by 1 � p. This

will produce the same inequality ErV |σ̂SP2pV �N2q � 1s ¡ ErV s � ErV |σ̂SP1pV �N1q � 1s.

For the case when p � 0.5, set N1 � �0.6 with equal probabilities, and set N3 � �0.2 with

equal probabilities, as well. Hence, N2 P t�0.8,�0.4u, all with equal probabilities. Clearly,

ErV |σ̂SP1pV � N1q � 1s � ErV s, while the screening threshold under N2 is some value t2 P

r0.4, 0.6s, and

ErV |σ̂SP2pV �N2q � 1s � ErV |V �N2 ¥ t2s

�
1

4
E
�
V 1tV¥t2�0.8u

�
�

1

4
E
�
V 1tV¥t2�0.4u

�
�

1

4
E
�
V 1tV¥t2�0.4u

�
�

1

4
ErV s �

PrpV ¥ t2 � 0.4q

4
ErV |V ¥ t2 � 0.4s

�
PrpV ¥ t2 � 0.4q

4
ErV |V ¡ t2 � 0.4s

¡ ErV s
�

1

4
�

PrpV ¥ t2 � 0.4q

4
�

PrpV ¥ t2 � 0.4q

4

�
� ErV s � ErV |σ̂SP1pV �N1q � 1s,

which concludes the proof.

A.2 The contracting PT mapping and Lehmann’s ordering of signals

Lehmann (1988) defines an ordering of signals in the following manner. Consider two noisy

signals X1 and X2 about some impact variable V . Note that we consider additive noises,
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so Lehmann’s signals translate to Xi � V � Ni, for every i, under our terminology. Let

Gip�|vq be the conditional distribution of Xi, given V � v, and consider the mapping hvpxq �

G�1
1 pG2px|vq|vq by Lehmann (1988); see Theorem 5.1 therein. Lehmann assumes that these

conditional distributions are differentiable and maintain the monotone likelihood ratio property

(MLRP) for every v, to establish that X1 is more informative7 than X2 if and only if hvpxq is

non-decreasing in v, for every x.

To explicitly relate this informativeness notion to our contracting PT mapping, note that

Gipx|vq � Fipx� vq under an additive-noise set-up, where Fi is the CDF of the noise variable

Ni. Thus, G�1
1 py|vq � F�1

1 pyq � v and hvpxq translates to

hvpxq � G�1
1 pG2px|vq|vq � F�1

1 pG2px|vqq � v � F�1
1 pF2px� vqq � v � T12px� vq � v.

Therefore, under all needed differentiability assumptions, hvpxq is non-decreasing in v for every

x if and only if T 112pnq ¤ 1 for every n.

Lehmann also considers an additive-noise set-up and assumes that the densities are strongly

unimodal (see Theorem 5.2 therein), to prove that one signal is more informative than another

if the updated hvp�q mapping is contracting. Therefore, the connection is straightforward. Yet,

one should note that the characterizations remain distinct as we require neither the MLRP, nor

strongly unimodal densities, whereas we do require a continuously differentiable PT mapping.

A.3 Proof of Theorem 1

For the proof of Theorem 1 we need the following auxiliary lemma.

Lemma 4. Consider two continuous noise variables N1 and N2. For every n P SupppN2q

such that T 112pnq   1, there exists pV, pq such that pΠpV,N1,pq ¡
pΠpV,N2,pq. Moreover, if T12 is a

contraction, then pΠpV,N1,pq ¥
pΠpV,N2,pq for every pV, pq.

Proof. Take an interior point n2 P SupppN2q such that T 112pn2q   1. Since T12 is contin-

uously differentiable, one can take an open interval I � pn2 � ε, n2 � εq such that T 112pnq   1

for every n P I. Define V � U r�ε, εs, and consider the screening problem SP2 � pV,N2, pq,

where p is fixed such that σ̂SP2psq � 1 if and only if s ¥ n2. That is, the threshold-screening

for pV,N2, pq accepts every valuation given by the event tV �N2 ¥ n2u.

Note that N1 � T12pN2q since, for every n P R, we have

PrpT12pN2q ¤ nq � PrpF�1
1 pF2pN2qq ¤ nq � PrpN2 ¤ F�1

2 pF1pnqqq � F2pF
�1
2 pF1pnqqq � F1pnq.

