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1 Introduction

In scenarios with incomplete information, players often have limited insight into the factors
influencing outcomes. For this reason, an information provider—referred to as an oracle—can
play a pivotal role in shaping players’ strategies by revealing partial information about the
underlying relevant conditions. This partial revelation is akin to the information provided by
various forecasters (ranging from weather and sports to geopolitics), news media organizations,
rating agencies, and even prediction markets. In these cases, external observers convey partial
information to players engaged in strategic interactions.

This paper examines incomplete-information games in which an external oracle publicly dis-
closes information to players, potentially altering the game’s equilibria. Our primary objective
is to explore and characterize the conditions under which one oracle can be said to ‘dominate’
another. To this end, we define a partial order of dominance: One oracle dominates another
if, in every game, the information structure of the former can induce at least the same set of
equilibrium outcomes as the latter. This framework generalizes the classical results of Blackwell
(1951)), who focused on comparing signaling structures in decision problems.

The analysis is divided based on the oracles’ signaling capabilities: deterministic and
stochastic. When oracles are limited to deterministic signaling functions, we show that an
oracle dominates another if and only if it can simultaneously match the players’ posterior be-
liefs induced by the other oracle, while accounting for potential redundancies due to players’
private information (see Theorem (1| in Section . We refer to this condition as ’Individually
More Informative’ (IMI). Although the IMI condition may seem intuitive at first, it is funda-
mentally different from the refinement condition implied by Blackwell’s criterion for dominance,
as evident from the stochastic characterization. Moreover, in our framework and unlike Black-
well’s result, if two oracles dominate each other under the IMI condition, then they must be
identical (see Theorem [2 in Section . We prove this before extending our analysis to the
stochastic setting.

The conditions for dominance in the stochastic setting differ from those in the deterministic
one. When oracles are permitted to use stochastic signaling functions, the resulting posteriors

become more complex. In this case, dominance requires additional criteria that depend on two



key elements based on the information structures of all players.

The first element is the common knowledge component (CKC), the smallest set, in terms of
inclusion, that all players can agree upon (see Aumann, 1976). Using the structure of CKCs, we
introduce the concept of an information loop, the second key element in our characterization. To
formally define these loops, we first partition the state space into distinct CKCs. An information
loop is then defined as a closed path of states that connects different CKCs through elements
of an oracle’s partition.

For example, assume there are 4 states Q = {w;,ws, w3, ws} and two players whose pri-
vate information in given by the following partitions: TI; = {{w;, w2}, {ws}, {ws}} and Ty =
{{wr}, {ws2}, {ws,ws}}. The players’ private information induces two CKCs: C; = {wy,ws} and
Cy = {ws,wys}. That is, the two players can agree on each of these two events. See the illustra-
tion in Figure[1] If the oracle’s information is given by the partition Fy = {{wy,ws}, {w2, wa}},
we say that a loop exists, as the different partition elements of F} form a closed path between
the two CKCs. Namely, w; € C; and ws € Cy are joined by a partition element of F; and
the same holds for wy € €y and wy € Cy. This yields a sequence of states, that starts in Cf,
transitions to Cy and reverts back again to ', through different states that serve as entry and

exit points from each CKC.

Figure 1: There are two CKCs {w1,ws} and {ws,w4}. The oracle’s partition F; generates a loop (w1, ws, w4, ws),
which is a closed path connecting the two CKCs using the oracle’s partition elements.

Assuming that an oracle does not generate information loops (which includes the case where

the entire state space comprises a unique CKC), we prove that it dominates the other oracle if
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and only if its partition refines that of the other within every CKC (see Theorem [4]in Section
and Theorem [5|in Section . Importantly, this refinement condition does not follow from
the IMI criterion used in the deterministic setting.

At this stage, we also prove that the refinement and dominance notions, given a unique CKC,
are both equivalent to the inclusion condition which states that for every signaling strategy 7
of Oracle 2, there exists a signaling function 7; of Oracle 1 such that the set of the players’
posterior beliefs profiles based on 7 is a subset of that based on 75. Again, this holds given a
single CKC, which obviously cannot admit information loops.

However, if a loop exists, the characterization becomes more complex. An information loop
imposes (measurability) constraints on the information the oracle can convey. In the previous
example, notice that every signaling function of the oracle over {w;,ws}, uniquely defines the
signaling over {ws,w,}. Thus, the oracle is not free to signal any information it wants in one
CKC, without restricting its ability to convey different information in the other CKC.

An obvious question that goes to the heart of information loops and our results is why
should we care specifically about the signaling structure over the pairs of states that form the
loop in every CKC? Moreover, why should a loop consist of separate entry and exit points
in every CKC? The answer is that, given a CKC, Bayesian updating depends on the ratio of
signal-probabilities for the different states. Thus, an effective constraint imposes restrictions
over such ratios, thus relating to at least two states in every CKC (while keeping in mind the
refinement condition in every CKC).

To tackle this issue, we need to thoroughly study the properties of information loops, and
the first property is non-informativeness. A loop is called non-informative if, in every CKC
that it intersects, all the states of the loop are in the same partition element of that oracle. We
refer to this as non-informativeness because, conditional on the CKC and loop, the oracle has
no-information to convey to the players. For example, in Figure [I} consider an oracle with a
trivial partition F| = Q = {wy, w2, ws,ws}. This partition creates a closed path between the two
CKCs, as well as joining all the states of the loop (given a CKC) to a single partition element of
F|. Building on this notion and assuming that the partition of Oracle 1 refines that of Oracle

2 in every CKC (as in the previously stated characterization), then non-informative loops do



not pose a problem for dominance and Oracle 1 dominates the other (see Theorem [7]in Section
53).

However, once a loop is informative (i.e., in at least one CKC that it intersects, there are
states in the loop from different partition elements of the oracle; see Figure , then we require
additional conditions for characterization. More specifically, in case there are only two CKCs,
an additional condition is that Oracle 2 also has information loops whose states cover Oracle 1’s
loop (the notion of a cover is formally defined in Section . Using this condition we provide a
characterization for the case of two CKCs (see Proposition [7|in Section , while the question
of characterization in case of more than two CKCs remains open.

Yet, we should point out that the concept of information loops hints at a significant connec-
tion to Aumann’s theory of common knowledge, from Aumann| (1976). This link appears to be
central to understanding how shared and differing information structures impact equilibrium
outcomes in incomplete-information games. For this reason we provide an extensive set of result
concerning information loops (see Section [5.4).

Another property that proves crucial for our analysis is the notion of irreducibility, which
splits to two levels. The first is irreducible loops, which implies that there exists no (smaller)
loop that is based on a strict subset of states taken from the original loop. The second is
referred to as type-2 irreducible loops, and it implies that the loop does not contain four states
from the same partition element of the oracle (again see Figure . On the one hand, type-2
irreducibility is a weaker notion compared to irreducible loops, because it allows for a loop
to intersect the same CKC several times, whereas an irreducible loop cannot. On the other
hand, a type-2 irreducible loop must be informative, because it does not allow for the entry
and exit point in every CKC to be in the same partition element of that oracle. In fact, it is
fully-informative because this condition holds in every CKC, rather than in a specific CKC.

The somewhat-delicate understanding of the relations between these loops properties allows
us to achieve another main result: the characterization of equivalent oracles. Formally, we say
that two oracles are equivalent if they simultaneously dominate one another. The character-
ization of equivalence, given in Theorem [§ in Section @ is based on: (i) equivalence in every

CKC; (ii) equivalence of irreducible-informative loops; and (iii) a cover over loops. To prove
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Figure 2: An illustration of a fully-informative and irreducible loop, which intersects three CKCs C7,Cs and
C3 with two states in each.

this result, we use type-2 irreducible loops to compare the information of both oracles. Specifi-
cally, we consider the sets of type-2 irreducible loops that intersect a joint CKC (i.e., connected
loops), also taking into account sequential intersections (i.e., the transitive closure) where loop
1 is connected to loop 2 which is then connected to loop 3 and so on. We observe the set of
CKCs for each of these groups and refer to these sets as clusters. These are used as building
blocks in our analysis, and we prove that the information of equivalent oracles must match
on these clusters. This, in turn, provides some insight into possible future characterization of
general dominance between oracles, as well as provides another level of extending the theory of

Aumann (1976) on common knowledge, beyond information loops.

1.1 Relation to literature

The current research aims to extend the classical framework established by Blackwell (1951,
1953), which focuses on comparing experiments in decision problems. In Blackwell’s frame-
work, one experiment (or information structure) dominates another if it is more informative,
enhancing the decision maker’s expected utility across all decision problems. In the context of
games, dominance implies that the information structure of one oracle enables it to replicate
the equilibrium distribution over outcomes induced by the other oracle.

Another connection to Blackwell’s comparison lies in the fact that, in our study, an oracle
can transmit any information through a signaling function, provided it is measurable with

respect to the information it possesses. In this sense, an oracle in our framework functions as



a generator of experiments, rather than a fixed entity as in Blackwell’s framework. However,
unlike Blackwell’s comparison of experts (see Blackwell, [1951)), our approach does not focus on
optimizing the decision maker’s outcome. Instead, we analyze the role of oracles in inducing
various equilibria.

Blackwell’s model was recently extended by [Brooks et al.| (2024), who compare two informa-
tion sources (signals) that are robust to any external information source and decision problem.
They introduce the notion of strong Blackwell dominance and characterize when one signal
dominates another under this criterion: a signal strongly Blackwell dominates another if and
only if every realization of the more informative signal either reveals the state or refines the
realization of the less informative one.

There are several key differences between their framework and ours. First, while their anal-
ysis focuses on a single decision maker, we study multi-player environments. Second, they
allow for arbitrary private information structures and decision problems; in fact, their charac-
terization is entirely independent of the decision maker’s information. In contrast, our model
assumes fixed private information structures for the players and allows variation only in the
payoff functions of the underlying game. As a result, our analysis is specific to each config-
uration of the players’ information structures: every distinct configuration must be analyzed
separately. A third major difference lies in the role of the oracle. In their model, the oracle is a
fixed Blackwell experiment. In contrast, in our setting, the oracle can generate any experiment
that is measurable with respect to its partition, effectively acting as a generator of Blackwell
experiments.

Beyond Blackwell’s work, this project runs parallel to and is inspired by two additional lines
of research. The first concerns the topic of Bayesian persuasion. Originating from the classic
model of Kamenica and Gentzkow| (2011)), the literature on Bayesian persuasion explores how
an informed sender should communicate with an uninformed receiver to influence the receiver’s
choices. The central question revolves around how much information—and in some contexts,

when—should the sender disclose to maximize their payoft[]

1See, for example, Horner and Skrzypacz| (2016); [Renault et al| (2013); Ganglmair and Tarantino| (2014);
Horner and Skrzypacz (2016); Renault et al.| (2017); |[Ely| (2017); [Ely and Szydlowskil (2020); |(Che and Horner
(2018)); Bizzotto et al.| (2021); Mezzetti et al.| (2022). For a survey of this field, see Kamenica (2019).



The second strand of literature explores the role of an external mediator in games with
incomplete information. The mediator provides players with differential information to co-
ordinate their actions, resulting in outcomes that correspond to various forms of correlated
equilibria, as introduced by [Forges (1993). Importantly, in some of these studies, the mediator
does not supply additional information about the realized state but focuses solely on coordinat-
ing the players’ actions. (Gossner| (2000) examines games with complete information, comparing
mediating structures that induce correlated equilibria. The mediator’s role is exclusively to co-
ordinate the players’ actions. One mediator is considered "richer” than another if the set of
correlated equilibria it induces is a superset of those induced by the other. The characterization
is based on the concept of compatible interpretation, which aligns with the spirit of Blackwell’s
notion of garbling.

Other studies, closely aligned with the current project’s goals, investigate information struc-
tures in incomplete-information games and establish partial orderings among them. [Peski| (2008))
analyzed zero-sum games, offering an analogous result to Blackwell’s by characterizing when
one information structure is more advantageous for the maximizer. [Lehrer et al. (2010)) ex-
amines a common-interest game, comparing two experiments that generate private signals for
players, which may be correlated. The results depend on the type of Blackwell’s notion of gar-
bling used, which varies with the solution concept applied. In a follow-up study, Lehrer et al.
(2013)) extended Blackwell’s garbling to characterize the equivalence of information structures
in incomplete-information games, specifically by determining when they induce the same equi-
libria. Likewise, Bergemann and Morris| (2016)) explores common-interest games, characterizing
dominance through the concept of individual sufficiency—an extension of Blackwell’s notion of
garbling to n-player games.

In this study, we fix the players’ initial information structures and compare oracles that
provide additional information, which in turn influences the players’ beliefs. The key distinction
of our study lies in two main aspects: (a) the information provided by the oracles is public, and
therefore does not serve as a coordinator between the players’ actions, as in various versions
of correlated equilibrium; (b) since an oracle functions as a generator of experiments, we allow

the externally provided information to vary. Additionally, we do not impose any restrictions on



the type of game, whether it involves a common objective, a zero-sum structure, or any other
form. While previous results align with Blackwell’s garbling, our findings differ significantly
from any version of it.

This approach presents a unique challenge compared to the problem of comparing two fixed
information structures, as explored in previous literature. The distinction becomes evident in
the example in Section [2| where the oracles are evaluated based on the full range of signaling
functions they can generate. From an applied perspective, in many real-life scenarios, informa-
tion providers have multiple ways to share information with the public, making it crucial to

compare them as generators of information.

1.2 The structure of the paper

The paper is organized as follows. In Section [2 we provide a simple example to illustrate
the key concepts of the paper. Section [3| presents the model and key definitions. Section
analyzes deterministic oracles, including a characterization of dominance and a proof that
two-sided dominance implies the oracles are identical (given a unique CKC). In Section |5, we
examine stochastic oracles in several stages. First, we introduce a two-stage game, referred
to as a "game of beliefs,” which serves as a foundational tool for our characterization within
each CKC. Then, Sections [5.2| and characterize dominance in the cases of a unique CKC
and multiple CKCs without loops, respectively. Section outlines necessary and sufficient
conditions for dominance. In Section [5.6, we provide a characterization of dominance in the
context of two CKCs. Finally, in Section [6] we characterize the equivalence relation between

oracles.

2 A simple example: the rock-concert standoff

To understand these concepts, consider a simple example of competition between two rock
bands | Assume two bands, 1 and 2, arrive in the same city during their tours and must decide

whether to perform on the same day or on different days. The issue arises because the stadiums

2We thank Alon Eizenberg from the Hebrew University and two 1990s rock bands who inspired this example.



in that city are partially open, making bad weather a significant factor that adversely affects
crowd attendance.

Assume there are 200, 000 fans eager to see these bands, with ticket prices fixed at $20 each.
The production cost for each concert is $500, 000, but this cost doubles if attendance exceeds
75,000 people. Further, assume that each fan attends at most one concert.

On a sunny day, all fans would prefer to attend the concerts, splitting evenly if both bands
perform on the same day. However, under stormy conditions, attendance drops to 20,000 fans,
who again split evenly if both bands perform simultaneously. If the bands choose to perform
on different days, attendance splits such that only 10% of the fans attend the concert on the
stormy day, with the remaining fans attending the other concert.

As it turns out, weather conditions are problematic because a storm is coming either today
or tomorrow. More formally, there are four equally likely states: in states n; and ns, the storm
arrives today, while in states s; and s, the storm arrives tomorrow. Each band has a unique
partition over this state space. Band 1’s partition is Iy = {{n1, s2}, {n2, s1}}, while Band 2’s
partition is Iy = {{n1}, {s1}, {ne, s2}}. In simple terms, Band 1 cannot differentiate between
no and s9, while Band 2 cannot distinguish between n; and s_; for each ¢ = 1,2. Additionally,
there are two weather forecasters with the following partitions: F} = {{ni}, {s1}, {n2, s2}} and
Fy = {{n1,n2}, {s1, 52} }. These information structures are illustrated in Figure [3}

Based on the realized state, the bands engage in the game depicted in Figure [d] Each band
decides whether to perform today, an action denoted by D, or tomorrow, denoted by M. The
payoffs in the matrices are given in hundreds of thousands of dollars, and the bands’ actions
have opposing impacts depending on the state of nature.

Conditional on the state, it is evident that each band has a strictly dominant action: to
perform on the day with good weather. Consequently, the analysis is straightforward. If
both bands know the exact payoff matrix, there is a unique Nash equilibrium. However, this
equilibrium is not necessarily optimal in terms of overall profit, which could be maximized if
the bands coordinated and split the performance dates.

However, if Band 1 knows the exact payoff matrix while Band 2 believes the two matrices

are equally likely (and assuming this is common knowledge), an equilibrium exists in which
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Figure 3: On the left, Figure (a) illustrates the information structures: II; = {{n1, s2}, {n2,s1}} for Band 1
(green) and IIy = {{n1}, {s1}, {ne, s2}} for Band 2 (orange). On the right, Figure (b) depicts the information
structures Fy = {{ni},{s1},{ne2,s2}} for Forecaster 1 (red) and F» = {{ni,ns2},{s1,s2}} for Forecaster 2
(blue). These figures illustrate a unique CKC where neither of the Forecasters’ partitions refines the other.
Nevertheless, Forecaster 1 is individually more informative (IMI) than Forecaster 2, whereas the converse does
not hold. This is because Forecaster 2 cannot replicate the partition Fy = {{n1, s1, 2}, {n2}}.

Band 2 Band 2
D M D M
D| -3-3 |-1,26 D | 10, 10 | 26, -1
Band 156, 71710, 10 Band 11 5613, 3
Payoffs in states n; and ns (stormy today) Payoffs in states s; and s (stormy tomorrow)

Figure 4: Payoff matrices for sunny and stormy conditions.

Band 2 randomizes equally between M and I due to symmetry, and Band 1 selects M under
{n1,n2} and D given remaining states. This equilibrium yields, on aggregate, higher expected
payoffs of $1.8 million for Band 1 and $450, 000 for Band 2.

Now, we examine how the two different forecasters can influence the outcome of this game.
For simplicity, assume that forecasters are restricted to deterministic strategies, meaning they
provide deterministic public signals based on their information. Forecaster 2 has only two
options: either provide no information at all (which, in some cases, leads both bands to perform
in stormy conditions) or fully reveal all relevant information, which results in an expected payoff
of $1 million for each band. Forecaster 1 also has these two options, as fully revealing his private

information makes the realized state common knowledge between the two bands. In such cases,
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we say that Forecaster 1 is individually more informative than Forecaster 2.

However, Forecaster 1 can achieve more than simply matching the beliefs induced by Fore-
caster 2. Specifically, he can signal the partition {{ni, s}, {ne,s2}}, ensuring that Band 1
is fully informed about the state and the corresponding payoff matrix, while Band 2 receives
no additional information and remains unable to distinguish between ny and s;. Under these
conditions and given either of the states no and sy, the previously described equilibrium, in
which the expected payoffs are 1800 and 950 for Bands 1 and 2 respectively, still exists. Thus,
Forecaster 1 can support a broader set of equilibria while also matching the set of equilibria
induced by Forecaster 2. This exemplifies the partial order of dominance characterized in this
study.

This simple example offers several additional insights. First, the state space comprises
a unique CKC, given the bands’ information. In other words, the smallest set (in terms of
inclusion) that the bands can agree upon is the entire space. However, the forecasters’ partitions
do not refine one another, even within this unique CKC, meaning that the IMI condition does
not imply refinement. Moreover, when stochastic signals are allowed, we later show that neither
forecaster dominates the other

Second, if this were a decision problem (as in |Blackwell,|1951 and Brooks et al., 2024)) rather
than a game, both forecasters would be equally beneficial to both parties. In decision problems,
superior information can only improve the expected outcome, and both forecasters could fully
reveal the true state to each party. This highlights a key distinction: the classification in games
is fundamentally different from that in decision problems and does not follow from it.

Third, the ability to induce a broader set of outcomes is distinct from coordination in the
sense of correlated equilibrium (as in [Forges, 1993). The process here relies critically on the

forecasters’ private information and how it is disclosed to the players.

3Notably, given a unique CKC, we prove that two-sided IMI implies that the two partitions coincide. See

Section
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3 The model

A guided game comprises a Bayesian game and an oracle. The oracle’s role is to provide
information that enables a different, and preferably broader, range of equilibria. It does so
through signaling, and our analysis seeks to characterize the extent to which oracles can expand
the set of equilibrium payoffs.

We begin by defining the underlying Bayesian game. Let N = {1,2,...,n} be a finite set
of n > 2 players, and let ) denote a non-empty, finite state space. Each player ¢ € N has
a non-empty, finite set of actionsﬁ A; and a partition II; over €2, representing the information
available to player i. Denote the set of action profiles by A = X;enyA;. The utility function
for each player i € N is u; : 2 x A — R, which maps states and action profiles to real-valued
payofs.

To extend the basic game to a guided game, we introduce an oracle who provides public
information before players take their actions. For that purpose, the oracle has a partition
F over €, and a countable set S of signals. A strategy of the oracle is an F-measurable
function 7 : F' — A(S) used to transmit information to all players N, where A(S) is the
set of all distributions on finite subsets of S. We denote by 7(s|w) the probability 7(w)(s)
at which 7 transmits the signal s when the realized state is w. Note that any deterministic
strategy 7 : ' — S is essentially equivalent to a partition, and we will refer to it as such when
appropriate.

The guided game evolves as follows. First, the oracle publicly announces a strategy r.
Then, a state w € €2 is drawn according to a common prior u € A(2). Each player i is privately
informed of II;(w), which is a set of states containing w and also an atom of player i’s private
partition. Finally, the signal 7(w) € S is publicly announced in the case 7 is deterministic, or
s € S is drawn according to 7(w) and is publicly announced in the case where 7 is stochastic.

