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Abstract:

This paper deals with the issue of screening. It focuses on a decision maker
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Our analysis shows that stricter screening not only reduces the number of accep-

ted elements, but possibly reduces their average expected value. We provide a

characterization for optimal threshold strategies for screening, and also derive
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1 Introduction

This paper deals with the problem of screening and, in particular, with the issue of screening

biases. Our screening problem arises when a decision maker (DM) who filters elements based

on noisy unbiased assessments, tries to maximize the average expected value of accepted

elements. For that purpose, she fixes a threshold level, namely an acceptance criterion, to

filter out low-value elements.

Our first main result concerns the influence of stricter screening on performance. By and

large, we show that stricter screening not only reduces the number of accepted elements, but

also could lower their expected average value. In other words, a higher bar carries no quality

assurances, as a lower one may produce a win-win situation on both sides of the quality vs.

quantity (alleged) trade-off.

To exemplify this insight, we use the well-known setting of peer-reviewed academic pu-

blishing. Consider a set of academic papers whose potential impact on a standard 12-point

grading scale is distributed as in Figure 1. The values and distribution are unknown to the

editor and therefore each paper is evaluated via an unbiased noisy refereeing process. The

evaluation process generates a mean-preserving spread of the original valuation. Referees

evaluate each paper accurately with probability (w.p.) 0.8; otherwise they deviate by two

levels, either upwards or downwards, w.p. 0.1 each. As such, the noise is well-defined (given

the original distribution of values), independent, symmetric, and of a discrete normal-like

distribution. The evaluation distribution is given in Figure 2.

Now, the editor is confronted with the problem of fixing the bar. If she chooses to publish

only the top 5%, namely all papers ranked A and above, then the expected value of the

published work would be close to B�. However, if she lowers the bar to publish the top 13%,

roughly all papers ranked A� and above, the inclusive addition of accurately evaluated A�

papers would increase the expected value of the published work to A�. In that case, not

only are additional papers actually published, but their average objective impact is higher!

The driving force behind this result is the influence of unbiased noise over different values.

A mass of average elements, subjected to unbiased noise, produces a relatively large number
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Figure 1: The distribution of papers’ impact.
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Figure 2: Noisy evaluation of papers’ impact. The distribution observed by the editor.

of (noisy) scores that pass a high threshold, while a similar effect over a small group of

superior elements is relatively mild. To put it differently, the effect of unbiased noise is

potentially biased by the action of screening. Note that this effect is locally generated and

would still hold even if additional papers whose ranks are A and A� are added to the original

distribution and their evaluation is completely undistorted.

The above example and insight are based on the key assumption that a threshold strategy

has been implemented. Though such strategies are commonly used both in theory and in

practice, their optimality has yet to be established. In the example above, a screening strategy

that accepts valuations ranked A� and A� would produce a higher average expected value

than the threshold strategy which accepts every valuation of at least A�. Thus, in the second

part of the paper we extend the decision problem to include general utility functions, and

address the issue of optimal screening strategies.

The second main result of this paper provides a characterization of optimal threshold
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strategies for screening. We relate optimal threshold strategies to first- and second-order

stochastic dominance of the original valuation, conditional on the noisy assessment at different

levels. We then apply our characterization to previous results regarding the Peter Principle

(see Peter and Hull (1969)), and derive policy implications concerning affirmative action.

Our characterization shows that eliminating affirmative action could lead to a suboptimal

outcome.

1.1 Related literature and main contribution

The study closest to our own is the seminal work of Stiglitz and Weiss (1981) which investi-

gates the role of interest rates as a screening device. Similarly to our result, they showed that

returns are not necessarily monotone with respect to interest rates. Once rates rise, some

“safe” borrowers refrain from taking loans, potentially lowering the bank’s expected return.