7Lehmann uses the term more effective when restricting the discussion to a subset of decision problems.
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So, T12 transforms N2 to N1. Hence,

ErV |V �N2 ¥ n2s � ErV |N2 ¥ n2 � V s

� ErV |T12pN2q ¥ T12pn2 � V qs

� ErV |N1 ¥ T12pn2 � V qs,

where the second equality holds because T12 is strictly increasing.

Consider the function fpvq � T12pn2 � vq for v P p�ε, εq. Clearly, f is strictly decreasing,

differentiable, and f 1pvq � �T 112pn2�vq ¡ �1 for every v P p�ε, εq. For every c P p�ε, εq, define

the linear function gcpvq � �v � c � T12pn2 � cq. Note that g1cpvq � �1, so the graphs of the

functions fpvq and gcpvq intersect exactly once, at pc, T12pn2 � cqq. Specifically, gεpvq ¥ fpvq,

while g�εpvq ¤ fpvq.

We can now use gc to construct a threshold (screening) strategy for the screening problem

pV,N1, pq. Observe that

PrpN1 ¥ gεpV qq   PrpN1 ¥ fpV qq � PrpN1 ¥ T12pn2 � V qq � p,

while

PrpN1 ¥ g�εpV qq ¡ PrpN1 ¥ fpV qq � PrpN1 ¥ T12pn2 � V qq � p.

So, by continuity, one can fix some c P p�ε, εq such that p � PrpN1 ¥ gcpV qq. Note that

tN1 ¥ gcpV qu � tV �N1 ¥ c� T12pn2 � cqu and tN1 ¥ fpV qu � tN1 ¥ T12pn2 � V qu,

and the former equality depicts a threshold strategy which strictly differs from the latter

screening condition N1 ¥ T12pn2�V q. Though both maintain the same capacity p, the single-

crossing property of f and gc together with the fact that f 1 ¡ �1 � g1c, suggest that the

screening condition N1 ¥ gcpV q omits lower values of V in-exchange for higher ones, relative

to the screening condition N1 ¥ fpV q. Thus, we get

ErV |V �N1 ¥ c� T12pn2 � cqs ¡ ErV |N1 ¥ T12pn2 � V qs � ErV |V �N2 ¥ n2s,

and the first statement of the lemma holds.

To prove the second statement, fix any pV, pq. Consider the screening problems SPi �

pV,Ni, pq and threshold strategies σ̂SPi for every i. Denote the threshold value of σ̂SPi by ni
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for every i. Thus,

ErV |σ̂SP2pV �N2q � 1s � ErV |V �N2 ¥ n2s

� ErV |N2 ¥ n2 � V s

� ErV |T12pN2q ¥ T12pn2 � V qs

� ErV |N1 ¥ T12pn2 � V qs.

As before, we consider the functions fpvq � T12pn2 � vq and gcpvq � �v � c � T12pn2 � cq,

defined for every pv, cq P SupppV q. Following the same continuity argument (replacing �ε and

ε with sufficiently low and high values, respectively), one can fix c such that tN1 ¥ gcpV qu �

tV �N1 ¥ c� T12pn2 � cqu and both events are of probability p. In other words, c is fixed so

n1 � c�T12pn2�cq and tσ̂SP1pV �N1q � 1u � tN1 ¥ gcpV qu. The fact that the single-crossing

property still holds and the inequality f 1 ¥ g1c ensure again that the threshold strategy σ̂SP1

performs at least as well as the screening condition tN1 ¥ fpV qu � tσ̂SP2pV � N2q � 1u.

Hence, we conclude that pΠpV,N1,pq ¥
pΠpV,N2,pq, as needed.

Proof of Theorem 1. We start by showing that S-dominance implies that T12 is a

contraction. Assume, by contradiction, that T12 is not a contraction, so there exists a point

n such that T 112pnq ¡ 1. Recall that T12 is the inverse mapping of T�1
21 , so the last inequality

suggests that there exists a point m such that T 121pmq   1. By Lemma 4, there exists a pair

pV, pq such that pΠpV,N2,pq ¡
pΠpV,N1,pq which contradicts the S-dominance of N1 over N2. Thus,

we can conclude that T12 is indeed a contraction.