Let the joinﬂ IT; V F’ denote the updated information (i.e., partition) of player i given II;
and some partition F’. In case 7 is a deterministic function, let uiw = u(-|[IL; V 7](w)) € A(Q)

denote player ¢’s posterior distribution after observing II;(w) and 7(w). In case 7 is stochastic,

4In this setting, A; is independent of the player’s information; however, the current framework can also
accommodate scenarios where it is not.
®Coarsest common refinement of II; and F”; following the definition of Aumann| (1976).
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let ,ui‘wvs = pu(: | (w), 7,s) € A(2) denote player i’s posterior distribution after observing
IT;(w) and a realized signal s according to 7(w). Thus, every strategy 7 yields an incomplete-
information game G(7) = (N, (A;)ien, (11 )ien, (wi)ien). Since the state space and the action
sets are finite, the equilibria of the game exist. When there is no risk of ambiguity, we denote

the incomplete-information game without 7 by G.
Example 1. Deterministic and stochastic strategies.

To illustrate the difference between deterministic and stochastic strategies, consider an
information structure where Il; = {{wy,ws}, {ws}}, i is the uniform distribution on 2, and
Oracle 1 has complete information. Under deterministic strategies, the feasible posteriors are
generated by either II; (oracle provides no additional information) or F; (complete information).
On the other hand, the set of feasible posteriors under stochastic strategies includes distributions

of the form (p,1 — p,0) for every p € [0, 1].

3.1 Partial ordering of oracles

To discuss the role of the oracle in the current framework, one needs a relevant solution concept.
Thus, let us define the following notion of a Guided equilibrium, which incorporates the oracle’s
strategy. Formally, let o; : II; x S — A(A;) be a strategy of player i. A tuple (1,04,...,0,) is
a Guided equilibrium if (o1,...,0,) is a Nash equilibrium in the incomplete-information game
G(7).

The notion of a Guided equilibrium defines a partial ordering of oracles, i.e., a partial
relation over their partitions according to the sets of equilibria. To define this relation, let
NED(G(7)) € A(2x A) be the set of distributions over €2 x A induced by Nash equilibria given
G and 7/ Now consider two oracles, Oracle 1 and Oracle 2, and denote the generic partition
and strategy of Oracle j by F; and 7, respectively. Using these notations we define a partial

ordering of oracles as follows.

*

6Note that a Nash equilibrium (o7}, ...,07) induces a probability distribution over  x A. Specifically, fix w
and an action profile a, the probability of (w,a) under the equilibrium strategy (o}, ...,o)) and the signaling
*

function 7 is given by u(w) Y- o 7(s|lw) [T, 07 (ai|IL;(w), s). Since multiple equilibria can exist, NED(G(7)) is
a subset of A(Q x A).
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Definition 1 (Partial ordering of Oracles). Oracle 1 dominates Oracle 2, denoted Fy =g Fb,
if for every 7o and game G, there exists T such that NED(G(m)) = NED(G(72)).

In simple terms, dominance implies that one oracle can mimic the signaling structure of the
other to induce the same equilibria. Note that a direct comparison of the games’ equilibria is
problematic because the players’ strategies depend on the oracles’ signaling functions.

Two points are worth noting here. First, if the players’ information structures were un-
known, one might consider defining the dominance order between oracles in a more flexible
way, allowing for a variety of possible partitions. In that case, the characterization problem
would likely become easier. The challenge in our framework arises from the fact that the
partitions are predetermined.

The second point highlights that Definition [1|compares the equilibria induced by the oracles.
An alternative, weaker condition could involve, for example, an inclusion criterion based on the
set of equilibria or the players’ expected payoffs. We relate to these possibilities in Section
below. Nevertheless, we use the more general definition to address potential issues that
may arise from different equilibrium-selection processes. Since we do not restrict ourselves
to a specific selection process (which may diverge from the Pareto frontier), a broader set of
equilibria might not always benefit the players. This approach also addresses complications
that could emerge in a parallel setup, if oracles were to maximize some goal function.

Definition (1] also allows us to define equivalent oracles. Formally, we say that Oracle 1 is
equivalent to Oracle 2, denoted F; ~ F5, if each Oracle dominates the other. We provide a

necessary condition for equivalent oracles in Section [3]

3.2 Alternative definitions of dominance

One could consider other notions of dominance, which might involve different types of com-
parisons between outcomes—such as combinations of (state, action-profiles)—or comparisons
based on equilibrium payoffs.

An alternative definition of dominance could be based on an inclusion criterion concerning

the distribution over outcomes. Specifically, Oracle 1 dominates Oracle 2 in the inclusive sense,
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if and only if, for every 7, and game G, it holds that

NED(G(n)) C | JNED(G(m)).
!

This is a weaker condition than the one currently used. It implies that Oracle 1 dominates
Oracle 2 if any equilibrium distribution of outcomes induced by 75 can be generated by some
7. Unlike the condition in Definition [I} this alternative allows for different distributions over
outcomes induced by 75 to be generated by different 7, strategies.

Another approach to the issue of dominance could involve comparisons between equilibrium
payoffs. Specifically, for any game G and a signaling function 7, let NEP(G(7)) denote the set
of Nash-equilibrium expected-payoffs profiles induced by 7. Oracle 1 is said to dominate Oracle

2 in the payoff sense if, for every 7 and game G, there exists a 71 such that
NEP(G(1)) = NEP(G(12)).

Alternatively, Oracle 1 dominates Oracle 2 in the inclusive-payoff sense if, for every m and game
G, it holds that
NEP(G(r2)) € | JNEP(G(m)).

T1

The concepts related to equilibrium outcome distributions imply their corresponding payoff-
related notions. Definitions based on equilibrium outcome distributions are better suited for
oracles—such as the Federal Reserve—that prioritize outcomes, such as individuals’ actions and
their aggregate effects, over individual payoffs. Conversely, definitions grounded in equilibrium
payoffs are more appropriate for contexts where the primary focus is on individual payoffs.

An interesting direction for future research would be to identify the precise settings, if any,
where the various definitions diverge. We leave this question open for further investigation. In

the following, we adopt Definition [1}
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3.3 The Oracles as players

Another way to compare oracles is to treat them as players. In the spirit of sender-receiver
games, the oracle takes the role of the sender—responsible for providing information—while
the other players act as receivers, making decisions based on both their private information and
the signals they receive. In this framework, the oracle’s objective is to maximize its equilibrium
payoff in the resulting game of incomplete information. One could then compare two oracles
by saying that one is more informative than the other if, in every such game, the former always
secures a (weakly) higher equilibrium payoff than the latter.

However, this approach has several drawbacks relative to ours. First, such games typically
admit multiple equilibria, making it unclear which equilibrium payoff should be the basis for
comparison. Second, equilibrium analysis generally presumes that players’ information par-
titions are common knowledge. In particular, it assumes that the oracles know the private
information structures of the players. In contrast, our approach imposes significantly weaker
assumptions: one oracle can often imitate another without requiring full knowledge of players’
information structures. In fact, even identifying the components that are common knowledge
is sometimes unnecessary. While our comparison focuses exclusively on the equilibrium out-
comes of the game played by the players, we assume that the private information structures are
common knowledge among the players themselves—but not necessarily known to the oracle.

The third advantage of our approach is that, by focusing on the equilibrium outcomes of
the game played by the agents, we can analyze the information structures of the oracles inde-
pendently of any objectives they might have. This enables us to concentrate on informational

aspects and to introduce new concepts into the model, such as informational loops and clusters

(see Sections and [6]).

3.4 The case of one decision maker
3.4.1 The Oracle contributes to DM’s private information

To illustrate a key contribution of this paper and connect it to the current body of knowledge,

consider a decision problem with one decision-maker (DM) and two oracles. When Oracle
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1 employs a signaling strategy 7;, the DM also gains access to his own partition II. The
combination of the signaling strategy 7; and the partition II induces a Blackwell experiment

Mi(Tia H) .
Example 2. One decision maker and two oracles.

Consider the uniformly distributed state space 2 = {w1, ws, w3, wy }, with a single DM whose
private information is represented by the partition IT = {{wy, ws}, {ws, w4 }}, while the oracles’
partitions are given by F} = {{wi, w4}, {w2},{ws}}, and F;, = {{w1, w3}, {w2,ws}}. This infor-

mation structure is illustrated in Figure [f

II
—\
o W9 oWy
(a) (b)
The DM’s information The oracles’ information

Figure 5: On the left, Figure (a) illustrates the information structure of the DM (blue). On the right, Figure
(b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

Now, consider the stochastic strategy 72 given in Figure [6]

To(s|lw) | s1 | s2 | s3
w | 0 |1/2]1/2
Wo 1/413/4] 0
ws | 0 |1/2]1/2
wy 1/413/4] 0

Figure 6: A stochastic Fy-measurable signaling strategy of Oracle 2.

Combined with II, this signaling strategy 7 is equivalent to the following Blackwell experi-

ment e, given in Figure [7]
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e(slw) | s1,L | s1,R | so,L | s2,R | s3,L | s3, R
o 1 0 [0 [12] 0 [12] 0
o |14 0 |34 0 [ 0 | 0
ws | 0 | 0 | 0 |12 0 |12
Wi | 0 [ 1A 0 |34 00

Figure 7: M (72,1I) - the matrix consisting of the probabilities.

Blackwell’s Theorem states that, given a signaling strategy 7o employed by Oracle 2, the
DM can achieve at least as much as he could by obtaining information from Oracle 1 with

signaling strategy 7; if and only if there exists a stochastic matrix G (the garbling) such that:
Ml(Tl, H)G = MQ(TQ, H)

This fact immediately implies the following extension of Blackwell’s Theorem:

Observation 1. Suppose there is a single DM with a partition I1 and two oracles with partitions
Fy and Fy, respectively. Then, Fy =N Fy if and only if, for every signaling strategy 7o of Oracle
2, there exists a signaling strategy 7 of Oracle 1 such that My(m,11)G = Ms(1o,11), for some

garbling matrix G.

Note that in the case of a single decision maker, equilibrium implies that the equilibrium
payoff is the best achievable. In addition, the statement that for every signaling strategy 7 of
Oracle 2, there exists a signaling strategy 71 of Oracle 1 such that M; (7, I1)G = My (7, IT), for
some garbling matrix G is equivalent to F} =ng Fb.

The stochastic matrix M;(7;,II) is the combination of two separate stochastic matrices,
7; and the one corresponding to II. For Blackwell dominance, we considered M; (7, II) and
My (79, 11). Another possibility is to consider the Blackwell dominance between 7 and 75 first.
If 7, Blackwell dominates 75 and both 7, and 75 are independent of II, then M (7, IT) Blackwell
dominates My(7y,11) (see Theorem 12.3.1 of [Blackwell and Girshick (1954))]] Nevertheless,
the reverse does not hold. Consider, for instance, that II is fully informative, then M; (7, 1)

Blackwell dominates Ms(7s, IT), but it does not imply that 7; dominates 7,. Hence, dominance

"Note that for this result to hold, II is fixed and it is independent of 7; and 7».
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in terms of M (71, IT) and My (7, IT) is weaker than the dominance in terms of signaling functions
71 and 7.

This characterization of dominance is expressed in terms of stochastic matrices. Specifically,
the question of whether Mj(7y,II) can be obtained from M, (7, 1I) by taking its product with
a garbling matrix reduces to a problem about transforming one set of stochastic matrices
into another. However, this characterization is not directly expressed in terms of the model’s
primitives, namely the information partitions.

In this paper, we focus on comparing information structures rather than analyzing the alge-
braic properties of the corresponding sets of matrices. Our primary objective is to examine the
relationship between two oracles based on the model’s primitives, specifically their partitions.
Referring to Example [2 we later demonstrate that Oracle 2 cannot imitate Oracle 1. This nat-
urally raises the question: why? What is the underlying reason? Simultaneously, the second

objective of this paper is to extend Blackwell’s model to a setting with multiple players.

3.5 Common objectives

The game-theoretic setting closest to a one-agent decision problem is one in which all players
share a common objectiveE] A natural conjecture is that one oracle induces at least as high a
payoff as another in any common-objective game if and only if its partition refines that of the

other. It turns out that this is not the case.
Example 3.

In this example, there are four states and two. The following Figure [§ illustrates the
knowledge structures of the players as well as those of the two oracles. It is clear that the
partition of Oracle 2 refines that of Oracle 1.

Now consider a game where both player have two actions: D and M, and the payoffs are
given by the matrices in Figure[9] The best common payoff is attained when both players know

the realized state. Oracle 2, who is fully informed, can simply reveal the true state. Oracle 1,

8 As this section serves primarily as a comment, we do not undertake a detailed discussion of the definition
of a common objective. For our purposes, we assume that all players’ payoff functions are identical.
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(a) (b)

The players’ information The oracles’ information

Figure 8: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

Player 2 Player 2 Player 2 Player 2
D | M D | M D [ M D [ M
Plaver | LD L1100 D [0,0]0,0 D [ 0,0 0,0 D[00] L1
WL INT0,010,0 M 00 1,1 M| 1,100 M 0,0 0,0
w1 () w3 <z

Figure 9: Payoff matrices for each w

who cannot distinguish between w; and ws, can nonetheless reveal his information; combined
with the players’ private knowledge, this is sufficient to fully disclose the state.ﬂ

While our focus is not on comparing oracles based on the highest equilibrium payoffs they
can induce, the following proposition provides an affirmative answer to a question naturally

motivated by this example.

Proposition 1. In any common-objective game, Oracle 1 can induce an equilibrium expected
payoff at least as high as any induced by Oracle 2 if and only if, for every player i, the combined
information of Fy and I1; refines that of F5 and II;.

The proof is deferred to the Appendix and relies on terminology introduced later in the

paper.

9This example provides a concrete instance of Theorem
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4 Partial ordering of deterministic oracles

Our first main result characterizes the notion of dominance among oracles, assuming they are
restricted to deterministic strategies. That is, throughout this section, we only consider oracles
that use deterministic functions, namely 7; : F; — S for every oracle i, and we can relate to
every such strategy as a partition (as previously noted).

The characterization is based on the ability of one oracle to simultaneously match the
information of each player, for any given strategy of the other oracle. More formally, we say
that Oracle 1 is individually more informative (IMI) than Oracle 2, if for every strategy s,

there exists a strategy 71 that simultaneously matches the posterior partition of every player 7.

Definition 2. Oracle 1 is individually more informative than Oracle 2, denoted Fy =), F», if
for every deterministic T, there exists a deterministic 7 such that 11; V 71 = 1I; V 1o for every

player 1.

In other words, one oracle is more informative than another if it can always ensure that
every player has the same information as provided by the other oracle, taking into account
the player’s private information and the publicly available signal (restricted to deterministic
signaling functions). In other words, Oracle 1 only needs the ability to match the information
that Oracle 2 transmits simultaneously to each player, considering the redundancies given the
private information of the players. A different way of defining the same relation is through

partitions’ refinements, as given in the following observation.

Observation 2. Oracle 1 is individually more informative than Oracle 2 if and only if for

every Fy C Fy[19 there exists F] C Fy such that I1; V F| =11, V F, for every player i.

Note that Observation [2| follows directly from Definition |2] because every Fj-measurable
deterministic strategy 7; induced a sub-partition F] of F; and vice versa. Nevertheless, what
should be clear is that the notion of IMI differs from the notion of refinement, as the following

example illustrates.

Example 4. Individually More Informative versus refinement.

10A partition F} is a subset of partition Fy if the o-field generated by Fj is a subset of the o-field generated
by FQ.
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The partial ordering generated by the notion of “individually more informative than” need
not coincide with the notion of “finer than”. Consider, for example, the three partitions I1; =
{{wr,wo}, {ws, wal}, FI = {{wi,ws, w3}, {ws}} and Fy = {{w1,wa},{ws}, {ws}}. Note that F,
strictly refines £} and II;, but Oracle 1 remains individually more informative than Oracle 2.
This is illustrated in Figure [I0] Nevertheless, in Section [4.2.1] we prove that if Fy is IMI then

F5 and vice versa, it implies that the two partitions do partially coincide.

Individually More Informative versus Refinement

Q

Figure 10: The notion of “individually more informative than” does not imply “finer than”, though the latter
does imply the former. In this figure, F5 (red) strictly refines Fy (green) and II; (blue), but for every deterministic
To, there exists a deterministic 7y such that II; V 7 = II; V 79, so Fj is individually more informative than Fb.

One can also bridge the gap between the notions of IMI and refinement by considering the
possibility that the players’ partitions are not ﬁxedE In other words, we can also consider the
possibility that Oracle 1 is IMI than Oracle 2 for any set of the players’ partitions. Once we
account for all possible partitions, we must also account for the trivial partition, so that Oracle
1 must match any deterministic strategy of Oracle 2. This implies that F} refines F5, at least

weakly.

4.1 First characterization result - deterministic oracles

Our first main result, given in Theorem [l| below, presents an equivalence between oracle dom-
inance and the notion of individually more informative. Specifically, we prove that one oracle

dominates another if and only if it is individually more informative. The proof is constructive.

' This resembles the condition of strong Blackwell dominance, in the context of decision problems, in [Brooks
et al.| (2024)).
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We assume that Oracle 1 is not more informative than Oracle 2, and depict a game such that
the players’ expected payoffs given a deterministic strategy 7, differ from their expected payofts
for every deterministic strategy 7;. The game is constructed such that a strictly more infor-
mative 71, in the sense that II; V 71 refines II; V 7 for some player ¢, yields a strictly higher
expected payoff for the players, whereas a (strictly) less informative 7y yields a strictly lower

expected payoff. (Unless stated otherwise, all proofs are deferred to the Appendix.)

Theorem 1. Assume that oracles are deterministic. Then, Oracle 1 dominates Oracle 2 if and

only if Oracle 1 is individually more informative than Oracle 2.

Though the proof of Theorem [1]is deferred to the appendix, let us provide some intuition for
it. The first derivation is straightforward—if Oracle 1 can simultaneously match the information
available to every player given 75, then the sets of equilibria coincide. We emphasize that
Oracle 1 actually matches the information conveyed by Oracle 2, so the set of equilibria can be
preserved by Oracle 1, even if, for instance, there exists a specific equilibrium selection process
that influences the players’ expected payoffs in one way or another.

Proving the reverse statement is a bit more difficult. To gain some intuition for this result,
consider a single-player decision problem. If Oracle 1 is not individually more informative than
Oracle 2, then there exists a strategy 7 such that for every 7, there are two possibilities: either
IT; V 71 strictly refines I1; V 75, or there exists an element of II; V 77 that intersects two elements
of II; V 7.

For this purpose, we design a game based on the partition elements of I1; V 5. Namely, for
every element B in II; V 75, take all permutations p : B — {1,2,...,|B|}. The player’s action
set is the set of all such permutations. Once a state w is realized and an action p is chosen,
the player receives a payoff that depends on p(w) in case p is supported on the realized state,
or a very low negative payoff otherwise. Figure below depicts a specific example for this
payoff function given a uniform distribution on four possible states and two partition elements
in Il V 7. Thus, if II; V 7 strictly refines II; V 75, the player can secure a strictly higher
expected payoff, and if an element of II; V 71 intersects two disjoint elements of II; V 75, the
player receives a very low expected payoff. Either way, expected payoffs are either higher or

lower given 7, relative to 75, and the result follows.
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An example with 4 states and two partition elements in II; V 7

w1 Wa w3 W4

ay 1 2 3 —212
a2 1 3 2 —212
as 2 1 3 —212
on 2 3 1 —212
as | 3 1 2 | 2
as | 3 2 1 | 2@
a; | — 242 _242 _ 242 1

Figure 11: Assume that Q = II; = {w;,ws,ws,ws} and p is the uniform distribution. Further assume that
IT; V 75 consists of two elements By = {w1, ws,ws} and By = {w4}. So, there are 6 permutations/actions for B;
and a single one for By. If 71 = {{w1,wa},{ws}, {ws}}, then the player can secure a strictly higher expected
payoff, and if 7 = {{w1,wa}, {ws,ws}} the player would get —2*? with positive probability, thus generating a
strictly lower expected payoff.

Remark 1. We repeatedly use the fact that if the players’ expected payoffs in equilibrium
differ when following T instead of o, then NED(G(71)) # NED(G(my)) for the specified game
G. This holds because p is fived, meaning that every element in A(Q x A) determines the
players’ expected payoffs in the corresponding equilibrium. The reverse deduction, however, is

not necessarily true, as different such distributions may, in fact, yield the same expected payoffs.

Remark 2. In situations where the information available to the players is unknown, a rea-
sonable definition of dominance is that one oracle dominates another if Definition (1| holds,
regardless of the players’ knowledge. Considering the case where the players have no private

information, Theorem (1| implies that this notion of dominance is equivalent to refinement.

Remark 3. Note that Theorem [I| ¢s consistent with Proposition [1] in the setting of common-
objective games. The distinction is that Proposition (1| concerns the best (i.e., most preferred)
equilibrium outcome, whereas Theorem (1| deals with the entire set of equilibrium outcomes in-
duced by the Oracles.

The proof of Theorem (1| shows that if Oracle 1 us not individually more informative than
Oracle 2, then Oracle 1 does not dominate Oracle 2. The constructed game (in the proof of
Theorem (1) can be slightly modified by aggregating the players’ payoffs into a common objective,
yielding a common-objective game in which there exists an equilibrium distribution induced by

Oracle 2 that cannot be induced by Oracle 1.
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4.2 Common knowledge components

Theorem 1| characterizes dominance (under deterministic signaling functions) using the notion
of IMI, and Example |4 shows that if F; is IMI than F5 it does not imply that Fj refines F5.
Nevertheless, Example [4f does show that F} refines F5 in every information set of player 1. That
is, given an element of player 1’s partition, F) refines F;. This raises the general question of
whether the notion of IMI leads, in some way, to a refinement of partitions while taking into
account the players’ private information.