Despite these similarities, there is a significant difference between the two non-monotone

outcomes. The result of Stiglitz and Weiss (1981) holds in equilibrium whenever borrowers

strategically react to the interest-rate mechanism. We, on the other hand, show that non-

monotonicity could arise when borrowers are not better informed than lenders. In many

respects, we respond to and augment the statement of Stiglitz (1975) that “...economies with

imperfect information with respect to qualities of individuals differ in fundamental ways from

economies with perfect information” by showing that similar phenomena could be attributed

to uncertainty rather than asymmetric information. Furthermore, from a technical point of

view our results bear some resemblance to the Simpson Paradox in which changes in propor-

tions distort probabilities and produce counter-intuitive results (see, e.g., Simpson (1951),

Blyth (1972), and Wagner (1982)).

From the vast literature that considers threshold strategies for screening, the second part

of our work strongly relates to the seminal study of Lazear (2004) which provides a theoretical

basis for the Peter Principle and proves that consecutive noisy screening leads to an upwards

bias. We continue this line of thinking by questioning the incentives for applying threshold

strategies. Our results indicate that the upwards bias could be eliminated once optimal

non-threshold policies are applied, underlining the adverse effect of suboptimal threshold

strategies.
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Before we formalize the problem, we wish to emphasize that the widespread use of thres-

hold strategies is well established both in practice and in theory. Whether it be dynamic

inventory problem as in Scarf (1959) or admission criteria for top schools, threshold strate-

gies appear to be a natural tool for screening and carry considerable merit. For example,

threshold strategies are simple, easy to implement and transparent, thus less vulnerable to

manipulation. So regardless of their optimality, the attributes and popularity of threshold

strategies make them an important aspect for analysis, as done in the present work.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we present the basic screening model. In

Section 2.1 we establish the first main result concerning screening biases, and in Section

2.2 we derive implications to credit markets, auctions, and general trade. In Section 3 we

extend the basic model to tackle the problem of optimal threshold strategies. In Section 3.1

we provide a characterization for these strategies which, in Section 3.2, is applied to several

well-known scenarios. Concluding remarks are given in Section 4.

2 The basic screening model

Consider a set of academic papers whose potential impact is distributed according to a non-

constant and bounded random variable V , referred to as an impact variable. Since the value

of each paper is unknown, every paper goes through an unbiased and noisy refereeing process

and is publicly evaluated by V � N , where N is an unbiased random variable, i.e., it is

symmetrically distributed around zero and independent of V . The editor uses the noisy

evaluation to perform a screening. She fixes a cap b P R such that a paper is filtered out if

its evaluation is strictly below b. The editor’s goal is to maximize the expected impact of the

journal (i.e., the average impact of the accepted papers) which is given by

πpbq � ErV |V �N ¥ bs.

Note that the editor is required to accept some papers in order for the impact to be well-

defined. Therefore, any cap b must be feasible, meaning that it should not exceed the maximal
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possible evaluation such that PrpV � N ¥ bq ¡ 0. We denote the support of any random

variable X by
�
X,X

�
.

Assuming that some papers must be published, the editor is faced with the general pro-

blem of fixing the cap. Namely, would it be optimal to set a higher threshold, while main-

taining a minimal required volume of publications? A priori, it appears that an increased

cap could only improve the journal’s expected impact. A higher benchmark screens out less

influential papers, driving the average level of accepted papers upwards at the cost of the

aggregated impact (since fewer papers are eventually published). To put it differently using

various examples: stricter job interviews should improve average production; higher prere-

quisites should enhance the average student’s level; and a more selective choice of products

should advance the franchise and increase average prices.

However, this intuition turns out to be false. We prove that a stricter screening not only

produces fewer published papers, but could also lower the average level of published ones.

Before we turn to solve this paradox, we first need to accurately define a screening bias.

Definition 1. An impact variable V has a screening bias if there exists an unbiased noise

variable N , such that πpbq is non-monotonic. An impact variable V has an extreme screening

bias if for every positive ε   V �ErV s, there exist a noise variable N and feasible caps b2 ¡ b1

(which could depend on ε) such that

πpb1q ¥ V � ε ¡ ErV s � πpb2q.