Let us now prove the second direction: assuming that T12 is a contraction, we establish

the S-dominance of N1 over N2. Since N1 and N2 are two distinct noise variables (namely,

symmetric around zero and independent) and since T12 is a contraction (and so a continuously

differentiable mapping), we deduce that there exists a point n such that T 112pnq   1. Thus, by

Lemma 4, we see that pΠpV,N2,pq ¡
pΠpV,N1,pq for some pV, pq. In addition, the weak inequalitypΠpV,N2,pq ¥

pΠpV,N1,pq holds for every pV, pq by Lemma 4, thus concluding the proof.

A.4 Proof of Theorem 2

Proof. Fix an impact variable V , a capacity p P p0, 1q, and two noises N1 and N2 such that

N2 is a noisy amplification of N1. Denote SPi � pV,Ni, pq for i � 1, 2. We shall prove that

Π�
SP1

¥ Π�
SP2

.

For the noise variable Ni, define the function fipsq � ErV |V �Ni � ss, i � 1, 2. In words,

the function fi produces the expected value of V conditional on a signal s (i.e., on an event

tV �Ni � su). Since p is fixed, the optimal strategy σ�SPi
dictates that σ�SPi

psq � 1 if fipsq ¥ ti
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for some ti which depends on p and on the distribution of V � Ni. Otherwise, if there exist

two (positive-probability) sets of signals A and B such that σ�SPi
paq � 1 ¡ 0 � σ�SPi

pbq and

fipaq   fipbq for every a P A and b P B, then σ�SPi
would not be optimal. Namely, the DM

can alternate σ�SPi
by rejecting signals from A and accepting signals from B (maybe partially,

to balance the acceptance ratio) and strictly improve the screening. To exactly sustain the

capacity p, the DM may need to randomize in case atoms are present where PrpV �Ni � sq

and ErV |V �Ni � ss � ti. In such cases, the strategy would accept the threshold value with

the needed proportion, and otherwise reject the valuations to sustain p.

Define the event Si � tσ�SPi
pV �Niq � 1u, where PrpSiq � p, and denote q � PrpS1 X S2q.

Observe that Π�
SP1

� ErV |S1s � q
pE rV |S1 X S2s �

1
pE

�
V 1S1zS2

�
. Let us consider the second

term, and use the law of iterated expectation (conditional on V �N1) to get

E
�
V 1S1XSc

2

�
� ErErV 1S11Sc

2
|V �N1ss

� ErErV 1S1 |V �N1sEr1Sc
2
|V �N1ss

¥ Ert11S1Er1Sc
2
|V �N1ss

� t1ErEr1S11Sc
2
|V �N1ss

� t1Er1S1XSc
2
s � t1pp� qq,

where we used the fact that, conditional on V �N1, the random variables V 1S1 and 1Sc
2

are

independent (note that S2 depends solely on V �N1 �N3 as N2 � N1 �N3, and all variables

are mutually independent). Thus, Π�
SP1

¥ q
pE rV |S1 X S2s � t1

p�q
p . Moving on to Π�

SP2
, one

can carry out a similar computation, using the law of iterated expectation, to get the following

upper bound:

Π�
SP2

� ErV |S2s

�
q

p
E rV |S2 X S1s �

1
pE

�
V 1S2XSc

1

�
¤

q

p
E rV |S2 X S1s � t1

p� q

p
.

We conclude that Π�
SP1

¥ Π�
SP2

, as previously stated.

Now, let us show that there exist V and p such that the last inequality is strict. Take

a normally distributed impact variable V � Np0, 1q, a capacity p P p0, 1q, and consider the

previously used sets tSiui�1,2 and thresholds levels ttiui�1,2, all adjusted for the chosen V

and p. Note that for every value s P R, the conditional distribution of V |tV � Ni � su is

non-atomic, and recall that N2 � N1 �N3.
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Next, the proof consists of two stages: first we will show that PrpSc
1 X S2q ¡ 0, and then

that ErV |S1 X Sc
2s ¡ ErV |Sc

1 X S2s. Let ai � supts : PrpSi|V �Ni   sq � 0u be the maximal

value such that every signal below ai is rejected. Thus, there exists an ε0 ¡ 0 such that for

every i and ε P p0, ε0q one has PrpSi|V �Ni P rai, ai � εqq � 1. There are two possible cases to

consider: PrpN3   a2 � a1q ¡ 0, and PrpN3   a2 � a1q � 0.