To study this aspect in the context of games (rather than decision problems as in Blackwell
(1951} 1953) and Example 4| here), we first need to define the notion of a “Common Knowledge
Component”. Following |Aumann, (1976)), an event £ C 2 is a common knowledge component
(CKC) if E is common knowledge (among all players) given some w € FE, and there is no
event £’ C E which is also common knowledge given some w’ € E’. Formally, an event E' is a
CKC of the partitions IIy, II, ..., IL, if it is an element in the meet /\?:1 I1;, which is the finest
common coarsening of all the partitions. For example, Figure {10 depicts two CKCs: {wq,wq}
and {ws, w4 }.

Regarding players’ payoffs, their sole concern is the information available within each CKC.
Moreover, all possible posteriors within a given CKC are derived collectively from the players’
private and public signals within that CKC. This implies that players’ expected payoffs can be
decomposed separately across different CKCs. As a result, the impact of each oracle can be
analyzed independently within each CKC.

Using this definition, we can now debate the general hypothesis of whether an IMI oracle
also has a finer partition in every CKC. The answer for this question is no. The following
example shows that even in the case of a unique CKC, the fact that Oracle 1 is IMI than
Oracle 2 does not imply that F; refines F5.

Example 5. IMI does not imply refinement in every CKC, and refinement in every CKC does
not imply IMI.

To see that IMI does not imply refinement in every CKC, consider the information structure

given in Figure [I2] It depicts a unique CKC that covers the entire state space, such that
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I = {{wi,wa} {wa} {ws}}, I = {{wi} {wa}, {ws, wal}, and Tz = {{wi}, {ws, ws}, {wa}}
One can see that there exists a unique CKC, €2, as the finest common coarsening of all players’
partitions is (2. The oracles, however, have the following partitions: F; = {{w1,ws}, {ws}, {ws}}
and Fy = {{w1,ws}, {w2,ws}}.

Oracle 1 can signal the partition F| = {{w1, w2, w3}, {ws}}, which provides complete infor-
mation to players 1 and 2 but provides no information to player 3. Oracle 2 cannot do the same,
because any information provided by Oracle 2 (other than the trivial set ) gives all players
complete information. Thus, Oracle 1 is IMI than Oracle 2 because Oracle 1 can provide full
information to all players simultaneously, whereas Oracle 2 is not IMI than Oracle 1. Note that

neither of the two partitions is finer than the other.

QO 1 Q

(a) (b)
The players’ information The oracles’ information

Figure 12: On the left, Figure (a) illustrates the information structures: Iy = {{wi,wa}, {w2}, {ws}} of player
1 (blue); Ty = {{w1}, {w2}, {ws,ws}} of player 2 (red); and T3 = {{w; }, {w2, w3}, {ws}} of player 3 (black). On
the right, Figure (b) portrays the information structures Fy = {{wi, w2}, {ws}, {ws}} of Oracle 1 (orange) and
Fy = {{w1,ws}, {w2,ws}} of Oracle 2 (green). This illustrates a unique CKC in which neither oracle refines the
other. Nevertheless, F; is IMI than F5 whereas the converse is not true, because Oracle 2 cannot replicate the
partition F| = {{w1,ws, w3}, {wa}}

Another aspect of this example, which resonates with the key insight of the stochastic
setting in Section |5} is that there exists a stochastic strategy 7, that Oracle 1 cannot imitate.
Specifically, consider the stochastic strategy 75 given in Figure One can verify that there
exists no 7, that yields the same vectors of posteriors as the stated strategy 7o, and this hinges
on the fact that F; does not refine Fy. A broader discussion of this issue is given in Example [

at the beginning of Section [5
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T(s|lw) | s1 | S2
w1 1/3 2/3
o 12/3]1/3
s 11/3]2/3
o [ 2/3]1/3

Figure 13: A stochastic Fr-measurable strategy of Oracle 2.

To demonstrate that refinement in every CKC does not imply IMI, consider the following
example with two players whose partitions are Iy = {{w1, w2}, {ws, w5}, {ws,we}} and Il =
{{w1, wa}, {ws,ws}, {ws,we}}. In this case, there are two CKCs, {wy,ws} and {ws,wy,ws, ws}-
Next, assume the two oracles have the following partitions, F; = {{w1,ws,ws}, {ws,ws,ws}},
Fy = {{w1,wa}, {ws, wa}, {ws, ws}}, as illustrated in Figure [14 Observe that in every CKC, F}
refines Fs.

Now consider a completely revealing, deterministic strategy 75 that maps the three different
partition elements of Fy to three different signals: m(s1|wi) = To(s1|wz) = 1, m(sa|ws) =
To(S2|lws) = 1, and m(ss|lws) = me(ssjws) = 1. Can Oracle 1 produce a strategy signaling
function 7 such that II; V 7, = II; V 7» for every player 7

Note that under 75, neither player can distinguish w; from ws. Therefore, in order for 7
to satisfy II; V 7 = II; V 7 for every i, the strategy 71 must map all F; partition elements
to the same signal. Consequently, under 7, Player 1 cannot distinguish w, from ws, which is
achievable given 5. We therefore conclude that Oracle 1 is not IMI than Oracle 2, even though
Fy refines F; in every CKC. However, in the special case where {2 consists of a single CKC,

refinement does imply IMI.

4.2.1 Two-sided IMI implies equivalence in every CKC

Though we substantiated that an IMI oracle need not have a finer partition in every CKC, this
does hold in case both oracles dominate one another, under deterministic signaling strategies.
The following theorem provides this equivalence by stating that, given a specific CKC, both

oracles dominate each other if and only if their partitions coincide.

Theorem 2. Fix a unique CKC. Then, F; is IMI than F_; for every Oracle i if and only if
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Figure 14: Refinement in every CKC does not imply IMI. Suppose II; = {{w1,ws}, {ws,ws}, {ws, ws}} and
I, = {{w1,w2}, {ws,ws}, {ws,we}}. There are two CKCs, {wy,wa} and {ws,ws,ws,ws}. Consider Fy (orange)
and F» (teal) depicted in the figure. Despite Fj refines F» in every CKC, F} is not individually more informative
than FQ.

Fy =F5.

In other words, the theorem asserts that the partitions F; and Fy are equivalent in every
CKC if and only if they are mutually IMI within that CKC, given any fized set of players’
partitions. This aligns with our previous observation in Example [f] that IMI with respect to
any set of partitions implies refinement. As a result, the issue of CKCs arises naturally in the
context of deterministic oracles and becomes even more significant when studying stochastic

ones, as examined in Section [5

5 Partial ordering of (stochastic) oracles

In this section we characterize dominance among oracles given they can exercise general sig-
naling strategies, not restricted to deterministic ones. This goal is achieved in several gradual
steps. In Section we describe a two-stage game, entitled “a game of beliefs”. Given a profile
p of probability distributions, the players’ expected payoffs in this game are maximized if and
only if their individual beliefs match p. We use the game of beliefs to show that if an oracle
dominates another, he must be able to produce the same joint posteriors as the other oracle.
In Section [5.2] we consider a set-up with a unique CKC and show that Oracle 1 dominates
Oracle 2 if and only if F} refines F;. In Section [5.3] we introduce the concept of information

loops between CKCs. In general, an Fj-loop is a closed path among different CKCs, connected
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through information sets of Oracle 7. In case there are no such loops, we extend the result
described in Section [5.2] and prove that oracle-dominance is equivalent to partition refinement
in every CKC. In Section [5.5| we provide necessary and sufficient conditions for dominance, in
general. In Section we connect the stated (necessary and sufficient) conditions in a setting
with two CKCs, providing a characterization for this set-up as well.

Before we proceed with the aforementioned road map, we start with a simple example that
illustrates the difference between the deterministic and the stochastic settings. In the following
two-player set-up, we show that even if Oracle 1 is IMI than Oracle 2, it does not mean that
Oracle 1 can match the posteriors that Oracle 2 generates under stochastic strategies (whereas
this can be achieved under deterministic strategies). This example also resonates with the key

issue in Example [5 showing that IMI does not imply refinement in every CKC.
Example 6. IMI is insufficient under stochastic oracles.

The ordering generated by the notion of IMI need not hold when we transition to stochas-
tic strategies. Consider, for example, the following uniformly distributed state space 2 =
{w1, we, w3, wy}, with two players whose private information is given by the two partitions
I, = {{wi,ws}, {ws}, {ws}} and Ty = {{w1}, {w2}, {ws,ws}}. The oracles, to differ, have the
following partitions F} = {{w1,ws}, {wa,ws}} and Fy = {{w1,ws}, {w2,ws}}. This information
structure is illustrated in Figure |15]

First, assume that every Oracle i is restricted to a deterministic Fj;-measurable strategy.
Thus, every oracle can either convey no information, i.e., a constant signaling strategy, or
he can reveal his partition element, thus ensuring that all players have complete information.
Therefore, we can say that Oracle 1 is IMI than Oracle 2, and vice versa.

Now, consider the stochastic strategy 7, given in Figure [I6] Given w; and assuming s; is
realized, the posteriors of players 1 and 2 are ulﬂwlm = (2/5,3/5,0,0) and ufﬂwlm =e =
(1,0,0,0), respectivelyE

To mimic this joint posterior, there must exist a signal s, such that 71(s4|w;) = a > 0 and
71 (S4|we) = %a. However, 7, is Fi-measurable, so 7i(s4ws) = a and 7i(s4]ws) = 2a. Hence,

2

given wz and assuming s, is realized, we get a joint posterior of u;‘% s =63 = (0,0,1,0) and

h

12\We use e; to denote the vector whose i" coordinate is 1, while all other coordinates equal 0.
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(a) (b)

The players’ information The oracles’ information

Figure 15: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

To(s|lw) | s1 | s2 | s3
o 0 [12]1)2
o, | 1/4[3/4] 0
ws | 0 [1/2[1/2
wr [ 1/413/4] 0

Figure 16: A stochastic Fr-measurable strategy of Oracle 2.

M‘?‘1|W3,84 = (0,0,3/5,2/5), which does not exist in the support of 75. So, although Oracle 1 is
IMI than Oracle 2 under deterministic strategies, he cannot convey the same information under
stochastic ones.

Note that the players’ partitions form two CKCs, the first is {w;, ws } and the second {ws, w4 }.
In every CKC, every oracle refines the other, so each of them can mimic the other, even under
stochastic strategies, in that CKC. Yet, the example shows that one cannot extend this result
to the entire state space.

This raises the question of the fundamental difference between the deterministic and stochas-
tic settings. This issue should be addressed on two levels: within every CKC and between CKCs.
Example [5| suggests that, under stochastic signaling functions, one cannot restrict the discus-

sion to IMI alone but must require that Fy refines Fy within every CKC. Example [6] further

complicates this problem by demonstrating that even a refinement within every CKC may not
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be sufficient.

The critical distinction arises from the significance of the joint profile of posteriors. The
induced Bayesian game and its equilibria depend not only on the players’” marginal posteriors
but also on the joint profile of posteriors. In the deterministic setup, there is a unique public
signal in every state, leading to a wunique posterior for each player. Consequently, the IMI
condition ensures that the profiles of posteriors coincide and the dominant oracle induces the
same Bayesian game as the other oracle. However, this is not necessarily the case in the
stochastic setting, where multiple public signals can induce various marginal posteriors in each
state. This poses a challenge both within and across CKCs.

The fact that every state has potentially multiple signals allows the oracles to use the
same signals, with different weights, across various states. The basic structure of the players’
partitions is not rich enough to cover all the information that the oracles can convey this way.
Namely, one cannot use the players’ interim partitions (i.e., given the information conveyed
by the oracles), to cover all feasible profiles of posteriors, rather than compare these profiles
directly, for every signaling function. Thus, one oracle can dominate another if the former can
mimic every signaling function of the latter, and this necessitates refinement within CKCs, as

well as a supplementary condition across CKCs (based on the concept of loops).

5.1 A game of beliefs

In this section, we construct a two-stage game for every profile of posteriors p, which we refer
to as a game of beliefs. The key property of this game is that the sum of equilibrium expected
payoffs is maximized if and only if players adhere to the specified profile of beliefs p. Therefore,
if one oracle can support that profile of posteriors, the only way for the other to match the
players’ expected payoffs in equilibrium is to also induce p. We repeatedly use this game in
Section |5] to characterize dominance among oracles.

Formally, fix a profile of probability distributions p = (p',...,p") € (A(R2))", and consider
the following game G(p). The actions and utility of every player ¢ are 4; = {w € Q|p’, > 0}
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and

2
ui(a,w|p) = Ri(a;,wlp) — T Z Rj(aj7w|p>1{w€z4j}7
JF

respectively, where the function R;(a;,w|p), for every player i, is defined by

;

—2, if w ¢ Al‘,

Ri(aiaw|p) = pL-, if a; = w € Ai7

(3
w

0, otherwise.
\

In simple terms, every player ¢ aims to match the realized state w, and in any case would suffer
a penalty of —2 if the realized state does not have a strictly positive probability according to
p. Note that the utility function of every player 7 also depends on the actions of each player

J # %, but R; is independent of player i’s actions. The game yields to following result.

Proposition 2. Consider the game G(p). If p represents the players’ actual beliefs, then the
expected equilibrium payoff of every player is —1. However, if there exists a player i with a
belief ¢° # p', then the aggregate expected payoff (over all players) in equilibrium is strictly

below —n.

The result given in Proposition [2|is rather straightforward. If p represents the players’ actual
beliefs then, in equilibrium, every player i chooses an action a; = w such that p! > 0. This
is the players’ best option, given the information conveyed through p. One can easily verify
it is indeed an equilibrium that yields an expected payoff of —1 for every player. Any other
profile of beliefs would either yield a state with zero-probability according to p thus generating
a strictly low payoff, or allow for the player to choose an action that secures an expected payoff
above —1 (thus reducing the payoffs of all others).

We use this single-stage game G(p) to construct a two-stage game which enables us to cross-
validate the true signal and joint posterior that the players receive. The game is specifically
defined given some strategy 7 of Oracle 2, to check whether Oracle 1 can indeed mimic the
feasible posteriors of 7.

For this purpose, let us define the sets of feasible signals and posteriors. Formally, for every
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strategy 7, let S; = {s € S : 3w € Q: 7(slw) > 0} be the set of feasible signals, and let

Post(7) denote the set of feasible posteriors profiles,

Post(r) = {p € (A(Q)": F(w,s) s.t. 7(s|lw) >0 and p= (NiW,s)ieN}-

Note that for every (7,w,s), where 7(s|w) > 0, there exists a unique posterior p € (A(2))"
where p = (ﬂiw,s)ieN € Post(7), so the sets are well-defined. Let pu, € A(A(Q2)") be the
distribution over posteriors profiles given a strategy 7.

The two-stage game is defined as follows. First, fix a strategy 7 of Oracle 2 and consider
some signaling function 7. Assume that w and s are realized according to p and 7, respectively.
Thus, every player ¢ maintains a posterior :“i|w,30 € A(Q). Next, every player i privately
announces the perceived signal s' € S and a posterior p' € A(Q) from the set of the player’s
feasible posteriors given the (previously fixed) signaling function 75, private information IT; and
the stated signal s'. Let s = (s',s% ...,5") be the profile of declared signals and denote by
p = (p')ien the declared posteriors of all players. If s and p are not feasible profiles according
to the information induced by every II; and 75 (including a mismatch between signals so that
s # s/ for any two players 7 and j), then all players receive —M for some M > 1. However,

2

ifsl=s*=...=s"€ S, and p= (p ien € Post(7), then all players proceed to the

rolist)
second stage in which they play G(p). The two-stage game G, is illustrated in Figure

This two-stage game G, is constructed such that players have to match their declared
signals and posteriors between themselves because every mismatch leads to a very low expected
payoftf. Moreover, for the same reason, the players must also ensure that the declared signals
and subsequent posteriors match a feasible profile (s,p) given their private information and
signaling function 5.

The following claim analyzes the two-stage game G, given that the signaling function 7 is
either 75 or 71, and assuming that the set Post(7) is not a subset of Post(7y), i.e., assuming that

Post(71) ¢ Post(rz). It proves that under 7, players can achieve a strictly higher aggregate

expected payoff compared to what they can achieve in equilibrium under 7.

Lemma 1. Consider the two-stage game G.,. If 1o is the signaling function, then there exists
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Fix T2

|

w and s° are realized
according to
i and some T, respectively

|

Every player privately
announces the perceived
signal s* and posterior p'

_ I

Ifs'=s" €8, Vi,j, | Otherwise
and
D= (MZTQ\w,sl)ieN € Post(7)

Every player receives
Play G(p) -M < -1

Figure 17: The two-stage game G,, under any signaling strategy 7.

an equilibrium so that the aggregate expected payoff is —n. However, given 11 and assuming

that Post(r1) € Post(1z), then the aggregate expected payoff in equilibrium is strictly below —n.

An immediate conclusion from Lemma[I]is Proposition [3, which establishes a condition for
the existence of a strategy 7 such that NED(G(72)) # NED(G(m)) for every 7. Proposition
states that, given a strategy 7 and for every 7 such that Post(71) € Post(72), there exists
a game in which Oracle 1 cannot dominate Oracle 2 due to its inability to match the set of
equilibria induced by the latter. The proof is straightforward, given the construction of G,
and Lemma [I] and is therefore omitted. Yet, as in the proof of Theorem [I| we emphasize that
the deduction follows from the fact that once the expected payoffs in equilibrium do not align
between G(71) and G(73), then the equilibrium distributions over profiles of actions and states

cannot match.
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Proposition 3. Fiz 7, and consider the game G.,. For every 1y satisfying Post(m1) € Post(7s),

the mazximal aggregate expected equilibrium payoff in G, (1) is strictly greater than in G'., (1),

which also implies that NED(G,(72)) # NED(G,(11)).

In other words, given the game G, a necessary condition for Oracle 1 to dominate Oracle 2 is
that, for every strategy 7, there exists a strategy 71, such that Post(7;) C Post(72). Henceforth,
we relate to this as the inclusion condition.

The next proposition proves the reverse inclusion condition, such that a necessary condition
for Oracle 1 to dominate Oracle 2 is that for every strategy 7, there exists a strategy 71, such
that Post(7z) C Post(7). This builds on a different game which exploits the Kullback-Leibler

divergence (KLD) to elicit a unilateral and truthful revelation of individual posteriors.

Proposition 4. Fiz 7,. There exists a game G, such that for every 1, satisfying Post(7,) ¢

Post(r1), it follows that NED(G,,(12)) # NED(G,(11))-

The combination of Propositions [3| and 4| provides a key insight into the dominance of one
oracle over another: the dominant oracle can match the set of posterior beliefs induced by the
other oracle. To formalize this, we define a combined game that integrates the game of beliefs

with the KLD-based game. The following Theorem [3| establishes this result.
Theorem 3. If Iy =xg Fs, then for every 1o, there exists 71, such that Post(r) = Post(7s).

The intuition for this result follows from the previous propositions such that the players
need to align their signals and posteriors with each other, as well as to truthfully match them
with the feasible outcomes of 7. When players are unable to achieve a truthful alignment, they
encounter the issue of mismatched beliefs and misaligned incentives while playing the sub-games
G, and G/,. Notice that one can reach the result of Theorem (3| even when using the weaker
(previously mentioned) dominance condition which states that Oracle 1 dominates Oracle 2 if
and only if for every 7, and game G, it follows that NED(G(7y)) C J,, NED(G(71)). Yet, the
general question of whether matching the set of posteriors is not only a necessary condition for

dominance, but also a sufficient one, is left for future research.
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Remark 4. Recall the weaker dominance notion in the inclusive sense (see Subsection |3.2)).
The proof of Theorem [3| also demonstrates that if Fy dominates Fy in the inclusive sense, then

the conclusion of this theorem holds. Specifically, there exists Ty such that Post(r,) = Post(7z).

Beyond Theorem [3 the result given in Proposition [3] also raises an immediate question
about the implications of the inclusion condition on the signaling functions 7; and 7. Namely,
how does the inclusion condition translate to the oracles’ strategies, which in turn reflect on
the oracles’ partitions? We provide an analysis of this condition in Lemma [2| below, focusing
on a specific binary signaling function 7. The lemma shows that the distribution of each signal
of 71 is proportional to the distribution of some signal of 7.

Formally, fix two distinct signals {s;, so} and assume that the partition Fy» = {Ay, Ay, ..., A}
has m elements, as noted. Let p1,po,....p, be m distinct probabilities such that the ratio of
every two distinct numbers from the set A = {p;,1 —p, : j =1,2,...,m} is distinct. H Define

the signaling function 7 such that
Ta(s1|4;) =1 - ma(s2]ld;) =p;;, V<j<m. (1)

Given this signaling function and assuming that the state space comprises a unique CKC,
Lemma [2| states that the inclusion condition implies that 7, is partially proportional to 7o,

restricted to a subset of feasible signals.

Lemma 2. Fiz 7o given in Equation and a unique CKC. If Post(ry) C Post(), then for
every signal t € Supp(7y) there exists a signal s € {s1,s2} and a constant ¢ > 0 such that

71 (tw) = cma(s|w) for every w € Q.

The result in Lemma [2| pertains to fundamental aspects of Bayesian inference. When the
inclusion condition holds, the probability weights for each signal of 7, must be proportional
to the weights of some signal of 75; otherwise, the posteriors would not align. The impact of

this condition is rather extensive, because it implies (at least in some cases) that the partition

I3To achieve this, one can consider m distinct prime numbers r| < ry < --- < 7p,. Define To = Q, and for
every j > 1, let T; be the extended field of T;_; with ,/7;. Take p; € T; \ T;_1.
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of Oracle 1 refines that of Oracle 2. We utilize this result in the characterization of oracle

dominance under a unique CKC in the following Section [5.2]

5.2 A unique CKC

In this section, we characterize oracle dominance under the assumption that 2 consists of a
unique CKC. Specifically, we prove in Theorem [ that, given a unique CKC, Oracle 1 dominates
Oracle 2 if and only if F} refines F,. This is also equivalent to the condition that for every
strategy 7o, there exists a strategy 71 such that the inclusion condition holds (by itself and as an
equality), and it is also equivalent to the condition that the set of distributions over posteriors
profiles are identical (namely, that for every strategy 7o, there exists a strategy 71 such that
fr, = fir,). While this result has significant merits on its own, it also serves as a foundational
building block for subsequent results that address the partial ordering of oracles in more general

probability spaces.

Theorem 4. Assume that Q comprises a unique common knowledge component. Then, the

following are equivalent:

o [ refines Fy;

Fy =~ By

e For every T, there exists 11, so that Post(ry) C Post(7);

For every 1o, there exists 11, so that Post(m;) = Post(7s);

For every o, there exists Ty, so that pr, = fir,.

Theorem [ which builds on Lemma 2] presents an intriguing equivalence between parti-
tion refinements and the inclusion condition. Notably, this result applies to any information
structure with a unique CKC, independent of any specific game. Furthermore, the refinement
condition implies that Oracle 1 can effectively mimic any strategy of Oracle 2, allowing Oracle
1 to support the same sets of distributions on €2 x A induced by Nash equilibria in incomplete-

information games for any given 7.
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5.2.1 More than one CKC: two examples

The refinement condition given in Theorem [4] ensures that Oracle 1 can produce the ezact
same strategy as Oracle 2. This however hinges on the existence of a unique CKC. In case
there are several CKCs, Oracle 1 may need to follow a different strategy in order to match the
distribution on posteriors generated by 75. Namely, 7 may require more signals than 7, even
if both oracles have the same (complete) information in every CKC. Let us provide a concrete

example for this.
Example 7. More signals are needed.

Consider a uniformly distributed state space Q = {wy, ws, ws,wy}, with two players whose
private information is Iy = {{wy,wa}, {ws}, {ws}} and Iy = {{w1}, {w2}, {ws,ws}}. The oracles
have the following partitions F; = {{w1,ws}, {w2}, {ws}} and Fy = {{w1}, {ws}, {ws,ws}}. This
information structure is illustrated in Figure . Notice that there are two CKCs, {w;,ws} and
{ws, w4}, and both oracles have complete information in each of these components. That is, F}

refines F5 in every CKC, and vice versa.

1T 1T, Q

(a) (b)

The players’ information The oracles’ information

Figure 18: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

Consider the stochastic strategy 7 given in Figure [I9 Notice it is Fy-measurable, as

To(S|lwa) = Ta(s|ws) for every signal s, but not Fj-measurable.
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To(s|lw) | s1 | s2 | s3
o |0 [1/2]1)2
o [ 1/312/3] 0
s | 0 [2/311/3
o [ 1/312/3] 0

Figure 19: A stochastic Fr-measurable strategy of Oracle 2.

The set Post(7y) of m-posteriors is

POSt(TQ) = ((%, %,0,0) ,ej) s j = 1727 )

and we can now try to mimic 7, using an Fj-measurable strategy. First, this requires at least

two signals to distinguish between w; and wy, as well as w3 and wy. Second, the posterior

((2,2,0,0),e1) requires another signal s so that 7(s|w;) = a > 0 and 7(s|ws) = 3a > 0.

However, the Fj-measurability requirement implies that 7(s|lws) = «, and the m-posterior

(eg, (0,0, %, %)) necessitates that 7(s|lwy) = « as well. These conditions are jointly given in

Table (a) within Figure [20]

71(5|w) S3 S4 | Sy T1 (5|w) S3 S4 Sy S6
w1 a|p|0 wq 1/211/3| 0 |1/6
wy |za] 0]~ wy [2/3] 0 [1/3] 0
ws a | B0 ws 1/211/3] 0 |1/6
Wy a | 0|~y Wy /21 0 [1/3|1/6
(a) (b)

Figure 20: A strategy 71, either with 3 signals as given in Table (a), or with 4 signals as in Table (b).

Evidently, it must be that a, 3,7 > 0 in order to mimic 75, but the second and fourth
rows in Table (a) cannot jointly sum to 1 unless @ = 0, which eliminates the possibility of
a well-defined mimicking strategy. Thus, in order to mimic the stated strategy 75, Oracle 1
requires an additional signal as presented in Table (b), in Figure To conclude, though the

oracles’ partitions refine one another in every CKC, they cannot always produce the exact same
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strategy when trying to mimic each other.
Example 8. Dominance need not imply refinement with multiple CKCs

In this example we wish to show that when there are multiple CKCs, Oracle 1 can dominate
Oracle 2 although F; does not refine F». To see this, we revisit Example [l Consider the
following signaling strategy of Oracle 2 given in Figure 21}

To(s|lw) | s1 | s2 | s3
w | 1/4] 0 |3/4
w, | 1/4| 0 |3/4
ws | 0 |1/2]1/2

Figure 21: A stochastic Fy-measurable strategy of Oracle 2.

Here, Oracle 2 provides the players with no additional information regarding states w; and
ws. Thus, the posterior over these states remains the original one. On the other hand, given the
states w3 and wy, the strategy 7 reveals the true state with a positive probability and induces
the posterior (0,0,2/5,3/5) with the remaining probability.

While Oracle 2 can assign different probabilities to a signal conditioned on wy and ws, Oracle
1 cannot. However, there is a signaling strategy for Oracle 1 that produces the same distribution
over the posteriors as 7o does. The following strategy 71, given in Figure 22| does that.

T(s|lw) | s1 | s2 | s3
w1 /21 0 [1/2
Wo /21 0 |1/2

ws | 1/2] 0 |1/2
Wi 0 |1/4]3/4

Figure 22: A stochastic Fj-measurable strategy of Oracle 1.

In this example, it is straightforward to prove that Oracle 1 can mimic every strategy 75 of
Oracle 2, and we prove this result under more general conditions in Theorem [5|and Proposition

[ Yet, it is clear that Fj is not a refinement of Fy in general, but it is a refinement in every

CKC.
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5.3 Multiple CKCs and no loops

We now turn to the general setting in which the players’ information structures induce any
(finite) number of CKCs. Assume that Ci,...,C; are mutually exclusive CKCs such that
Q0= Ué.:l C;. A key aspect of our analysis is the presence of measurability constraints, where
different CKCs are connected by atoms of the oracles’ partitions. To understand the significance
of this, consider a setting where F| does not contain any element intersecting multiple CKCs.
In this case, Theorem {4 applies separately to each CKC, as Oracle 1 faces no constraints when
attempting to mimic some strategy of Oracle 2.

However, when elements of Oracle 1’s partition intersect different CKCs, the analysis be-
comes more complex, because we must account for measurability constraints when attempting
to use the same strategy 71 across different CKCs. Such intersections impose constraints on 77,
preventing us from naively applying Theorem [4]

This issue becomes even more complicated when multiple elements of Oracle 1’s partition
intersect different CKCs, forming what we call an (information) ZoopE

Generally, a loop is an ordered sequence of states from different CKCs such that the partition
of an oracle groups together distinct pairs of states from different CKCs, creating a closed path.
The main result of this section, presented in Theorem [5| below, states that in the absence of
such loops, Oracle 1 dominates Oracle 2 if and only if F} refines F, in every CKC. The formal
definition of a loop is provided in Definition 3]

Definition 3. An F;-loop is a sequence (wy,W1,ws,Wa, ..., Wn,0n), where m +1 = 1 and

m > 2, such that
o w;,w; € Gy, and w; # wj for all j = 1,...,m.|ﬂ
® Wil S Fl<wj) fOT a,”j = 1, o,

o ., #C,, ., forallj=1,...,m.

Jj+1

o The sets {W;,w;t1} are pairwise disjoint for all j =1,... ,m.

4 An (information) loop is different from a loop in graph theory. In graph theory, a loop refers to an edge
that connects a vertex to itself.
I5Here C,, refers to the CKC that contains the j-th pair of states (w;,@;).
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To understand information loops, one can view the CKCs as vertices of a graph. An edge
connects two CKCs if there exist w;y1 and @w; such that they belong to the same Fj-partition
element (this corresponds to the second requirement). An information loop then parallels an
Eulerian graph, where there is a walk that includes every edge exactly once (the last requirement
in the definition) and ends back at the initial vertex (hence the requirement m + 1 = 1). As
noted at the beginning of Section [5.3], the key aspect of the general analysis is to consider the
case when the oracle partition atoms intersect different CKCs, so we require that C,, # C.
forall j=1,...,m.

An example of an Fi-loop is provided in Figure (a), which depicts a loop consisting of
six states across three CKCs. Note that a loop can intersect the same CKC multiple times, as
long as the sets {t;,w;+1} remain pairwise disjoint for each j.

We use the concept of a loop in our first general characterization, presented in Theorem [5]
This theorem builds on the assumption that F; contains no loops and extends Theorem [] by
showing that one oracle dominates another if the former’s partition refines that of the latter

in every CKC. It is important to note that the proof is extensive, as it must account for the

measurability constraints of 71 across all CKCs.

Theorem 5. Assume there is no Fy-loop. Then, Oracle 1 dominates Oracle 2 if and only if

Fy refines Fy in every CKC.

The proof of Theorem [5| builds on the concept of a sub-strategy. A sub-strategy is a signaling
function without the requirement that the probabilities sum to 1. This relaxation allows us
to study functions that partially mimic a strategy 7, meaning each posterior is drawn from
Post(7y) and is induced with a probability that does not exceed the probability with which
7o induces it. We show that the set of sub-strategies is compact, allowing us to consider an
optimal sub-strategy for mimicking 7. The proof then proceeds by contradiction: if the optimal
sub-strategy is not a complete strategy, we can extend it by constructing an additional sub-
strategy to complement the optimal one for posteriors that are not fully supported (relative to
the probabilities induced by 73). This part is rather extensive as it requires some graph theory

and several supporting claims given in the proof in the appendix.

42



Cs — Cs Cs Cy
@ Fi(ws) @, w3 >< W,

(a) (b)

Figure 23: Figure (a) depicts an Fj-loop with three CKCs and six states overall. Figure (b) illustrates how the
Fi-loop, presented in (a), is non-balanced with respect to Fy. Namely, F» has two elements A = {w;,ws, w3},
and B = {wy,Ws, w3} such that the number of transitions from A to B are 3, while the reverse equals 0.

5.4 Information loops

Previous sections have examined the problem of oracle dominance in the absence of loops,
considering either a unique CKC or multiple CKCs without loops. However, in order to confront
the general question of dominance in the presence of information loops, we need to have a clear
understanding of their properties and implications.

Specifically, when an Fij-loop exists, it may create challenges for Oracle 1 in mimicking
Oracle 2, because loops introduce measurability constraints across CKCs. Although Oracle 1
can mimic Oracle 2 within each CKC individually, it may be impossible to do so simultaneously
across CKCs if the required combined strategy is not measurable with respect to Fj. This
suggests that any Fj-loop must satisfy certain conditions to ensure that such a strategy is
indeed Fi-measurable. The first condition that we study, which turns out to be a necessary
condition for dominance, is generally referred to as Fy-balanced.

The idea starts with an F}-loop. We examine all states in this loop and determine how they
can be covered by two Fy-measurable sets. In other words, the loop is divided into two disjoint
sets, each contained in an Fy-measurable set, denoted A and B. Next, we count the number
of transitions along the loop from A to B, where the entry point into one CKC is through a
state in A and the exit is through a state in B. We do the same for transitions from B to A.
An Fi-loop is called Fy-balanced if the number of transitions between A and B is equal in both

directions. The formal definition follows.
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Definition 4. An F;-loop (w1, @1, ws, W2, - . . , Wi, W) s F_;-balanced if for every F_;-measurable
partition of the loop’s states into two disjoint sets {A, B} such that U;{w;,w,;} C AU B, it fol-

lows that:
#(A— B) = |{j;w; € Aand W, € B}| = {j;w; € Band w; € A}| = #(B - A). (2)

Note that an Fj-loop (w1, @1, ws, Wa, - . . , W, W), Where w; € Fy(w;) for all j =1,...,m,
is Fy-balanced. Figure 23](b) examines the Fi-loop from Figure 23[(a). The sets A and B are
F>-measurable, restricted to the six states under consideration. The partition into A and B
renders the loop non-Fy-balanced, as #(A — B) = 3, while #(B — A) = 0.

Why are balanced loops crucial? The intuition follows from Lemma [2] which must hold
in any CKC, but presents a challenge when a loop is non-balanced. Consider, for example, a

non-balanced loop as depicted in Figure and assume that 7 (s|lw) = 1 — 111,e4 for some

1
2

signal s € S. This imposes a specific 1 : 2 ratio between any two states described in each CKC,

so that II; Zgjgg = %. However, since @; and w;,1 belong to the same F| partition element, the

measurability constraints on Oracle 1 along the loop require that 7 (s|@;) = 71(s|wis1), hence

1.7 (s|w;)

b i (s[wi)

ratio dictated by 79, therefore Lemma [2| does not hold in at least one CKC.

=1 for any s in the support of all states. In other words, Oracle 1 cannot match the

If the loop were balanced—say, with A = {1, ws} and B = {wy, W, w3, w3 }—then the same

strategy 7o would yield HZ% = 1, as required. In general, when all loops are balanced,
this discrepancy is eliminated for any two such sets A and B. The notion of balanced loops is
closely related to the following notion of covered loops, which implies that an Fj-loop can be

decomposed to loops of F5.
Definition 5. An F;-loop (w1, w1, ws, W, . .., W, W) 18 F_-covered if

o The set {1,....,m} is partitioned to disjoint sets of indices, J, Iy, ..., 1., i.e., {1,...,m} =

e Foreacht=1,..,r, ((wj,wj)) 1s an F_;-loop, also referred to as a Sub—loop.

JEI

16The order of the pairs (wj,w;) in the F_;-loop does not have to coincide with their order under the Fj-loop.
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o J={jiw; € F_i(w)}.

The cover is order-preserving if every F_;-loop <(wj,wj)> in the cover follows the same
Jjel;
ordering of pairs as the Fj;-loop.
In simple terms, the definition states that, given an Fj-loop (wq,@1,ws,@a, - .., W, W),

we can partition its states to several Fy-loops and a set of states where w; € Fy(w;). Figure
(a) depicts an Fij-loop consisting of ((wj,w;));=1,..4, which is covered by two Fj-loops:
(wy,W1,ws,w3) and (wa,Wa, wy,wy). In this case, the set J (defined in Definition [5) is empty.
Figure [24] (b) depicts another case in which the Fj-loop is covered by Fy-loops, but J = {2, 4}.
Note that the sub-loops in Figure [24] (a) are order-preserving, whereas those in Figure [24] (b)

are not.

Fy(wy) Fy(ws) Fy(wi) Fy(ws)
N\ /N

[\ o) N /o)
G EFQ(WQ) o >Q< w
S AL

Figure 24: Two states connected by a colored line are in the same information set of F». In (a), the sub-loops
are order-preserving, i.e., following the ordering of pairs in the original Fj-loop, whereas those in (b) are not.

The following Proposition [5| proves that an Fi-loop is Fy-balanced if and only if it is F5-
covered. This proposition assists with the proof of Theorem [6] below, which provides a necessary

condition for dominance.

Proposition 5. Let (wy,w1,ws, W, ..., W, Wm) be an Fi-loop. The following statements are

equivalent:

For instance, an Fi-loop (w1, w1, wa, Wa, w3, ws) might be covered by the following Fy-loop (w1, w1, ws, W3, wa, Wa).
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i. The loop 1s Fy-balanced;
ii. The loop is Fs-covered;

iii. For every Fy-measurable function f : {wl,wl,wQ,wz, . ,wm,wm} — (0, 00),

m

—

(wi) _
@) - 1.

~~

i=1

The next two properties that we study are irreducible and informative loops. Starting with
the former, an Fj-loop is irreducible if it does not have a sub-loop, namely, there exists no
‘smaller’ Fj-loop that comprises a strictly smaller set of states taken solely from the original
loop. Our analysis would use irreducible loops as building blocks to decompose and compare

loops generated by the oracles’ partitions.

Definition 6. Let L; = (wy, w1, wa,Wa, ..., W, W) be an Fi-loop. We say that the loop is
irreducible if there exists no strict subset of the set {w;,w; : j = 1,...,m} that forms an

F;-loop.

We use the definition of an irreducible loop in the context of covers as well, stating that a
cover is irreducible if every loop in the cover is irreducible. Furthermore, the idea of irreducible
loops is closely related to the concept of covers, and specifically to the set J = {j;w; € F_;(w;)}
given in Definition [5| above. Specifically, if there exists an Fj-loop with a pair of states (w;,w;)
such that W; € Fj(w;), then it cannot be irreducible unless it comprises only 4 statesm We
typically refer to such cases where w; € Fj(w;) as non-informative because Oracle i cannot
distinguish between the two states. This condition is essentially equivalent to every Fj-loop
being Fy-balanced at 0, meaning that for any choice of the specified F5-measurable sets A and
B, the number of transitions between these sets is zero. The following Definition [7| captures
the idea of informative loops, which would later be used in Theorem [7] as a sufficient condition

for dominance.

Definition 7. An F;-loop (w1, @1, w2, Wa, . . . , Wi, W) 1S Fy-non-informative if Fy(w;) = F(@;)

for every j. The loop is Fy-fully-informative if Fj(w;) # Fi(w;) for every j.

ITn general, the smallest possible loop has at least 4 states, so any such loop is, by definition, irreducible.
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To understand the motivation behind this definition, consider any Fj-loop denoted by

T2 (8|w;)
‘I‘2(S|wi)

(w1,W1, W, Wa, . . ., Wi, Wy ). 1f this loop is Fy-non-informative, it suggests that the ratios
equals 1 for every signal s supported on these states. In simple terms, conditional on any
{w;,w;}, Oracle 2 does not provide any additional information, so the constraints that an Fj-
loop imposes on Oracle 1 in every CKC (i.e., that the product of probability ratios along the
loop equals 1) are met by the measurability requirements of Fy.

The following proposition summarizes key properties of informative and irreducible loops. It
states that an irreducible loop intersects every CKC at most once and must be fully-informative
(unless it has only 4 states). In addition, the proposition shows that an informative loop has a

fully-informative sub-loop, as well.
Proposition 6. Consider an F;-loop L;.

o If L; intersects the same CKC more than once, then it is not irreducible.

If L; is irreducible and consists of at least 6 states, then it is F;-fully-informative.

If L; is F;-informative, then it has an F;-fully-informative sub-loop.

If L; 1s F;-fully-informative, then it can be decomposed to irreducible F;-loops.

If L; is not irreducible, then either it intersects the same CKC more than once, or it has

at least 4 states in the same partition element of F;.

We use this proposition in the following subsection to provide necessary and sufficient con-

dition for the dominance of one oracle over another.

5.5 Necessary and Sufficient conditions for dominance

In the following section, we address the general case where I} has loops, which imposes con-
straints on Oracle 1 across CKCs. Due to the complexity of this problem, we divide our analysis
into two parts: a necessary condition for dominance presented in Theorem [0 and a sufficient
condition given in Theorem [7] These theorems depend strongly on the properties of information

loops, and specifically on the notions of covers, irreducibility and non-informativeness.
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Starting with the necessary conditions, the following theorem, which builds on Propositions
and [6] states that if Oracle 1 dominates Oracle 2, then besides the refinement condition in
every CKC, already established in Theorem |5} it must be that every Fi-loop is covered by loops
of F5. In addition, it states that every irreducible F5-loop that cover an irreducible Fi-loop is

order-preserving, essentially stating that the two loops coincide.
Theorem 6. If Oracle 1 dominates Oracle 2, then:
o [ refines Fy in every CKC;
o Any Fi-loop has a cover by Fy-loops; and
o Fvery irreducible Fy-loop that covers an irreducible F-loop is order-preserving.

The proof of the first part is immediate, as it follows directly from Theorem 4 The proof
of the second part relies on Proposition 5| by assuming that an Fj-loop is not Fh-balanced,
and constructing a strategy 7 that Oracle 1 cannot mimic without violating measurability
constraints. The last part relies on Proposition [0, as well as Lemma 2 by depicting a two-
signal strategy 7, that one cannot mimic without following the same order of pairs throughout
the Fy-loop.

Next, we use the understanding regarding covered and balanced loops to present a sufficient
condition for dominance, which indirectly requires that any loop is balanced at 0—meaning
that there are no transitions between sets A and B. This leads to the following Theorem [7]

which uses the non-informative notion for dominance.

Theorem 7. If F| refines Fy in every CKC and every Fi-loop is Fy-non-informative, then

Oracle 1 dominates Oracle 2.

Though we do not yet provide a full characterization, it becomes rather clear that the
requirement that every Fj-loop is Fh-balanced should be the main focus, as it is a necessary
condition, as well as a sufficient one when the balance is set to zero. In the following section

we show that the balance condition is both necessary and sufficient for the case of two CKCs.
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5.6 Toward a general characterization: two CKCs

In this section, we assume there are only two CKCs. This assumption simplifies the analysis, as
the case of two CKCs can be resolved using our prior results, allowing us to examine all possible
loops directly. Formally, Proposition [7| states that, given two CKCs, the necessary condition of
an Fy-balanced loop from Theorem [0] is also a sufficient condition.