If PrpN3   a2 � a1q ¡ 0, then for a small ε P p0, ε0q,

PrpSc
2 X S1q ¥ Pr

�
V �N2   a2, V �N1 P

�
a1, a1 �

ε
2

��
� Pr

�
N3   a2 � V �N1, V �N1 P

�
a1, a1 �

ε
2

��
¥ Pr

�
N3   a2 � a1 �

ε
2 , V �N1 P

�
a1, a1 �

ε
2

��
� Pr

�
N3   a2 � a1 �

ε
2

�
Pr

�
V �N1 P

�
a1, a1 �

ε
2

��
¡ 0,

where the last strict inequality follows from the assumptions on the distributions of N3 and ε.

Therefore, PrpSc
2 X S1q ¡ 0, which implies PrpS2 X Sc

1q ¡ 0, since PrpS1q � PrpS2q � p.

Otherwise, PrpN3   a2 � a1q � 0 � 1 � PrpN3 ¥ a2 � a1q and, by the symmetry of N3, it

follows that a2 � a1   0. Thus, for a sufficiently small ε ¡ 0 we get

PrpS2 X Sc
1q ¥ Pr

�
V �N2 P

�
a2, a2 �

ε
2

�
, V �N1   a1

�
� Pr

�
V �N1 �N3 P

�
a2, a2 �

ε
2

�
, V �N1   a1

�
� Pr

�
a2 �N3 ¤ V �N1   a2 �N3 �

ε
2 , V �N1   a1

�
¥ Pr

�
a2 �N3 ¤ V �N1   a2 �N3 �

ε
2 , N3 ¥ 0

�
¡ 0,

where the last inequality holds since V � N1 has full support over R and PrpN3 ¥ 0q ¡ 0.5.

Hence, we have shown that PrpS2 X Sc
1q ¡ 0.

We move on to the second part. Assume that f1psq � ErV |V �N1 � ss is a non-constant

function of the signal s P R. Then, there exists p1 P p0, 1q such that, for every capacity p0 ¡ p1,

ErV |σ�pV,N1,p1q
pV �N1q � 1s ¡ ErV |σ�pV,N1,p0q

pV �N1q � 1s.

This holds by a straightforward convergence-to-the-mean argument, since a more selective and

limited choice of values increases the expected value of V relative to an increased capacity,

which necessarily introduces sub-optimal valuations. In other words, additional valuations of

V are accepted (under capacity p0 relative to p1), and the conditional expected value of V

subject to these valuations is strictly lower. So, if indeed f1psq � ErV |V �N1 � ss is a non-

constant function, one can fix the capacity p such that ErV |S1XSc
2s ¡ ErV |Sc

1XS2s, as signals
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outside S1 yield a strictly lower expected value than the ones in S1 (and, as already shown,

PrpS1 X Sc
2q � PrpSc

1 X S2q ¡ 0). Therefore, by Lemma 5 below, we conclude that

Π�
SP1

� ErV |S1s

�
q

p
E rV |S1 X S2s �

p� q

p
E rV |S1 X Sc

2s

¡
q

p
E rV |S1 X S2s �

p� q

p
E rV |Sc

1 X S2s

� ErV |S2s � Π�
SP2

,

as needed.

Lemma 5. For every impact variable V and noise variable N , the function fpsq � ErV |V �

N � ss is non-constant.

Proof. Fix an impact variable V and a noise variable N . Assume, with no loss of generality,

that ErV s � 0. Note that V is non-degenerate (by definition), so one can fix a small ε ¡ 0 such

that PrpV ¡ εqPrpV   �εq ¡ 0. Take s ¥ 0 such that Pr pN P ps� ε, s� εqq ¡ 0, and denote

I � ps� ε, s� εq. Clearly, PrpV �N ¥ sq P p0, 1q, and for every n P I, we get �ε   s� n   ε.

Thus,

E rV |V � n ¥ ss � E rV |V ¥ s� ns ¡ 0 � ErV s.