To build intuition, consider the scenario with two CKCs depicted in Figure featuring
an Fi-loop (wy,w,ws, Ws) across four states. Fix some 75 and assume the loop is Fy-balanced.
There are then only two possibilities: either the loop is Fy-non-informative, as shown in cases
(a) and (b) in Figure 25 or it is also an Fy-loop, illustrated in case (c) in Figure The first
possibility was covered in Theorem (7, while the second allows Oracle 1 to meet the constraints

imposed by the Fi-loop when attempting to mimic 7.

Proposition 7. Assume there are only two CKCs. Then, Oracle 1 dominates Oracle 2 if and

only if Fy refines Fy in every CKC and any Fi-loop is Fy-balanced.

Ch Cy Ch Cs Ch Co
oW1 oWy o W1 ey
Fy Fy
U] o Wo el o W9

(a) (b) (c)
Figure 25: Two CKCs with an Fj-loop described by (wy,W1, ws,w2). Graph (a) and (b) depict two Fy-balanced
loops, that are also Fy-non-informative, and (¢) describes an Fy-loop. Any other structure of F» yields a non-
balanced loop.

6 Equivalent oracles

In this section we tackle a parallel question to dominance, which is the problem of oracles’
equivalence. Specifically, we characterize necessary and sufficient conditions such that both

oracles dominate one another simultaneously, as formally given in the following definition:
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Definition 8. F} is equivalent to F,, denoted F| ~ F3, if the two oracles dominate one another,

that is, if F; =Ng F_; for every i =1, 2.

Based on the results for the case that loops do not exist and the case of two CKCs, equiv-
alence between oracles obviously requires two-sided refinement within every CKC (i.e., equiva-
lence), and that every Fj-loop is F_;-balanced for every Oracle i. This, however, is insufficient
and equivalence also requires that every irreducible Fj-loop with at least 6 states is also an

irreducible F_;-loop. This result is given in the following Theorem [§|

Theorem 8. Fi is equivalent to Fy if and only if for every Oracle i, the partition F; refines
F_; i every CKC, any F;-loop has a cover of F_;-loops, and every irreducible F;-loop with at

least 6 states is an irreducible F_;-loop.

The equivalence condition concerning irreducible loops is based on the ability of both oracles
to follow similar measurability constraints when signaling to players in every CKC. That is, if
one oracle is constrained by an information loop, then we require the other to follow suit. Yet,
this still raises the question of why do we need to focus on irreducible loops? To understand
this, consider a single partition element of F; that intersects at least two CKCs where each
intersection contains at least two states. This evidently generates a non-informative loop,
because all pairs are non-informative. But as long as the other oracle cannot distinguish between
the two states in each pair, the ability to separate different pairs in different CKCs is not needed,
as each pair is common knowledge among the players themselves within every CKC.

The proof of Theorem |8 also builds on an intermediate irreducibility notion that we refer
to as type-2 irreducible loop. More formally, an Fj-loop is type-2 irreducible if it does not have
four states from the same partition element of F;. This notion refines that of fully-informative
loops (as every type-2 irreducible loop is fully-informative), but also weakens that of irreducible
loops, because a type-2 irreducible loop can intersect the same CKC multiple times, and so be
decomposed to sub-loops.

The notion of type-2 irreducible loops is crucial for our analysis and results, but also in a
more general manner. We use type-2 irreducible loops to generate the basic elements, building

blocks, upon which two oracles must match one another (in terms of their information). These
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building blocks are referred to as clusters and they are constructed as follows. First, we take
the set of type-2 irreducible loops. Then, we consider such loops that intersect the same CKC
and consider them as connected. Next, we take the transitive-closure of this relation, which
yield disjoint sets of connected type-2 irreducible loops. Finally, we take every such set (of
connected loops) and consider all the CKCs that it intersects - this is a cluster. We prove
that the oracles’ partitions match one another in each of these clusters. That is, the clusters
are the basic structure upon which we derive an equivalence, and later extend it to ”simpler”

connections between clusters that involve only a single partition element of Fj.
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A Appendices

A.1 Proof of Proposition

Proof. Necessity. Suppose, by way of contradiction, that there exists a player, say player 1,
such that the combined information of F} and II; does not refine that of F5 and II;. Then there
exists an information set of II; on which F; does not refine F,. By Blackwell (1953)), this implies
that there is a decision problem defined on this information set in which F5, induces a higher
expected payoff than F}.

Now consider a common objective game in which all players except player ¢ are dummies
(i.e., have only one available action). Suppose that payoffs are zero outside this information set
and coincide with player ¢’s payoff within it. In this game, the highest equilibrium expected

payoff induced by F5 is strictly greater than that induced by F}, contradicting the assumption.

Sufficiency. Assume that for every player ¢, the combined information of F; and II; refines
that of F5 and II;. Fix a CKC. We first show that in any common objective game, confined to
this CKC, and for every partition F', the highest equilibrium payoff is achieved when F' is fully

revealed. In fact, we prove a stronger statement.

Claim 1. Let 7 be a signaling function measurable with respect to F'. Then the highest equilib-
rium payoff under T is at least as high as the highest equilibrium payoff under any garbling of

7% denoted M.

Suppose that the experiment 7 uses signals in the set S, while 7M uses signals in the set
T. Let (0;)ieny be the equilibrium profile that maximizes the players’ payoff, using signals
produced by 7M and the private information available to the players. Finally, let M = (my)
be the garbling matrix, where my > 0 for every (s,t) € S x T and ), . my = 1 for every
seS.

Unlike the case with a single decision-maker, the players cannot use the signal generated

by 7 in conjunction with M to replicate the signal of 7M. The reason is that M is typically

18Here we refer to 7 as a Blackwell experiment.
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stochastic, and if the players were to use M privately, they would generate independent signals,
thus lacking coordination.

To prove the assertion, we construct an auxiliary signaling strategy, 7, that players can
follow and generate the same distribution over pairs of state and action profiles as under 7M

and (0;);en. The set of signals that 7 uses is S x T'. Define
7((s,1)|w) := mgT(s|w).

Note that for any fixed s € S, all signals of the form (s,t) € S x T induce the same
posterior—namely, the posterior that s induces under 7. Define the following strategy profile:

for each player 7, let

ai((s,t),m) = o;(t, m),

where 7; denotes the private information of player ¢, that is, the element of II; containing
the realized state. In other words, when player i observes the signal (s,t) and the private
information 7;, he plays according to o;(t, m;).The signaling strategy 7 serves to coordinate the
players regarding the outcome of the garbling.

The profile (7;);en, when used in conjunction with the signal generated by 7, induces the
same distribution over states and action profiles as the original strategy profile (o;);cy under
the signal generated by 7M. Consequently, it yields the same expected payofts.

The profile (7;);eny may not constitute an equilibrium, however. In that case, a sequence of
pure-strategy, payoff-improving deviations by individual players benefits all players and even-
tually (after finitely many such deviations) leads to an equilibrium induced by 7. The resulting
payoff is at least as high as the one generated by 7M and the profile (7;);en-

Since, for a fixed s € S, all signals of the form (s,t) induce the same posterior, we can
assume that for every player i and private information 7;, the actions 7;((s,t), m;) are identical
across all t € T'. Tt follows that the strategies 7; can be equivalently defined on the signal set
S associated with 7.

We conclude that there exists an equilibrium under 7 that yields a payoff at least as high

as that generated by the profile (7;);en. This completes the proof of Claim .
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Observe that any F-measurable signaling function is a garble of the full revelation of F.
Thus, the highest equilibrium payoff induced by F;,i = 1,2 is when it is fully revealed. Finally,
since for every player ¢, the join of F; and II; refines the join of F; and II;, any equilibrium
strategy that is measurable with respect to the latter is also measurable with respect to the for-
merH If these strategies do not constitute an equilibrium under F7, then a process of sequential
improvement—where players unilaterally deviate one at a time—leads to an equilibrium that

yields a higher payoff. This concludes the proof.

A.2 Proof of Theorem 1

Proof. One derivation is straightforward. Assume that Fj = (i), Fa. For every 7y, take 71 such
that II; V 7y = II; V 7 for every player i. Thus, we get NED(G(71)) = NED(G(7y)) for every
game G. This holds for every strategy 7o, so F} =ng I3 as needed.

To establish the converse derivation of the theorem, we assume that Oracle 1 is not individu-
ally more informative than Oracle 2, and prove that Oracle 1 does not dominate Oracle 2. Fix a
strategy 7o, so that for every 7, there exists a player ¢ such that II; V # II; V7. Consider such
71, and with no loss of generality, assume that I1; V71 # II; V79, Denote 13 V1o = { By, ..., B}
where B; = {w], ... ,w‘ij‘} C Qforevery 1 < j <k

Consider the following decision problem. Define Pp; to be the set of all permutations of By,
so that every element p € Pp, is a function p : B; — {1,2,...,|B;[} where p(w]) is the location
of wlj according to that permutation. Let A; = J ; Pp, be the action set of player 1, so that

player 1 chooses a permutation p over a partial set of €). Define the following utility function

p(wi)

2D e Py,

uy(a,w) = uy(p,wy) = “(WfUlB;)gllBj\ i
2 .

" ming, p(w)’ 1fp ¢ PBj7

where p(w!|B;) is the probability of w! conditional on B;. In simple terms, player i needs to

match his action, i.e., a permutation, to the realized state wlj . If the action of player 1 is not

19We cannot reuse Claim |1/ here because there is no common garbling for all players: each has its own garbling
matrix.
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a permutation on the states of the realized element of the partition (generated by his private
information and the information that Oracle 2 conveys), he gets an extremely low negative
payoff. However, in case the action of player 1 is a permutation on the relevant block, he
receives a positive payoff based on the ordinal location of the realized state according to the
chosen permutation.

Let us compare the expected payoffs of player 1 given the additional information conveyed
separately by the two oracles. Given the partition Il; V 75 and after w is realized, player 1 is

informed of the relevant block B; of the partition such that w € B;. Thus, for every p € Pp,,

U w | = (,uj u wj = wj — pwl ‘B]‘—i_l
Elui(p,w)|Bj] = Y ulw]|B))ur(p, ) ZM(HB)( 5, |B| |B[ SR

J . J ) J
w; €B; wj €B; wj €

Note that the expected payoff is independent of the chosen permutation p given that p € Pp..

Hence,
k

E MWLV 7] =
ax [u1 (p, w)[IIy V 7] ZN

Jj=1

\B\+1

Now consider the two possible scenarios given that II; V 7y # II; V 7»: either II; V 7 is a
strict refinement of II; V 7, or there exists at least one block of II; V 7y that intersects two
disjoint blocks of II; V 7.

Starting with the former, assume that II; V7; is a strict refinement of Iy V 75, so there exists
a block B} that IT; V 7y splits into at least two separate blocks. Without loss of generality,
assume that B; is such a block, and denote the two disjoint sub-blocks by B;; and B, so
that By = By1 U By 5. Assume that for every B; # B, player 1 follows the same strategy as

with II; V 75 so that we can focus on the difference in expected payoffs given B;. Evidently,

1
plw
E[ul(p,w)|B1,1] = Z W Wl ]Bl 1)u1 p,wl Z M |B11 W&Bﬂ
l

wl €B1,1 wj €B1’1

_ gy B plw)
= Z 1( l’Bl),u(Bm) p(w;|B1)| B

wi€B1,1

p(B1) Z )
— s N5 p(wl )
((Br1)| B e
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Note that player 1 can choose a permutation on B; which maximizes the sum of all states in

Bl,ly 1.e.,

By +1
max > pw!)=|Bi|+|Bi| -1+ +|B1|—]BM|+1>]BM|L.
wl€B11
Thus,
1(B1) |Bi| +1
E ,w)|B11] > ,
plélgé [U1(p )| 1,1] M(Bl,1)|Bl|’ 11’ 5
and a similar computation holds for By ;. Therefore,
k
’B |+1 1(B1) |Bi| +1
E IT, v Bi1)——————|By|——
m}?X [ur (p, w) [Ty V 4] ; + pu( 11)M(Bl,l)|31’| 11] 9
(B1) |Bi| +1
B
+ M( 172) (812>’Bl‘| 1,2| 9
k
]B ] +1 {\Bl 1] ‘312‘:| |By| + 1
= + — + : By)——F—
Bl +1
- Z ’ ’+ _mI?JXE[U]_(p,WNH]_VTQ]’

and player 1 can guarantee a strictly higher expected payoff using the information conveyed
through Oracle 1 than through Oracle 2

Next, consider the other possibility that II; V 71 is not a refinement of II; V 7. This implies
that there exists at least one block of Iy V71 that intersects two disjoint blocks of IT; V7. Denote

this block by B*. For every state wlj and every permutation p € Pp;, note that p(wlj) < |Bjl,

s0 up (p,w]) < Hence, in the optimal case in which player 1 is completely informed of

1
pu(w]|Bj)”
the realized state, his payoff cannot exceed |Q2]. However, in case player 1 wrongfully chooses a
210]Q]

ming, p(w)

permutation that does not match the realized block in II; V 7, his payoff is given by —
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Thus,

Elu(p.w)|BT] = Y ww/B )u(pw)

weB*

1 210\Q|
B*)———— + mi BY) |[-———
< wEEB*M(w‘ )u(w|B*) + min u(w|BY) { . M(w)}

210|Q\

< |Bf| - ——.
5] w(B*)

This suggests that the expected payoft of player 1 given II; V 77 is bounded from above by
max Efu; (p, w)|II; V7] < [Q — 21 < 0,
2

which is strictly below the expected payoff given the information transmitted through Oracle
2.

To conclude, for every player ¢, we can define a decision problem such that whenever II; V
71 # 1I; V 19, it follows that the expected payoff of player i given 1 differs from the player’s
expected payoff given 7. Hence, there exists 75 which yields a unique profile of expected payoffs
in equilibrium that cannot be matched by any 7y, thus for every 7, we get NED(G(7p)) #
NED(G(7)), and this concludes the proof. O

A.3 Proof of Theorem [2

Proof. Fix a unique CKC. One direction is trivial, so assume that F; is IMI than F_; for every
1 = 1,2, and let us prove that F} = F,. Assume, to the contrary, that F} # F,. W.l.o.g, there
exist wy # wy, such that F)(w;) = Fi(wy) whereas Fy(wq) # Fo(ws).

Consider the partition Fj = {Fy(w), (Fy(w))°}. By assumption, there exists a partition
F| such that II; vV F| = II; v F}, for every player i. Denote A = Fj(w;) N Fy(wy), B =
Fl(w1) N (Fa(w1))e, C = (F{(w1))* N Fa(wr), and D = (F{(w1)) N (Fa(w1))e. See Figure 26} (a).

If there exists a player i such that IT;(w;) = TI;(ws), then we € (F] V II;)(wy), while wy ¢
(Fy V 11;)(w2), which contradicts the equation II; V F| = II; V Fj. Thus, for every (w,w’) €
AXx BUA Xx DU B x C and for every player i, we conclude that IT;(w) # II;(w’).
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[llustrations of sub-partitions in the proof of Theorem
Fo(wr) (Fo(wr)) Fa(wr)

!
Wy

o W9

w3 e ] oW1

Figure 26: Figures (a) and (b) depict the partition F3 and the sub-partition F] that mimics it. Figure (b) also
illustrates the path between w; and ws, as well as the possible connections between the different sets. Figure
(c) depicts the partitions F}’ and Fj along with the path from w; to ws.

Because this is a unique CKC, every two states w and w’ have a connected path, in the
sense that there exists a finite sequence of states starting with w and ending with w’ where
every two adjacent states are in the same information set of some player. Fix such a path from
wy to we, and denote it by (wy,wi1, w12, ..., W1 ,Ws,...,ws) Where {wy,; : 1 <t <[} € C and
w3 € D. This holds, w.l.o.g., because states in A are directly connected (through a partition
element of some player) only to states in A U C, and the same holds for states in B that
are directly connected only to states in B U D. Note that wy, € (Fi(wp))¢ for every t and
w3 € Fy(wi) N (Fi(wr))e. See Figure 26](b).

Now consider the partition Fy = {Fj(w1), (Fi(w1))¢}. By assumption, there exists a par-
tition FY such that II; vV F/ = II; V FY, for every player i. Denote A’ = Fj(wy) N FY(wy),
B' = (Fi(w)) N FY(wy), C" = (Fi(w1))° N (FY(w1))¢, and D' = Fy(wy) N (Fy (wq))¢. See Figure
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26] ().

Similarly to the previous analysis, states in A" are directly connected only to states in A’'UC",
and states in B’ are directly connected only to states in B’ U D’. In addition, note that w; €
Fi(w)NFy(w) CA wiy € (Fi(w)) € B'UC for every t, and w3 € Fa(wy) N (F1(w))¢ C B'.
If w1 € B’, we can make a direct connection between A" and B’, which yields a contradiction.
Thus, w1 € C’, and the sequence (wy.1,ws 2, ... ,w1,,ws) which starts in C” and ends in B’ has
at least one direct connection between B’ and C’. A contradiction, as well. Thus, for every
w; # we, we conclude that Fi(w) = Fi(ws) if and only if Fy(w;) = Fy(ws), and the result
follows. O

A.4 Proof of Proposition

Proof. For every player i, we can focus our analysis on the function R;. Assuming that player

i’s belief is ¢', we get

q .
E R i, W - iy W = _1 w=a -2 L
max B [Ri(a;, w|p)] = max [Z ¢, Ri(a; |p)] max [Z { Z}] > 4,

weN weA pal w¢A;

The second term in independent of a;, so player ¢ maximizes only the first one. If p’ = ¢ for

every player 7, then

gleaxii [Z _1{w az}] -2 Z qw aiEA; szi )

Pa;

w€eA w¢A; wgA;
independently of the chosen action a; € A;. Therefore,
Eglus(awlp)] =1 - ——3"1= 1,
max ui(a,wlp)l=1— —— =
a;€EA; p —1 oy
JF

as stated.

Moving on to the second part of the proposition, assume that there exists a player ¢ whose
actual belief is ¢° # p'. The proof is now divided into two parts: either ¢* is supported on a
subset of Supp(p'), namely Supp(q’) C Supp(p'), or not.
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Starting with the former, assume that Supp(¢‘) C Supp(p’). Evidently,

7
s By o, wlp)] = ma 28> 1

Denote maxg,ca, Eqi[Ri(a;,w|p)] = 1+ c¢. Assuming that the beliefs of all other players align
with p, the expected equilibrium payoffs of player ¢ and of every other player j # i are

2

Bylu(anwlp)] = 1+c———(n—1)=—1+c
2 2c
Epiluj(aj,wlp)] = 1- n_ 1(” —1+c)=-1- o1
respectively. Thus, the aggregate expected payoff in equilibrium is
2
(—1+¢c)+(n—1) {—1— Cl] =-n—c<-—n,
n —

as stated. Note that we get a similar result for every additional player j whose belief is ¢7 # p’.
Next, assume that that there exists a player ¢ with a belief ¢’ such that Supp(¢*) € Supp(p’).
If Supp(q’) N Supp(p’) = ¢, then the player’s expected payoff is

2
n—1

Egilui(a;,w|p)] = =2 — (n—1)=—4.

For players other than player i, since 1y,e4,) = 0, it follows that their expected payoff is

Epiluy(aj wlp)] = 1 = ——(n = 2).

The aggregate expected payoff over all players is —4 + (n — 1) [1 — %(n — 2)] = -n—1, as

needed.

If Supp(q") N Supp(p') # ¢, denote gy = D wd A q. €(0,1) and r’ = G for every w € A;.

1—qo’

Thus, > ., ri =1, and we get
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which implies that

q. [1 — qo]r!
d := ma 1 = ma E ey >1-
aiEj( paz {az } a; ej( e paz {a } CIO

Thus, the expected payoff of player i, assuming that ¢/ = p’ for every other player j # 1, is

max Ei[u;(a;,w|p)] = max Z . — 14— —ZZqi,— 7:121

a;€A; a;€A;
LwEA; pa’ w¢A; JFi

q
= E wla | —2q0—2=d—2qy — 2,
gleaj( oo, pal {ai=w} Qo 9

and the expected equilibrium payoff of every other player j # i is

2
Esluy(aylp)] = 1- ——(n—2+d)
Aggregating over all players,
2
> Eplusag,wlp) = d—20—2+(n—1) |1 ——(n—2+d

= —n—q+(1-q—d

S _n_q0<_n7

where the two inequalities follow from d > 1 — ¢o and ¢y > 0, as stated above. Again, we
get a similar result for every additional player j whose belief is Supp(¢’) € Supp(p’), and the
statement holds. ]

A.5 Proof of Lemma [

Proof. We start by analyzing the game given that the signaling function is 7. Consider the
profiles s = (s',s%,...,s") and p = (p')ien, so that all players declare the true public signal
st = s/ for every two players i and j, and p' = uiﬂw . is the true posterior of every player i.

In the second-stage sub-game, as stated in Proposition [2] every player receives a payoff of —1
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and the aggregate expected payoff in the two-stage game G, is —n. Let us prove that this is
indeed an equilibrium.

The negative payoff —M ensures that a unilateral deviation to a different signal is sub-
optimal, so we need only to consider the case in which some player ¢ deviates to a posterior
pt #£ ,ujﬂ%si. Notice that, given an element in II; and for every signal s' € S,,, there exists
a unique feasible posterior on II;. Thus, there are only two possible deviations concerning p':
either the updated profile p is no longer feasible and again all players receive a payoff of —M, or
p is feasible, but p’ is supported on a different partition element whose probability is zero given
player i’s actual partition element. Due to the negative expected payoff of —M in the former
case, we need only to consider the latter possibility. If player ¢ declares a zero-probability belief
(relative to the true posterior), then the proof of Proposition [2|shows that the player’s expected
payoff in the second stage is —2. Thus, we conclude that a truthful revelation of all information
comprises an equilibrium, and the aggregate expected payoff given this equilibrium is —n.

Next, consider the signaling function 71 so that Post(m1) € Post(72), and fix any equilibrium
profile. Evidently, the players must coordinate on some feasible combination of s and p accord-
ing to 75, otherwise they all get —M. However, with some positive probability, the declared
posterior p' of some player i mismatches the realized one ,uimw’si. In that case, Proposition
shows that the aggregate expected payoff is strictly below —n. So, the expected aggregate
payoff in the two-stage game G, given the stated strategy 7, is also strictly below —n, as

needed. O

A.6 Proof of Proposition

Proof. Fix 7, and let Post’(7,) be the set of feasible posterior beliefs of player i under 7,. Define
the game G’,, as follows. The set of player i’s actions is A; = Post’(7y). His payoff function is
u;(p',w) = lim o+ log(p’, + €). For every player, the game is a single-person decision problem
in which the objective of a player is to choose a belief in Post’(7;) that maximizes his expected
payoff, given his actual belief ¢, which may be different from p.

Claim 1. If the actual belief is ¢' € Post'(7y), then the optimal strategy for player i is p' = q¢'.
Any p' € Post(ry) that is different from ¢ would yield player i a strictly lower payoff.
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To prove this claim, first observe that it is not optimal to choose a p' where Supp(q’) ¢
Supp(p'). Otherwise, there exists w € Supp(q’) \ Supp(p’), such that with a positive probability
q’, player i would receive a payoff that tends to —oo.

Next, we show that among those p’ that share the same support as ¢, the unique optimal

choice is p' = ¢'. To see this, note that

> qilogpl) = > q.log(ql) — Dxu(d'llp),
weSupp(q?) weSupp(q?)
where Dxr(q¢'||p) is the Kullback-Leibler divergence. Since Dxkr(¢'||p’) is uniquely minimized
when p’ = ¢, it follows that player i’s expected payoff is uniquely maximized when p’ = ¢*.
Finally, we show that it is not optimal to choose p’ where Supp(q’) € Supp(p’). Consider

such a p'. Since p’, < 1, we can allocate the remaining probability mass to states

w€eSupp(g*)
in Supp(q’) to obtain a probability distribution p* where Supp(p‘) = Supp(¢®) and pi, > p¢ for

every w € Supp(q’). Hence,

o dlogldl) = > dilog(dl) > > qilog(pl),
weSupp(q*) w€ESupp(q*) weSupp(q?)
where the first inequality follows from the fact that ¢* is the unique optimal choice among
probability distributions that share the same support, and the second inequality follows from
Pt > pl, for every w € Supp(q'). This concludes the claim.

It follows from Claim 1 that under 7, the set of posterior belief profiles in Post(r,) are
all chosen with positive probability in the equilibria of the game G, (7). On the other
hand, for every strategy 7 satisfying Post(ms) € Post(ry), there exists a posterior belief
profile p € Post(mz) \ Post(7), that is chosen with zero probability in every equilibrium of
the game G,(71). Thus, for every 7 that satisfies Post(m;) € Post(rs), we conclude that
NED(G, (7)) # NED(G/, (7). 0
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A.7 Proof of Theorem [3

Proof. Fix 7, and consider the games G, and G/, as defined above, where the sets of actions
for each player in these games are disjoint. Define the game G as the one in which G, and
G/, are played with equal probability, i.e., with probability 1/2 each.

If Post(r1) # Post(7s), then either there exists a posterior profile p € Post(r;) \ Post(7z),
or there exists a posterior profile p € Post(r) \ Post(r;). Following Proposition [3 and [4]
in each of the mentioned sub-games, it follows that NED(G(m,)) # NED(G(7)) where G €
{G,, G }. Thus, if no 7, satisfies Post(7;) = Post(72), there exists a game G and 75, such that

NED(G(72)) # NED(G(m)) for every 71, which contradicts the dominance assumption. O

A.8 Proof of Lemma [2

Proof. Assume, to the contrary, there exists a signal ¢ € Supp(7;) such that for every signal

s; € {s1, $2}, there exist two states wy,w* € Q such that

n(tlwr) , 7i(tlw)

7'2(82‘1001) 7'2(5z'|w*).

(3)

Note that 73(s;|w) > 0 for every s; and w, so the fractions are well defined. In addition,
it must be that either 7 (¢t{w;) > 0 or 7 (tjw*) > 0, so assume that 7 (t|w;) > 0. Because w
and w* are in the same CKC, there exists a finite sequence (wy,ws,ws, . ..,w*) such that every
two adjacent states are in the same partition element for some player. Assume, w.l.o.g., that
{w1,ws} and {wq, w3} are in the same partition elements of players [; and [; respectively. Using
the definition of 7, it follows that in every posterior (Mi'2|w,si)le ~n € Post(m), the coordinates
relating to II;(w) are strictly positive (for every player [ and every signal s;). Thus, for every
state w and signal s;,

ug|w75i (w1) >0« 'ui'l2|w,si (we) >0,
and
o (w) >0 2 (ws) >0

M7'2|W75i T2|w,s;

Take a posterior (/J“i'ﬂw,t)leN such that ul%'w’t(wl) > 0. Because Post(r1) C Post(7z), it follows
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that 1!

1
Ti|w,t

(wg) > 0, hence 7y (t|wg) > 0. The fact that 71 (t|ws) > 0 implies that Ul:l\m,t(‘*’?) > 0,
and so ,ulfl‘w%t(w?,) > 0. We thus conclude that 7 (t|ws) > 0. Continuing inductively, it follows
that 71 (t|w) > 0 for every w € {wy,ws, ..., w*}.

According to the definition of 7, and using Bayes’ rule, for every signal s; and for every

posterior where me,, 5, (w) >0, which implies that w € II;(w”), we know that

Py (W silw)p(w) _ mo(siw)p(w)
oy (", 5:) [T (") |k, (" 52)

N’ZT'2|UJ”,SZ' (w)
Thus, for every w’ € II;(w), we get

lu"lr2|w”,si (CL)) TQ(S/L‘(JJ) /’L'lr2|w”73i (CL)/>

pw)  mlsil) pw)

Note that 25120 — 1 if and only if Fy(w) = F3(w'), and otherwise, the ratio 2205lw) jg oiven by

T2(si|w’) T2 (s4]w’)

c€{}: z,y € A}. Thus, for every such s; where ,ulm‘w,,m (w) ':“lmw” 5, (W) > 0, there exists a
unique ¢ € {7 : z,y € A} U{1} such that

lui—2|w”7si (w) —c. /'I’i—2|w”’5i (w,)
(w) pw)

In case ¢ = 1, then the last equation holds for every signal s; because To(s;|w) = To(s;|w’) if and
only if ' € Fy(w).

By the inclusion criterion, for every posterior (u!

o t)leN generated by 7, there exists a

posterior (p!, o Si) len generated by 7o, such that the two are identical. We thus conclude that

'u’i'll\wg,t<w1) /“Lfrlg|w”,si (wl) c 'U'i'12|w”,si (w2> c ui}1\w2,t<w2)
== pr— 1 - —_— = 1 - —_—_—
pi(wr) fi(wr) fi(w2) fi(w2)
and l l l l
ILLT21‘W27t<w2) MT22|UJ”,57; ((A}Q) c /"L7'22|w”,si (w3) c ILL7'21‘W27t(w3)
pum— pr— 2 S pu— 2 ‘- —
fi(w2) fi(w2) 1(ws) 1(ws)
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as well. Using Bayes’ rule, the last two equations are equivalent to

7'2(51-|w1) = C1- TQ(Si‘WQ) =cCC2 7'2(51:|W3)7 (4)

Tl(t’wl) = C1- 7'1(15’0.)2) = C1 " Co - Tl(t‘(J.Jg).

Note that these equations hold for every s; in case ¢; = ¢o = 1, and otherwise hold for a specific

signal, which could be taken as s; without loss of generality.

One can continue inductively along the sequence (wy,ws,ws, . ..,w") to get
TQ(SZ‘|Q}2> = C9- T2(8i|u}3) = Cy - C3- TQ(Si|w4)7 (5)
Tl(t|a)2> = Co° Tl(t|a)3> — C2 - C3 - Tl(t|w4),

and the first equality in Equation coincides with the second equality in Equation .
Namely, Equations and either hold for every signal s;, or hold for the same signal s;.

Repeatedly following the same procedure, we get that

TQ(Si’wl) = '72(5i|w2) == [Hk21ck] 'TQ(SJUJ*), (6)

T (tlwr) = - 7mi(tlwy) =+ = [gs10] - 1 (E|lw™). (7)

Dividing Equation by Equation (), we get nltle) e ©which contradicts (3), as

To(silw1) — Ta(si|w*)?

needed. ]

A.9 Proof of Theorem {4

Proof. Proving that the first condition yields the second which, in turn, yields the third, is
immediate. Assume that F; refines F;. Then, for every 7, there exists 77 such that 7, = 7.
It thus follows that Oracle 1 dominates Oracle 2. Next, assume that there exists 7 such that
for every 7, it follows that Post(1) € Post(72). According to Proposition , Oracle 1 does not
dominate Oracle 2. Now, let us prove that the third condition yields the first, that is: if F} does
not refine Fy, then there exists 7, such that for every 71, it follows that Post(7y) Q Post(7s).

68



If F does not refine Fy, there exists wy and w*, so that F (wy) = Fi(w*) and Fy(wg) # Fa(w®).
Consider the signaling function 75 defined in and take any strategy 7. Assume, to the
contrary that Post(7;) C Post(m). According to Lemma [2| for every signal ¢t € Supp(7;) there
exists a signal s; € Supp(m) and a constant ¢ > 0 such that 7 (t|w) = cma(s;|w) for every w.
In addition, the measurability condition of 7; imply that 7 (t|wg) = 71(t|w*) for every signal
t. Thus, 7o(s;|lwe) = Ta(s;|w*) and this contradicts the definition of 5. This establishes the
equivalence between the first three conditions.

Now, notice that the first (refinement) condition implies the equivalence of distributions
over posteriors profiles (fifth condition), because Oracle 1 can exercise any strategy of Oracle
2. The fifth condition in turn implies the forth condition (so that the set of posterior profiles
match), which implies the third condition, thus concluding the proof. O

A.10 Proof of Theorem [

Proof. One direction is straightforward. Assume, to the contrary, that Oracle 1 dominates
Oracle 2, but F} does not refine F5 in some CKC. Denote this CKC by (', and consider the
set of all games where the payoffs of all players are zero in every w ¢ C; independently of their
actions. Thus, Oracle 1 dominates Oracle 2 in every game restricted to Cf, although F; does
not refine Fy in Cy. This contradicts Theorem [4]

Moving on to the second part, assume to the contrary that F refines F5 in every CKC, but
Oracle 1 does not dominate Oracle 2. Therefore, there exists a strategy 75 such that Oracle 1
cannot produce the same distribution over posteriors as 7. @ The proof now splits to 4 steps.
Step 1: Mimicking sub-strategies.

We start by defining the notion of a sub-strategy, that resembles a strategy, but with induced
probabilities that may sum to less than 1. Formally, a partial distribution p is a non-negative
function from a finite subset of S to [0,1] such that > __<p(s) < 1. A partial distribution

differs from a distribution as the probabilities need not sum to 1. Let A(S) be the set of partial

200bserve that the condition that Oracle 1 can generate the same distribution over posterior profiles as Oracle
2 implies that Oracle 1 dominates Oracle 2. To see this, consider any game and any signaling strategy 7. Since
the players’ strategies depend on the profile of posteriors, we can then abstract away from the underlying private
and public information and assume that the players play a Bayesian game with a given probability distribution
over the profiles of posteriors, which can be generated by both Oracles.
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distributions on S, and define a sub-strategy 7 : Q — A(S) as an Fj-measurable function from
Q2 to the set of partial distributions on S. That is, 7(s|w) > 0 and ), 7(sjw) < 1, for every w
and s. Evidently, every Fj-measurable strategy is a sub-strategy.

For every sub-strategy 7 and every p € (A(Q2))", let P.(p) be the probability that 7 yields

the posterior p, i.e.,

P,p)= 3. wlwr(sl). (8)

(): 7(oJ)>0,
and (Nzl‘wys)iGN:p

Similarly, define P, (p) for every posterior p given the stated strategy 5. We say that a sub-
strategy 7 mimics T if

P,(p) < Py (p), for every p € (A(Q))". (9)

Hence, a sub-strategy 7 mimics 7 if, for every posterior p, the probability that 7 generates
p does not exceed the probability that 7o generates it. Note that the null sub-strategy (i.e.,
7(s|w) = 0 for every w and s) also mimics 7.

Consider any sub-strategy 7 that mimics 7. Because 75 generates a finite set Post(ry) of
possible posteriors, there exists a finite number of combinations of posteriors (which does not

‘POS“T?)') that every signal of 7 supports. So, if some sub-strategy uses more than

exceed 2
2IPost(72)] sjgnals, we can apply the pigeonhole principle to deduce that the additional signals
support similar combinations of posteriors as some other signals. Therefore, for every such
additional signal s, there exists another signal s’ and a constant ¢ > 0 such that 7(sjw) =
cr(s'|w) for every w, and we can unify the two signals into one. We can thus assume that there
exists a finite set of signals S, such that every mimicking sub-strategy (i.e., that mimics 73)
uses only signals from S.
Step 2: Optimal sub-strategies.

Let A, be the set of sub-strategies that mimic 7. Note that the set of sub-strategies
supported on S is compact, and the (inequality) mimicking condition, P,(p) < P, (p) for every

p € (A(Q))", remains valid when considering a converging sequence of sub-strategies. Thus,

A, is also compact.
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Consider the function H(T) = > pos(ry) Pr(p) defined from A; to [0,1]. As a piece-
wise linear function of 7, it is a continuous, so 7;, = argmax,., H(r) is well-defined. If
H(ryo) = 1, then 1,, is an Fj-measurable strategy that mimics 7. This contradicts the
original premise (that Oracle 1 cannot induce the same distribution over posteriors as 7), so
assume to the contrary that 7, , is a proper sub-strategy and H(z,,) < 1. If that is the case
(i.e., if H(z,,) < 1), there exists a posterior p* € Post(7z) so that P, (p*) < P, (p*).

Step 3: Partially supported and connected posteriors.

For every posterior p € Post(7y), let A, = {w € Q: p’(w) > 0 for some player i} be the
set of states on which p is strictly positive, contained in some CKC denoted C),. We say that a
posterior p € Post(y) is partially supported (PS) if P, (p) < P, (p), otherwise we say that p
is fully supported (FS). Let us now prove a few supporting claims related to PS posteriors.

Claim 1: If p is PS, then ) 7, o(s|w) < 1 for every state w € A,,.

Proof. Fix a posterior p and a state wy such that (Mj.‘wo,s)ieN = p for some signal s and 7 €
{710, 72}. There exists a constant «,,, independent of s and 7, such that . p(wo)7(s|wy) =
D wea\fwo} Mw)T(s|w). This follows from the fact that, in order to induce the posterior p, the
probabilities induced by 7 must maintain the same proportions along the different states in A,,
independently of either the strategy or the signal. Otherwise, the induced posterior would not

match p. Thus, Equation could be re-formulated as follows,

P.(p) = > pw)7(slw)

(w,8):(nl ), Jien=p

- > plwo)(slwo) + > p(w)7(s|w)
Si(ﬂi‘wo’s)ieN:p (w,8):w€Ap\{wo},
and (p7, JieN=P

= (1+ &p,w())ll’(wo) Z 7(8|wo),

St(ﬂi‘wO’s)ieN:p

which translates to

B P.(p)
2. Tl = gy

si(H] 1,0, )iEN=P
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Summing over all p € Supp(7y), we get

1 P,
bk =2 <1+c(3:,>w0>' (10)

P(1d g o )ieN=P;
for some s

Note that the RHS holds for either 7, ; or 7.
Now assume, by contradiction, that py is a PS posterior and ) 7, ((s|wp) = 1 for some
state wy € A,,. Using Equation , for both 7 and 7, ,, we get
1 P, (p)
1 = To(S|lwo) = —
g :U'(WO) Z (1 + ap,w())

(0 R
p-(.u‘.,-2|woys)z€N*pa
for some s

1 P, (p)
1 = E T10(8|lwo) = —— E 0
Tio{slwo) 1(wo) ; (1—}—042;,7&,0)

s pi(p )ieN=D,

1
T1.0lwo:s
for some s

which implies that
P. P. P.
Z 2(p) _ Z T1.0 (p) < Z 2(]7) :
(1+ O‘p,wo) (1+ ap,wo) (1+ O‘p,wo)

P16 )ieN=D; PBL | lwges)iEN =P, P(pL) o )ieN=D;

for some s for some s for some s

where the strict inequality follows from the fact that P, (p) < P, (p) for every posterior p,

with a strict inequality for p = py. This yields a contradiction and the result follows. n

Claim 2: If ) 7, ,(slw) < 1 for some state w, then there exists a PS posterior p such that

w e A,

Proof. Assume, to the contrary, that > 7, ((s|wy) < 1 for some state wy, and every posterior
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p such that wy € A, is F'S. Using Equation , we deduce that

1 = > 7(slwo)

1 P, (p)
~ plwo) 2 (1 + )

PHe g, s ) IEN =D
for some s

— 1 Z Pll,o (p)
(wo) i (1 + apw)
PHL, lwp,s)IEN TP

for some s

= 211.0(5|W0> <1,

where the first equality follows from the fact that 7 is a strategy, the second and forth equations
follow from Equation , the third equality follows from the fact that every posterior p such
that wy € A, is FP, and the last inequality is by assumption. We thus reach a contradiction

and the result follows. O

We will use Claims 1 and 2 to extend 7, ;, and show that it cannot be a maximum of H. For
this purpose we need to define the notion of connected posteriors. Formally, we say that two
posteriors p,p’ € Post(m) are connected if there exist two states (w,w’) € A, x Ay C C,, x Cy,
where C, # C, are two distinct CKCs, such that Fj(w) = Fi(w’). Equivalently, in such a
case, we refer to C,, and Cyy as connected, as well. Let (w,w’) and Fi(w) be the connection and
connecting set of p and p/, respectively@ We can now relate the notion of connected posteriors
to PS ones, through the following claim.

Claim 3: Fix a PS posterior p and w € A,. Then, for every connection (w,w’), there exists a

PS posterior p’ such that w’ € A, N Fi(w).

Proof. Let p be a PS posterior with a connection (w,w’) and Fj(w) = F;(«'). Using Claim 1,
if p is PS, then )" 7, ((s|w) < 1 for every w € A,, so the Fj-measurability constraint implies
that > 7, (s|w’) < 1. Thus, according to Claim 2, there exists a PS posterior p’ such that

W' € Ay, as needed. O

Equivalently, we refer to (w,w’) and Fy(w) as the connection and connecting set of the CKCs C), and Cjy.
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Step 4: Extending 7, .

Recall that p* is a PS posterior. Let V be the set of all CKCs () such that there exists a
sequence of PS posteriors (p*, p1,...,p;) where every two successive posteriors are connected
and A, C C;. Assume that V also contains Cj«. Let E C V2 be the set of couples (C, C") such
that C and C” are connected, and denote by P* the set of all PS connected posteriors that
generate V. Clearly, (V, E) is a connected graph and we can use it to construct a sub-strategy
which mimics 75 and Post(7) = P*. The proof proceeds by induction on the number of vertices
inV.

Preliminary step: |V| = 1. Assume that C) is the unique CKC in V. Because p* € Post(7),
there exists a signal s* and state w € Cp+ such that 7(s*|w) > 0 and (uile’S*),‘eN = p*. Define
the sub-strategy 7, ;(s|lw) = 72 (s*|w) for every w € A,«. Recall that F} refines F5 in every CKC,
therefore 7, ; is well defined. Moreover, it is a sub-strategy that mimics 75 and Post(r, ;) = P*,
as needed.

Induction step: |V| = m. Assume that for every graph (V| E)) where |V| = m, there exists a
sub-strategy 7, ,, that mimics 75, and Post(r, ,,) = P*.

Induction proof for |V| =m + 1. Assume that |V| = m + 1. The distance between C,+ and
every vertex (i.e., every CKC) in V' is defined by the shortest path between the two vertices.
Denote by Ci,41 the vertex in (V, E') with the longest path from C,-.

We argue that C),;1 has exactly one connecting set with the other vertices. Otherwise,
assume that there are at least two connecting sets. If the two originate from the same CKC in
V', then we get an Fj-loop, which cannot exist. Thus, we can assume that the two sets originate
from different CKCs, denoted C' and C”. Since (V, F) is a connected graph, there exists a path
from Cp+ to each of these CKCs. Consider the two sequences of connecting sets for these two
paths. If the two are pairwise disjoint, then we have an Fj-loop from Cp- to C,,41, which again
yields a contradiction. So the sequences must coincide at some stage. Take a truncation of the
sequences from the last stage in which they coincide until C,,,1. The origin of the two paths are
connected CKCs (sharing the same connecting set), denoted C; and Cj1, so we now have two
pairwise disjoint sequences between these two connected CKCs till C),,1, thus generating an

Fi-loop. Therefore, we conclude that there is exactly one connecting set, denoted A, between
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Cpy1 and the other CKCs in V.

Consider a refinement of F; where A is partitioned into two disjoint sets, A; = A\ Cyiq
and Ay = ANCy,y1. In such a case, |V| = m and, according to the induction step, there exists
a mimicking sub-strategy 7, ,, supported on every PS connected posterior in P* other than the
ones related to the CKC Cj,41. Let pp, 41 denote a PS posterior such that Ay C A, C Crqr-
In case there is more than one PS posterior, the proof works similarly because every additional
posterior shares the same connecting set A.