The strict inequality follows from the fact that only low values of V (below �ε) are omitted

with strictly positive probability. By conditioning on N ,

ErV |V �N ¥ ss � E rErV |V �N ¥ s,N ss ¡ 0 � ErV s,

and the strict inequality follows from a convex combination of strictly positive and non-negative

values. Since limsÑ�8 ErV |V �N ¥ ss � ErV s � 0, we conclude that fpsq � ErV |V �N � ss

is a non-constant function.

A.5 Proof of Lemma 1

Proof. Without loss of generality, assume that N � U r0, 1s and denote SupppV q � rV , V s.

Fix two signals s1 ¡ s2, where si P SupppV �Nq for every i. We will show that ErV |V �N �

s1s ¥ ErV |V � N � s2s. If that is the case, then for any two sets A and B such that

PrpV �N P AqPrpV �N P Bq ¡ 0 and A is point-wise strictly above B, we maintain the same

monotone relation ErV |V �N P As ¡ ErV |V �N P Bs, and the statement follows.

Note that N is uniformly distributed on r0, 1s, so the random variable V � N has a non-

atomic distribution and

SupppV |tV �N � siuq �
�
maxtsi � 1, V u,mintsi, V u

�
.
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Since N supports all points in r0, 1s with equal weight, one can verify that the projection of

V �N � si onto V preserves the distribution of V , conditional on the same support, so that

V |tV �N � siu � V |tV P
�
maxtsi � 1, V u,mintsi, V u

�
u.

Therefore, the deviation from s2 to s1 increases (maybe weakly) the bounds maxtsi � 1, V u

and mintsi, V u, which ensures that the Ineq. ErV |V �N � s1s ¥ ErV |V �N � s2s holds.

A.6 Proof of Lemma 2

Proof. Consider the screening problems SPi � pV,Ni, pq for every i. Let si be the threshold

value such that σ̂SPipsq � 1ts¥siu. Introduce the events Ai � tV �Ni ¥ siu and the probabilities

p � PrpA1q � PrpA2q, p
1 � PrpA1 XA2q.

We begin by showing that ErV |A1 X Ac
2s ¥ ErV |Ac

1 X A2s. The lines V � N1 � s1 and

V � λN1 � s2 intersect at pV,N1q �
�
t1 �

s1�s2
1�λ ,

s1�s2
1�λ

	
, and

A1 XAc
2 �

"
V ¡ s1 �

s1 � s2
1� λ

,N1 P

�
s1 � V,

s2 � V

λ


*
,

whereas

Ac
1 XA2 �

"
V   s1 �

s1 � s2
1� λ

,N1 P

�
s2 � V

λ
, s1 � V


*
.

So, in terms of V , we get a point-wise dominance when conditioning on A1 XAc
2 compared to

Ac
1 XA2, and ErV |A1 XAc

2s ¥ ErV |Ac
1 XA2s. Therefore,

ErV |σ̂SP2pV �N2q � 1s � ErV |A2s

�
p1

p
E rV |A1 XA2s �

p� p1

p
E rV |Ac

1 XA2s

¤
p1

p
E rV |A1 XA2s �

p� p1

p
E rV |A1 XAc

2s

� ErV |A1s � ErV |σ̂SP1pV �N1q � 1s.

Note that the inequality becomes strict whenever the two threshold strategies do not trivially

coincide (p ¡ p1), and the statement holds.

A.7 Proof of Lemma 3

Proof. Assume, by contradiction, that there exists a random variable N , independent of N1,

such that N1�N � N2 � U r0, 3{2s. Evidently, SupppNq � r0, 1{2s, otherwise SupppN1�Nq �

r0, 3{2s, as needed. By conditioning on N1, we get

1

3
� FN1�N

�
1
2

�
�

» 1

0
Pr

�
N ¤ 1

2 � n
�
dn �

» 1
2

�
1
2

Pr pN ¤ kq dk �

» 1
2

0
Pr pN ¤ kq dk,
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and

FN1�N p1q �

» 1

0
Pr pN ¤ 1� nq dn �

» 1

0
Pr pN ¤ kq dk �

» 1
2

0
Pr pN ¤ kq dk �

» 1

1
2

1dk

� FN1�N

�
1
2

�
�

1

2
�

1

3
�

1

2
�

5

6
,

contradicting the preliminary assumption which suggests that FN1�N p1q � FN2p1q �
2
3 .
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