According to the induction step, Post(z;,,) = P* \ {Pm+1}, so we need to extend this
sub-strategy to support p,,.1 as well. Since p,, 11 € Post(7y), there exists a signal, denoted

s* w.lo.g., and states w € A C Cps1 such that 7(s*|w) > 0 and (:“iz\w,s*)ieN = D1

Pm+1
Moreover, because C,,+1 is not connected (neither directly, nor indirectly) to the other CKCs in
V under the refined F}, we can assume that 7, (s|A1) > >, 71,.,(5|A2). Otherwise, we can
re-scale 7, ,,, in the different unconnected elements of the refined F;. Hence, we can also assume

that there exists a signal, again denoted s* w.l.o.g., such that 7, ,,(s*[A4;) > 0= 1,,,(s*|A2).

Define the following function

CnT1m(8|w), for every (w,s) s.t. 7,,,(slw) >0,
Il.m+1(8|w) =

*

CoTy(s*|w),  for every (w,s)st. we A, .., s=s",

where the parameters ¢,, > 0 and ¢, > 0 are chosen to ensure that 7, ,,, ,;(s*[A1) = 7, .1 (5" A2),
thus sustaining the Fj-measurability constraint across the connecting set A, and that 7,,,,,
remains a sub-strategy that mimics 7, (ensuring that > 7(s|w) <1 for every s and w and the
that Inequality @ holds). In conclusion, we constructed a sub-strategy that mimics 7 and
whose support is P*, and this concludes the induction.

Let 7,, be the sub-strategy that mimics 7, and P, (p) > 0 if and only if p € P*. Assume

that 7,, only uses signals in some set S*, that are not used by 7,, (i.e., S*N S = ¢). Define
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the following sub-strategy

Tio(8|w), for every (w,s) s.t. 7y o(s|w) > 0,
12.0(5|W) =
T (s|lw), for every (w,s) s.t. 71,(s|w) >0,

where ¢ is a constant. Since 7,(s|w) supports only PS posteriors of 7, , for every state
w where there exists a PS posterior p of 7,,(s|lw) such that w € A,, it follows from Claim
1 that } o7 o(s|lw) < 1. Therefore, by choosing ¢ sufficiently small, we can ensure that
> sesuss T2o(8lw) = Y g Tio(slw) + D cqe Tru(s|w) < 1. Hence, for the extended strategy
Ty0(8|w), we can guarantee that for every w € Q, > g - Too(slw) < 1. We conclude that 7,
is a sub-strategy that mimics 7, and H(7,,) > H (7, ) due to the extension over PS posteriors.
This contradicts the definition of 7, , as a mimicking sub-strategy the maximizes H. We can

thus conclude that H(r, ,) = 1, and 7, , is an Fj-measurable strategy that mimics 7, as needed.

]

A.11 Proof of Proposition

Proof. iii = i. Suppose that (wy,w1,wq, W, ..., Wn, W) is not Fy-balanced. It means that

there is a partition {A, B} s.t. #(A — B) # #(B — A). Define

1, ifweA,
flw) =
2, ifwe B.
We obtain,
m A—B
f(@i) 2 '

i=1
This contradicts iii.

i = ii. Assume i . For every i, let D; = {wj;w; € Fy(w;)} U{w;;w0; € Fo(w;)} be
the set which contains all the states in the loop that share the same information set of Fj
as w;. Condition i implies that for every w;, the partition A = D; and B = (D;)¢ satisfies
#(A — B) = #(B — A). Note that [{w;;w; € Fo(w)} = #(A — B) + #(A — A), and
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{555 € Bt = #(B = A) + #(A > 4), where #(A — A) = [{i € {L,..,m}iw; €
A, w; € A}|. Tt follows from #(A — B) = #(B — A) that

Hwjswj € Ba(wi)} = {w;;0; € Fa(wi)}] (11)

for every w;.

Define J = {i;w; € Fy(w;)}. We show the rest of the states are decomposed into Fy-loops.
Specifically, we show that if a finite set S = {(w;,w,); wW; ¢ F5(w,)}, not necessarily an Fj-loop,
satisfies Eq. for every w; € S, then it is covered by Fy-loops.

When |S| = 2, Eq. implies that this is an Fy-loop. We now assume the induction
hypothesis: if Eq. is satisfied for a set S = {(w;,w;)} and for every w; € S, and S contains
less than or equal to m pairs, then it is covered by Fy-loops. We proceed by showing this
statement for sets S containing m + 1 pairs.

We start at an arbitrary pair, say (wi, ), and show that it belongs to an Fs-loop. Once
this Fy-loop is formed, the states outside of this loop satisfy Eq. for every w; outside of
this loop. By the induction hypothesis, this set is covered by Fs-loops.

Due to Eq. , there is at least one @; such that @; € Fy(w;). Consider now the two
pairs, (wj,W;,ws,wy). If this is a loop, Eq. remains true when applied to the states out
of this loop. The induction hypothesis completes the argument. Otherwise, there is @w; where
k # 1,7, such that W), € Fy(w;). Consider now the three pairs, (w, Wk, w;,w;, wr,wr). If this
is an Fy-loop, the other states satisfy Eq. , and as before, this set is covered by F3-loops.
However, if this is not an Fy-loop, Eq. remains true, we annex another pair and continue
this way until we obtain an Fy-loop. This loop might cover the entire set, but if not, the
remaining states are, by the induction hypothesis, covered by Fs-loops. This shows ii.

ii = iii. Let f : {wl,wl,wg,wg,...,wm,wm} — (0,00) be a positive and Fy-measurable
function. Suppose that I, ..., I, is a partition of {1,...,m}, and for each ¢t = 1,...,r, the set

((wi,wi)> is an Fy-loop. Since, ((wi,wi)> is an Fy-loop,
i€l

i€y

flw)
H f@) b

i€l
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which implies that

!l

t=1iecl;

4

=1

f(wz) B
f@) .

This proves iii. O

A.12 Proof of Proposition [6]

Proof. Fix an Fj-loop L; = ((wj,wj)> . where I = {1,2,...,m}. Let C; denote the CKC that
contains every pair (w;,w;). ’

Proof for first statement: Assume that L; intersects the same CKC at least twice, so
that C;, = C),, where [y < [y, is such CKC. Because L; is a loop, the two pairs (wy,,w;,)
and (wy,,w;,) that are in this CKC cannot be adjacent in the loop L;, i.e., I # lo £ 1. De-
fine the following sub-loop of L; by omitting every state from w;, to w;,. Formally, L! =
(W1,T1, -+, Wiy 1, Wiy s Wiy y Wiyt 15 - « - s Win, Wy ). This is a well-defined sub-loop of L; (as wy,,w;, €
(', while all other parts of the sub-loop match those of L;), which implies that L; is not ir-
reducible. Note that the part we truncated from the loop L; also forms a sub-loop, namely
LY = (Wiy, Wiy Wiy 41, W1y 41y« -y Wig—1, Wip—1)-

Proof for second statement: Assume, by contradiction, that L; is irreducible, yet it has
a pair of states (w;,w;) such that w; € F;(w;). This implies that {w;_1,w;, W, wii1} C Fi(w;) =
Fi(wiy1). We can assume that C;_; # C), 1, otherwise the first statement suggests that L; is not
irreducible. So, define the following sub-loop of L; by L} = ((wj,wj)> - Note that L is
a well-defined sub-loop, as C;_1 # Cj;1 and @W;_; € F;(w;+1), thus contradicting the irreducible
property.

Proof for third statement: Assume, w.l.o.g., that Fj(w;) # F;(w;). If L; intersects
the same CKC twice, then we can follow the proof of the first statement, truncate the loop,
and take a sub-loop that has an informative pair of states and intersects every CKC at most
once. Thus, w.l.o.g., assume that L; intersect every CKC at most once. Denote the set of
informative pairs by I° = {j : F;(w;) # Fi(w;)} and define the following ordered sub-loop of
L; by L, = ((wj,wj))jelc. In simple terms, L. is generated from L; by truncating all non-

informative pairs (w;,w;), where Fj(w;) = F;(@,), similarly to the process used in the proof of
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the second statement. Focusing on L., note that: (i) all pairs are pairwise disjoint; (ii) every
CKC is crossed at most once; (iil) w;41 € F;(@;) as we removed only non-informative pairs;
and (iv) w; # W; are both in the same CKC as in the original loop. Hence, L} is a well-defined
loop and an Fj-fully-informative sub-loop of L;.

Proof of fourth statement: If the loop L; is irreducible, then the statement holds.
Otherwise, it is not irreducible and we will prove by induction on the number of pairs m in L;.
If m = 2, then L; is irreducible. If m = 3 and L; is not irreducible, then it has a sub-loop with
two pairs. Assume w.l.o.g. that this sub-loop is based on the states {wy,w71,ws,wy}. It cannot
be that Fj(w;) = F;(@2), because that would make (wq,@s) a non-informative pair. So the
sub-loop is (w1, Wy, wy, Ws) such that F;(wy) = F;(ws), but F;(w;) = F;(w3) and F;(wy) = F;(ws),
so the pair (w3, ws3) is non-informative.

Assume the statement holds for m = k pairs, and consider an L; loop with £+ 1 pairs. If the
loop intersects the same CKC more than once, we can split is to two sub-loops (as previously
done), and use the induction hypothesis for each. Hence, we can assume that the loop does not
intersect the same CKC twice.

Because the loop is not irreducible, there are two states w;, and w;, that are not adjacent
in the loop (so iy > iy + 2), yet Fj(w;,) = Fi(@w;,). The last equality also suggests that
Fi(w;,—1) = Fi(wiyy1). If i3 = iy + 2, then there exists only one pair between the two states.
This implies that the pair (wi,11,Wiy41) = (Wi -1, -1) 1S non-informative, contradicting the
fact that L; is Fj-fully-informative. So we conclude that i; > i3 + 3. Define the following two
loops L, = (wi,, Wiy, .., Wiy, w;,) and L = (wiy41,Wiys1, - -+, Wi, —1,Wi,—1), where the ordering
of states follows the original loop L;. These are two well-defined Fj-loops with less than k& + 1
pairs each, so the induction hypothesis holds and the result follows.

If L; does not intersect the same CKC more than once and does not have at least 4 states
in the same partition element, then it is irreducible.

Proof of fifth statement: If the loop has a non-informative pair w; € Fj(@;), then it
contains 4 states from the same partition element, so assume that the loop is F;-fully-informative
and that it does not intersects the same CKC more than once. Thus, we need to prove that it

has at least 4 states in the same partition element of F;.

79



Consider the strict sub-loop L; of L;. It consists of pairs, taken from the original loop.
Because L; does not intersect the same CKC more than once, all the pairs of L; are a strict
subset of the pairs of L;. This implies that some pairs were omitted from L; when generating
L;, so assume w.l.o.g. that the pair {w;,w,} is not included in L;. This implies that one
pair {w;,w;} precedes in L; a different one that it precedes in L;. That is, F;(@;) = Fi(w;+1)
according to L;, whereas F;(wW;) = F;(wy) where k # j + 1, according to L; . But also F;(wy) =
F;(@Wy—1) according to L;. Thus, {@&;,w;41,wy, Wk_1} are in the same partition element of L;, as

stated and the result follows. OJ

A.13 Proof of Theorem

Proof. Suppose that Oracle 1 dominates Oracle 2. If there exists a CKC in which F; does not
refine Fy, Theorem [ states that Oracle 1 does not dominate Oracle 2 in that CKC. In other
words, there exists 75 defined on this CKC, such that for every 7, it follows that Post(r1) ¢
Post(72). We extend the definition of 75 to the entire state space in an arbitrary way, and still
for every 7, it follows that Post(r1) € Post(2), and we can use Proposition [3| accordingly.

We proceed to show that any Fi-loop is Fs-balanced, which is equivalent to the existence
of a cover by loops of F,. Suppose, to the contrary, that an Fi-loop (wq, @1, ws, Wa, - . . , Wi, Wiy
is not Fy-balanced. This means that there is an Fy-measurable partition { A, B} of these states
such that Eq. is not satisfied. We define an Fy-measurable signaling function that obtains

two signals, o and . Over the states of the loop, let

x, ifweA,
Ta(aw) = (12)

y, ifwéeB,

and 7o(f|lw) = 1 — 7o(a|w). On other states, 75 is defined arbitrarily. The numbers x,y € (0, 1)

are chosen so that ——22=I"¥___ i< irrational.
In(l—z)—In(1—y)

Claim 1: If Post(r;) C Post(7s), then any signal of 7 induces the same posteriors as o does

or as 3 does in every CKC.
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Claim 2: For any signal s of 7; and for any 1, zgjgg € {f, %’ 4 i_;g} . Therefore,

m

o - (5) - (120)" ()" (12)°

=1

where ¢; + (5 = [{i;w; € A and w; € B}| and ki + ko = |{i;w; € B and w; € A}|.

Ti(slwi) _

Claim 3: For any signal s of 71, [~

i=1 71 (s]w;)

We therefore obtain (%)El(l_—x)EQ(%)kl(k—y)kQ = 1. We conclude that there are whole num-

1-y 1—x
== — T\l __ 1—xz\k . Inz—In o InZ
bers, say ¢ = {y — ki and k = ky — {3 such that ()" = (=})". Since oyl = m%

is irrational, ¢ = k = 0, implying that Eq. is satisfied. This is a contradiction, so every
Fi-loop is Fy-balanced.

Moving on to the third part of the theorem, fix an irreducible Fi-loop L;, and consider an
irreducible cover by a unique Fs-loop Lo, i.e., Ly covers L; and both are irreducible w.r.t. the
relevant partition. Note that if L, is also order-preserving, it implies that it matches L.

Assume, by contradiction, that Lo is not order-preserving and the two loops do not match
one another. Denote L; = (w1, W1, ..., Wn, wn) and Ly = (w1, W01, Wiy, Wiy, - - -, Wi, , Wy, ). Thus,
there exist indices k > j > 1 such that w;, precedes w; in Ly. In simple terms, it implies that
though Ly consists of the same pairs as Ly, the ordering of pairs throughout the two loops
differs, as suggested in Footnote [16]

Since the two loops are irreducible, it follows from Proposition [6] that they intersect every
CKC at most once and that both are fully-informative. Moreover, for every state w in every loop
L;, every set F;(w) contains two states from the loop L; (otherwise, the loop is not irreducible).
So, one can define an Fj-measurable function 7; such that 7;(s|w;) = 7(s|w—1) # 7(s|wy) for
every w; # wy in the loop.

To simplify the exposition, partition the states of L, into three disjoint sets: the set A? =
{©1,...,wi} contains all the states of Lo from w; till wy (following the order of Lo), A? =
{@k, ..., w;} contains all the states of Ly from wy, till w;, and A? = {W;,...,w;} which contains
all remaining states of L. Follow a similar process with Ly, so that A} = {wy,...,w;} contains
all the states of L from @, till w; (following the order of L), A} = {@j,...,wx} contains all

the states of Ly from w; till wy, and Al = {Wg, . ..,w;} which contains all remaining states of
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L.
Denote by C; the CKC of the pair (w;,@;). Fix two distinct signals s; and s9, and define

the signaling function 7, as follows:

(

P1, lfWEA%:{wl,,(.Uk},
p2, fwe AZ={wy,...,w;},
T(s1|lw) =1 — ma(s2|w) =

Ps, iwaA?:{wj,...,wl},

e, ifwe @\ Uy, A2

\

where the probabilities {p1, p2, ps, ps} are chosen as in the strategy defined in Equation ([1)).
Because the loop is irreducible, intersects every CKC at most once and F,-fully-informative,
is a well-defined F,-measurable function.

The result of Lemma |2 holds in every CKC of the loop (though with different probabilities).
So given a CKC (, if there exists 7; such that Post(r;) C Post(ry), then for every signal
t € Supp(7y) there exists a signal s € {s1, s2} and a constant ¢ > 0 such that 7 (t|w) = cm(s|w)
for every w € ;. Therefore, in every CKC C} and for every signal ¢, there exists a signal s such

m2(slw) _ m(tlw)
that 6B = niB)” Fix such a strategy 7.

Notice that in every CKC C; # C, C;, C, and for every signal s € {s1, 52}, we get 7o(s|w;) =

To(s|@;). Thus, 2 () — 1 for every t and every [ # 4, j, k. This implies that for every feasible

7 mi(tern)

signal ¢ restricted to the loop Ly,

ag, 1fw€A%:{wl,,wJ},

&+

ntw) =qb, ifwe Ajl- ={w,,...,wi},

. 1 f—
& ifwe A, ={wk,...,w1},

where a;, b, ¢; € (0,1]. Evidently, the parameters a;, by and ¢, can vary across the feasible
signals.

In addition, Lemma [2| states that in every CKC, 7 (t|w) is proportional to m(s;|w) for some
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signal s; € {s1, s2}. This yields the following constraints:

71 (t]w ) _a To(8|wr) . {]E 1 —p3}
Ti(tfwr) ar m(sifwr) T Up 1—py

T (t | i) a Ta(silwy) {p2 1 —pz}
— — = L e ==,
Tl(ﬂ%) by To(s4|w;) ps 1 —p;3
71 (t|wr) E _ Ta(8i|wr) c {Zﬂ 1 —p1}
Tl(ﬂw}c) Ct TQ(Silwk) p27 1 —po '

Because the two loops cover one another and specifically because Ls is Fj-covered, Proposition

Tl(t‘wl) t’ bt7Ct

1-ps 1-py 1— .
above: either they equal {ii’ gi 7;1} respectively, or {{= gi’, l_gz, 1_22}. This follows from the

states that [[", nultley) = 1, which leaves only two possibilities for the ratios {2, 3* be

uniqueness of the ratios, as stated in Lemma [2 Note that this must hold for every feasible

signal ¢ of 7, across the loop.

Tl(t|u)> tl tQ

w1 Aier | Agco
w1 Arar | Agaq
Wi )\1@1 )\2&2

@ | Abi | Aabe
Wi )\1b1 )\ng

wk /\1 C1 )\202

Figure 27: The structure of 71 restricted to the states {w1, w1, w;, W), wk, Wi }, where £ = L2 b— e

b 1 p1’ P2’ az 1—p1
b2 _ 1=
and o = Top and A1, Ao > 0.

Thus, if we focus on the states {w;, Wy, w;,w;,wy, Wy} and group together all signals ¢ with
the same distribution on these states, then for some positive constants A, Ay > 0 we get the
strategy defined in Figure 27} Plugging in the relevant ratios yields the probabilities given in
Figure [28|

Recall that the rows must sum to 1, so that 7, is a well-defined strategy. So, we get the
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Tl(t|(.O) tl t2

w1 A1cy AoCy

5 p1 —Dp1

w1 /\101][,—3 A2Co 1_ps
4 pL 1-py

W )\161 v3 )\202 T—p3

7. p1i —P1

Wy /\101p2 )\262171)2

Figure 28: The structure of 7y restricted to the states {wi,w1,w;,w;}, where probabilities are presented in terms
of ¢1,co, A1 and As.

following system of linear equations, in which (x,y) = (Ajc1, Aec2) and:

r+y = 1,
1_
]ﬂx—l— ply = 1,
D3 1—ps
1_
Plop =Py = 1,
D2 1—po

which does not have a solution since p;, po, ps3 are required to be distinct. Thus, we conclude
that the loops must sustain the same ordering of pairs, and therefore coincide as needed. This

concludes the third and final part of the theorem. m

A.14 Proof of Theorem [T

Proof. We first define an auxiliary set Q, which groups together states that are in the same
partition element of F, within CKCs. Formally, define the set Q such that n(w') € Q if and only
if n(w) ={w € N: w,w € Cj, Fw)= F(w)}. Accordingly, define the partition I to be
discrete in every CKC, such that Fy(n(w)) = Fy(n(w’)) if and only if Fy(w) = Fy(w'). Note that
Fy is essentially a projection of Fy onto Q. In addition, F} is defined as follows: (i) discrete in
every CKC, similarly to Fy; (i) F1(n(w)) = Fi(n(w")) if w and w’ are not in the same CKC, and
there exist w € n(w) and W’ € n(w') such that Fy(w) = Fy(W'); and (iii) F; forms a partition
(i.e., given (i) and (ii), if two elements of F} contain the same state n(w), they are unified into
one element).

We now prove that F; = F; in every CKC and that there are no Fy-loops. Thus, by Theorem
, any Fy-measurable strategy 75 (which, extended to €2, is also Fy-measurable) can be imitated

by an Fi-measurable strategy 77.
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Step 1: F}, = F}, in every CKC.

By definition, F, refines Fy, so we need to prove that F; also refines Fj in every CKC.
Assume, by contradiction, that Fy(n(w)) = Fi(n(w')) where w and ' are in the same CKC,
whereas Fy(n(w)) # Fa(n(w')). This suggests that Fy(w) # Fb(w'), which implies that Fy(w) #
Fy(w'). According to the construction of Fy, we conclude that the equality F(n(w)) = Fi(n(w'))
followed from the partition-formation stage described in (iii) above, through at least one other
CKC. Thus, there exists an Fj-loop which connects a state in n(w) with a state in n(w’).
Without loss of generality, assume these states are w and w’. Because every Fj-loop is Fy-non-
informative, it follows that Fy(w) = Fy(w'), a contradiction.

Step 2: There are no Fj-loops.

An Fi-loop implies that an Fj-loop exists. By construction, all Q states in every CKC
are Fy-equivalent (i.e., grouped together according to Fy). Because every Fj-loop is Fy-non-
informative, it implies that the loop consists of only one Q state in every CKC, and not two.
This contradicts the definition of a loop.

Step 3: F) can mimic F.

Fix a strategy 75, and let 75 be the projected strategy on . Because Fy = F, in every
CKC and there are no Fl-loops, there exists an Fj-measurable strategy 77 that imitates 7.
Therefore, one can lift 77 to  to create 7, whose projection onto  matches 7;. Thus, the

strategy 7, imitates 7, as needed. O]

A.15 Proof of Proposition

Proof. Denote the two CKCs by €} and C5. One part of the statement follows directly from
Theorem [0 so assume that Fj refines Fy in every CKC and any Fj-loop is Fy-balanced. If there
are no Fj-loops, then the result follows from Theorem [5 so assume there exists at least one
Fi-loop, and every such loop is Fs-balanced.

Take any Fi-loop (wy, w1, ws,ws) with four states. We argue that either it is also an Fy-loop
or it is Fy-non-informative. Otherwise, we can assume (without loss of generality) that Fy(w;) #
Fy(w;), for every i = 1,2. So, there are only two possibilities left: either Fy(w;) = Fp(ws) or

Fy(wy) # Fy(ws). If Fo(wy) = Fy(ws), then there exists an Fy-measurable partition of the four
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states such that A = {wy,wy} and B = {wy, w2}, which is not balanced. Otherwise, there exists
another non-balanced Fy-measurable partition of the form A = {w;} and B = {&y, ws,ws}. In
any case, we get a contradiction.

The proof now splits into two cases: either there exists an Fj-loop (wy,wr, ws,ws) and an
index i such that Fy(w;) # F2(w;), or every such loop is Fy-non-informative. If indeed every
such loop is Fy-non-informative, Theorem [7] states that Oracle 1 dominates Oracle 2, so we
need only focus on the former.

Assume that there exists an Fj-loop (wy, w7, w2, ws) and an index ¢ such that Fy(w;) # Fa(@;).
Denote this couple by {w;,w7} C C}. The previous conclusion implies that it is also an Fy-loop.
We claim that, under these conditions, every 75 is Fj-measurable. Note that Fj refines F5 in
every CKC, so we need to verify that for every (w,w) € Cy x Cy such that Fi(w) = Fi(@), it
follows that Fy(w) = F3(W).

Take (w,w) € C; x Cy such that Fi(w) = Fi(@). If w = wy or w = wy, then (w,w) are
part of the previously stated Fy-loop, so Fy(w) = F,(w). Otherwise, we can construct two new
Fi-loops (w,w,ws,ws) and (w,w,ws,w;). Because Fy(wy) # Fo(wy), either Fy(w) # Fy(wy) or
Fy(w) # Fy(wy). The previous conclusion again implies that (w,@) are a apart of an Fy-loop,

so Fy(w) = Fy(w), as needed. O

A.16 Proof of Theorem

Proof. We start by assuming that F; and Fy are equivalent. According to Theorem [6] every
F; refines F_; in every CKC, and every Fj-loop is covered by F_;-loops. Fix an irreducible
F;-loop with at least 6 states, denoted L;, and consider a cover by F_;-loops. There are two
possibilities: either the cover constitutes a single loop, or else. If the cover contains a shorter
loop, say L’ ,, then that loop is not Fj-covered because L; is irreducible, and this contradicts
Theorem [6] Moreover, the cover cannot have non-informative pairs where F_;(w;) = F_;(@;),
because the two partitions match one another in every CKC and L; is irreducible. So, the cover
consists of a single irreducible F_;-loop, and Theorem [6]states that it is order-preserving. Thus,
L; and L_; coincide as stated.

Moving to the other direction, assume that F; refines F; in every CKC, that any Fj-loop

86



has a cover of F_;-loops, and every irreducible Fj-loop with at least 6 states is an irreducible
F_;-loop. Let us prove that Oracle 1 dominates Oracle 2 (and the reverse dominance follows
symmetrically).

We start with two simple observations. First, in case F} has no loops, then the statement
follows from previous results, so assume Fj has loops. Second, we say that two CKCs C; and
Cy are connected if there exist w; € C} and wy € Cy such that Fj(w;) = Fj(ws). If there exists
a CKC C which is not connected to any other CKC (i.e., for every w € C, the partition element
Fi(w) C (), then Oracle 1 dominates Oracle 2 conditional on that CKC and independently of
all other CKCs. Thus, without loss of generality, we can assume that all CKCs are connected,
either directly or sequentially.

For this part, we will need to define the notion of type-2 irreducible loops, which are fully-
informative loops that do not have four states in the same information set of the relevant

E;.

Definition 9. Let L; be an F;-loop. We say that the loop is type-2 irreducible if it does not

have four states in the same information set (i.e., partition element) of F;.

We shall use this notion of type-2 irreducible Fi-loops as building blocks upon which every
Fy-measurable 75 is also Fi-measurable. For that purpose, we start by proving in the following
Claim [2| that every type-2 irreducible Fi-loop is also an Fy-loop. Next, we will extend this
measurability result to every set of type-2 irreducible Fij-loops that intersect the same CKCs,
and finally derive it to all CKCs that these loops intersect. This sets of CKCs, to be later
defined as clusters, will be the basic sets upon which every F,-measurable strategy is also

Fi-measurable.

Claim 2. Fvery type-2 irreducible Fy-loop Ly is an Fy-loop.

Proof. 1f Ly is irreducible, then it is also an irreducible Fs-loop, and the result holds. Thus
assume that L is not irreducible. Using the fifth result in Proposition [], we deduce that L,
intersects the same CKC more than once. Using the proof of the first result in Proposition [6]
we can decompose L; to two disjoint strict sub-loops of F}. This can be done repeatedly, so

that L; is decomposed to sub-loops that do not intersect the same CKC more than once. This
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implies that every such loop is type-2 irreducible. Thus, every such sub-loop is irreducible, and
so it is also an Fy-loop.

Note that the decomposition process occurs within every relevant CKC C' and that F|c =
Fy|c. That is, once there are two pairs of the same loop within the same CKC, we can decompose
the loop into two disjoint loops by rearranging these four states. So, one can reverse the process
and recompose the sub-loops of F5 to regenerate the original loop L1, which is now also an Fj-

loop, as needed. O

Once we dealt with individual type-2 irreducible loops, we move to loops that intersect the
same CKC. For that purpose, we need to prove the following supporting, general Claim |3| which

states that every Fj-fully-informative loop L; can be decomposed to type-2 irreducible Fj-loops.

Claim 3. Fvery F;-fully-informative loop L; that is not type-2 irreducible can be decomposed
to type-2 irreducible F;-loops.

Proof. The proof is done by induction on the number of pairs m in L;. If m = 2, then it is
irreducible, as needed. Assume that the statement holds for m = k, and consider a loop with
k+1 pairs. If it is not type-2 irreducible, then it has four different states {w;, w;41,@;, Wit} in
the same information set of F;, where [ > j+1 and [+1 < j so that the two pairs are not adjacent
in the original loop L; (otherwise, the loop has a non-informative pair). Note that additional
connection may exists, but in any case w;; is in the same partition element as w;, and the
same holds for @; and w;4;. Consider the loops (wj, Wj, wit1, Wit1, Wit2, Wit2, - - -, Wj—1,wWj—1) and
(wi, Wi, Wjg1, Wi, Wita, Wjt2, - - -, wWi—1,w0;—1). The two sub-loops are based on the original loop,

other than the first pair, see Figure
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Figure 29: A fully-informative loop that is not type-2 irreducible, with four states in the same information set
of F;. The red rectangle denotes the same partition element of F;, and the green edges denote the additional
states of the original loop.

Each of these sub-loops is Fj-fully-informative, and have strictly less than k£ pairs. Thus,
the induction hypothesis holds, and they are either type-2 irreducible, or can be separately
decomposed to type-2 irreducible loops, so the result follows.

Note that even without the induction hypothesis, we can repeat the decomposition process,
so that all the connections of the original loop that are based on information sets of F; with no

more than two states (in the loop) are kept in one of the sub-loops. O

Using Claim [3| we now prove in the following Claim [4] that every Fy-measurable strategy
on two type-2 irreducible Fi-loops with a joint CKC (i.e., pass through the same CKC) is

Fi-measurable.

Claim 4. Fiz two type-2 irreducible Fy-loops Ly and L) that share at least one CKC. Then,

every 7'2|L1uL’1 is Fi-measurable.

Proof. Fix two type-2 irreducible Fj-loop L; and L/, and assume that they share at least one

— — — li ! —/ ! —/ / —/
CKC. Denote L; = (wy, w1, ws, @2, . . ., W, W) and L] = (W), @, wh, @h, ... W, W,

). Assume,
by contradiction, that there exists a strategy 7a|r,ur; which is not Fj-measurable. As already
proven, each of these loops is also an Fh-loop, so the measurability constraint implies that there
exist w € Ly and w’ € L} such that Fy(w) # Fy(w') whereas Fi(w) = Fi(w'). Because F; and
F5 match one another in every CKC, this suggests that w and w’ are in two different CKCs.

Denote a shared CKC by C; in which there are the pairs (w;,w;) and (w},@}) taken from L,
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and L) respectively. Note that the two pairs may coincide, as well as contain one of the states

w and w’, but not both (because the two are in different CKCs). See Figure

AgyA
\§.

Figure 30: Two type-2 irreducible loops of F} that share at least one CKC.

Let us now compose a type-2 irreducible F; loop, using the fact that Fj(w) = Fi(&').
Without loss of generality, assume that w = w; and w’ = @}, and that w; is not in C;. Moreover,
it cannot be the case that w; and @} are both in the same loop, say L;, because L; is also an
Fy-loop and that would imply that either Fy(w) = Fy(w') in case @) = Wy, or that L; is not a
type-2 irreducible loop in case W) # wW,,. Also, it must be that Fy(@)) = F}(w*) where w* € Ly
if and only if w* € {wy,w,,}, otherwise L; is not type-2 irreducible.

We now split the proof to four possibilities:
® wll € Cj.

o &) ¢ C; and {w;,w;} N{w},w;}| =0,1,2.

37
Assume that @) € C;. Consider the loop (wy, w1, ws, Wa,...,w;,w]). This loop matches L;
up to state w; and Fy(w;) = F1(w)). Thus, it is a well-defined type-2 irreducible Fj-loop, hence
also an Fy-loop. Therefore, Fy(w;) = F5(@)) and we reach a contradiction.
Moving on to the next possibility, assume that @} ¢ C; and [{w;,w;} N {w), @)} = 0.
Consider the loop (wy, W1, w2, Wy, - - ., Wj, W), Wiy 1, Wiy, - -, wp, wh). If w; and @} are in different
partition elements of Fi, then this is a well-defined Fi-fully-informative loop. If the two states

are in the same partition element, then we can omit this pair from the loop and get a shorter

90



loop (in terms of pairs). This process could be done repeatedly, until we get a well-defined
F\ -fully-informative loop which starts with w; and ends with @}. If it is a type-2 irreducible
Fi-loop, then it is also an Fy-loop, and Fy(w;) = F3(w)). Thus, assume that it is not type-2
irreducible, which implies that it has at least four states in the same partition element of Fj.
These four states include neither w; nor @), because that would imply that either L; or L] is
not type-2 irreducible. Now we can apply Claim [3| to decompose this Fi-fully-informative loop
to type-2 irreducible Fi-loops, where at least one maintains the connection between w; nor @)
(see the comment at the end of the proof of Claim [3). We thus conclude that it is also an
Fy-loop and Fy(wy) = F5(@)).

The next possibility is that @) ¢ C; and [{w;,w;} N{w}, W)} = 1. If either w} € {w;,w;} or
W) = w;j , then we can follow a similar proof as in the previous case where [{w;, w;} N{w, @)} =
0, so assume that w;. = wj. In that case, we can re-define the previous loop by omitting w; and
W to get (wi,Wr,wa, Wa, -, Wy 1, W)y, W5, ... ,wy,Wp). Again, this is either a well-defined
F -fully-informative loop, or could be reduced to such a loop. Applying the same arguments as
before, we conclude that there exists a type-2 irreducible Fi-loop which maintains the connection
between wy nor @}, so it is also an Fy-loop and Fy(w;) = Fy(W)).

The last possibility is that @) ¢ C; and [{w;,w; }N{w}, W} }| = 2, but in that case the analysis
in the previous possibilities holds, and we reach the same conclusion that Fy(wy) = F»(w)), as

needed 2 O]

Next, we extend the result of Claim 4] to more than two loops. Specifically, we say that two
loops L; and L. are connected if either they share at least one CKC, or there exists a sequence

of loops starting with L; and ending with L, where each two consecutive loops share at least

one CKC.

Claim 5. Consider a set A of type-2 irreducible and connected F-loops, i.e., every two loops
are connected by one of these type-2 irreducible loops. Then, every Fy-measurable To|4 is Fi-

measurable.

22Note that the proof of Claim 4| also holds if w and w’ are not in the original L; and L} loops, respectively,
but are simply states in different CKCs that these loops intersect. That is, if w and w’ are in different CKCs
that Ly and L] intersect and F(w) = Fj(w'), we can construct an Fi-fully-informative loop that starts with w
and ends with w’ in a similar manner as before, and eventually conclude that Fy(w) = Fa(w').

91



Proof. Let us prove this by induction on the number of loops. The case of two loops is proved
in Claim [, so assume the statement holds for m loops, and consider a set of m + 1 type-2
irreducible and connected Fi-loops. Further assume, by contradiction, that there exists an
Fy-measurable strategy over this set that is not Fj-measurable. Thus, there exists w and '
such that Fy(w) # Fy(w') whereas Fi(w) = Fi(w'). Evidently, w and w’ are in different loops
and different CKCs. Denote the loops of w and w’ by Ly and L}, respectively.

If Ly and L} are connected directly (through a joint CKC) or through at most m loops
(including L; and L), then the induction hypothesis holds and every Fy-measurable strategy
this set of loops is Fj-measurable, implying that F(w) = Fy(w’). Thus, assume that L; and
L} are connected through a sequence of all the m + 1 loops (including L; and L,,.1). Note
that w’' cannot be the in the same partition element as any other state from this set of loops,
other than w, the state connected to w in Ly, and the state connected to w’ in L. Otherwise,
either one of these loops is not type-2 irreducible, or the Fy-measurability constraints with every
intermediate loop is met (by the induction hypothesis) and again we get that Fy(w) = Fy(w').

Thus, we can now follow the same stages as in the proof of Claim [4] and generate an F}-
fully-informative loop based on the sequence of loops connecting L; and L) (as well as w and
w’), which starts with w; and ends with @}. In this case, Claim |3 holds and we get a type-2
irreducible Fj-loop, which starts with w; and ends with @, that is also an Fy-loop. We therefore

conclude that Fy(w) = Fy(w’) and the induction follows accordingly. O

After we established that every Fhs-measurable strategy over a set of connected loops is
Fi-measurable, let us extend this result to all the CKCs that these loops intersect. For that
purpose, let A be a maximal set of connected loops, where every two are connected, and let
C's be the set of all CKCs that intersect one of these loops (that is, every CKC contains a
pair of states from one of these loops). We refer to every Cy as a cluster. We argue that
every Fy-measurable strategy over a cluster C'y is Fi-measurable. To see this, recall Footnote
which states that the proof of Claim |4 holds for every w and w’ in two different CKCs that
intersect two connected loops L; and L}, respectively. Namely, for every two such states w and
w’ where Fy(w) = Fy(w'), it follows that Fy(w) = F5(w'). So, as argued in the proof of Claim [f]

we conclude that every Fy-measurable strategy over a cluster is Fj-measurable.
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Observation 3. Fvery Fy-measurable strateqy over a cluster is Fi-measurable.

Once we have established that every Fy-measurable strategy over a cluster is F}-measurable,
let us consider a partition 2* of €2 into clusters and individual CKCs that are not part of clusters.
Note that any two elements of the partition Q* jointly intersect at most one partition element
of Fi, otherwise the two components would be in the same cluster. To see this, consider the
different possible intersections of elements in 2*. If both elements A; and Ay are CKCs, then
any two different partition elements of F; that intersect both A; and Ay would form a type-2
irreducible Fi-loop. Otherwise, one of these elements is a cluster, say A;, and it follows from
previous proofs that for every w and w’ that belong to the same cluster (but in different CKCs)
and Fi(w) = Fi(w'), then one can form an Fi-fully-informative loop that starts with w and ends
with w’. Thus, in case w and w’ are in cluster A; and in different partition elements of F} that
intersect Ay (whether A, is a CKC or another cluster), one can form an Fj-fully-informative
loop that intersects A; and Ay. Using Claim [3] we can conclude that A; and Ay belong to the

same cluster. This result is summarized in the following observation.

Observation 4. Fiz two elements Ay, Ay € Q*. Then, there exists at most one partition

element Fy(w) of Fy such that Fy(w) N Ay and Fi(w) N As are non-empty sets.

We would now want to prove that Oracle 1 can mimic every Fy-measurable strategy de-
fined over Q2*. For this purpose, we present the following Lemma [3| which relates to the F3-
measurability constraints over different sets of CKCs, that are not in the same cluster (i.e.,

they are not connected by type-2 irreducible Fj-loops).

Lemma 3. Fiz two disjoint sets Ay, Ay C Q that do not intersect the same CKCs, and denote
A=A UA,y. Assume that:

e For every i and for every Fy-measurable m5|y4,, there exists an Fy-measurable TlilAl., such

that pr,

Ai = Hra]A;-

o [or every wy,w; € Ay and ws,w)y € As such that Fy(wy) = Fi(wq) and Fy(w]) = Fi(w)),
it follows that Fy(w;) = Fi(w)).

Then, for every To|a, there exists Ti|a such that pi;|a, = pr,|a, for everyi=1,2.
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Proof. Fix 1|4 and 7{|4, where i = 1,2, such that pi,,|4, = [iri|a, for every i. Define the sets
A ={w € A; - 3w_; € A_;, Fi(w;) = Fi(w_;)} for every i = 1,2. The second condition of the
claim implies that all the states in AU 1212 are in the same partition element of F;. To see this,
fix w; € A; and, by definition, there exists a state wy € Ay such that Fy (w1) = Fy(wse). If there
exists another w| € Ay, it is either connected to wy (i.e., Fi(w}) = Fi(ws)), or to some w) € A,
and in that case the condition implies that F(w;) = Fy(w}). The same holds for every wy € A,

For every i = 1,2, let S; be the signals induced by 7{|4,. Define the following strategy 7;:

7'11(81’00)7'12<82’A2), if w € Al, (81752) < Sl X 52,
71((s1, 82)|w) = B
71 (s1]A1)TE(82|w), if w € Ag, (s1,82) € S X Ss.

One can easily verify that 71((81, 82)|w) = 1 for every w, so 71 is indeed a strategy.

51,52)

Let us now prove that 7 is Fj-measurable and pi,, |4 = pir,|a. If we restrict 7 to A;, it is
clearly Fj-measurable as 7 Z‘(s_i|/~1_i) is fixed for every w € A; and s; € S;. Thus, consider
T1((81, 82)|w) where w € A;. All the states in A; U Ay are in the same partition element of Fj,

so for every (wy,ws) € Ay x Ay we get

T ((s1,82)|lw1) = 7

and the Fj-measurability condition holds. Moreover, for every w;,w, € A; and for every (sq, s2)

such that 7{(s;|w) > 0 where w € {w;,w}}, it follows that

7'1((51,52)|Wi714¢) _ Tf(8i|wz‘)
T1((s1,82) Wi, i) Ti(silw))’

which implies that conditional on A;, 7 yields the same distribution over posteriors profiles as

74, thus mimicking 7, on every A;, as needed. [
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We can thus finalize the proof using induction on the number of elements in 2*. Until now,

we established in Observation (3] Observation |4 and Lemma [3| that, given either |Q*| = 1 or

|2*| = 2, then for every Fy-measurable strategy 7|+, there exists 71|+ such that i |4 = pir,|a
for every A € Q. Assume this holds for |Q2*| = k > 2, and consider |2*| =k + 1.

Denote the elements of 2" by Ay, Ao, ..., Ag, Ap1. If there exists only one partition element
of Fy that intersects Ay, and at least one A; for ¢ < k, then Lemma [3] holds and the result
follows. Thus, assume there are at least two different partition elements Fj(w) = Fj(w;) and
Fi(w") = Fi(ws) of F; such that w,w’ € Axyy and w; € A; for every i = 1,2.

The proof now splits into two parts: either A; and Ay are connected (i.e., there exists a
sequence of partition elements of F} that sequentially intersect elements in * \ A1, starting
with A; and ending with Ay) or A; and A, are unconnected. If they are unconnected, we can
apply Lemma [3| for A; and Aj,; and then use the induction hypothesis, so assume they are
connected.

Whether A, is a CKC or a cluster and assuming that A; and A, are connected, we argue
that there exists a type-2 irreducible Fj-loop that include w and w’, implying that Ay is part
of a cluster with other elements in Q*. To see this, recall whenever w and w’ belong to the same
cluster and Fj(w) = Fj(w'), then there exists an Fij-fully-informative loop that start with w
and ends with w’. So consider such a sequence of states I, = (w,...,w’), which would have
been an Fi-loop had Fj(w) = Fi(&).

Next, fix the entire path of connections of elements in 2* that starts with A; and ends with
Ag. Again, the connection between A; and A, implies that there exists a sequence of states
loy—wy, = (w1, ..., we) in O\ Agyq, that would have been an Fj-loop had Fij(wi) = Fi(w2).
Hence, consider the sequence of states | = (w,...,w',ws...,w;) which forms an informative
Fi-loop, because Fy(w) # Fi(w'). Using Proposition [6 and Claim [, we know that this loop has

a type-2 irreducible Fij-sub-loop that contains w and w’. Thus, Ay, is in the same cluster as

other elements in Q*, thus contradicting the assumption that [Q*| = k + 1. O
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