In simple terms, an impact variable has no screening biases if, independently of the noise,

the expected impact of the published work cannot decrease as the bar is set higher. These

biases are extreme if one can generate an almost optimal screening with b1, while an increase

to b2 generates a result equivalent to no screening whatsoever.

2.1 The robustness of screening biases

We begin by establishing the existence of screening biases. Theorem 1 below states that every

impact variable has extreme screening biases. One way to derive an intuition for this result

is to think of a noise of significant magnitude which has a small probability of taking effect.

Given a threshold level that captures a mass of accurate assessments, the screening is not
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significantly affected by the noise. However, for a higher threshold which is fixed above these

accurate evaluations, low and high values fluctuate independently such that the screening

becomes redundant. We emphasize (and prove later on) that this is only one possibility out

of many for biases to emerge.

Theorem 1. Every bounded impact variable has extreme screening biases.

Proof. Fix ε P
�
0, V � ErV s

�
. Without loss of generality (up to a linear transformation

of the impact variable), we prove the above statement for an impact variable supported on

r0, 1s. To be specific, we assume that V P r0, 1s w.p. 1, with a CDF F such that F p1q � 1,

and Prp1 � δ ¤ V ¤ 1q ¡ 0 for every δ ¡ 0.

If PrpV � 1q ¡ 0, take δ1 P p0, 1q and consider b1 � 1 � δ1   1 � δ1 � b2. Define N by

N �

$'&
'%
�p1 � δ1q, w.p. δ1

2
,

0, w.p. 1 � δ1.

It follows that V �N ¥ b2 ô N � 1 � δ1; and so πpb2q � ErV s. However,

πpb1q �
E
�
V 1ltV�N¥1�δ1u

�
Pr pV �N ¥ 1 � δ1q

�
PrpN � 0qErV 1ltV¥1�δ1us � PrpN � 1 � δ1qErV s

PrpN � 0qr1 � F p1 � δ1qs � PrpN � 1 � δ1q

�
p1 � δ1qErV 1ltV¥1�δ1us �

δ1
2
ErV s

p1 � δ1qr1 � F p1 � δ1qs �
δ1
2

Ñ ErV |V ¥ 1s, as δ1 Ñ 0.

Hence, the result holds true for a sufficiently small δ1 ¡ 0.

If PrpV � 1q � 0, follow the same computation with 0   δ1, δ2   1, caps b1 � 1 � δ2  

1 � b2, and

N �

$'&
'%
�1, w.p. δ1

2
,

0, w.p. 1 � δ1.

The computation yields πpb2q � ErV s, and limδ1Ñ0 πpb1q � ErV |V ¥ 1 � δ2s. By taking

sufficiently small δ1 and δ2, the statement of Theorem 1 holds.

Remark 1. As a technical generalization, one can partially extend Theorem 1 to show that

all random variables, including unbounded ones, have screening biases. See the appendix for

the extension and proof.
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Once existence of screening biases is established, we move on to the important issue of

robustness. In general, one could argue that the phenomenon of screening biases is restricted

to significant noises that completely distort the screening. We approach this concern in several

ways. First, note that even mild noises instigate biases. For example, the noise used in the

proof of Theorem 1 is not only unbiased, but maintains an infinitesimal variance. Second, in

Claims 1 and 2 below we demonstrate the universal nature of the relevant noise variables. In

particular, Claim 1 considers a normal-like continuous1 noise — with a high probability it is

uniformly distributed on a small interval around zero; otherwise, it is uniformly distributed

on a broader interval around zero. The claim states that for every impact variable one can

find such bias-generating noises.

Claim 1. Every impact variable has a continuous noise variable that produces screening

biases.

Proof. Similarly to Theorem 1, consider V on r0, 1s with a CDF F where Prp1 � δ ¤

V ¤ 1q ¡ 0 for every δ ¡ 0, and PrpV P p0, 1qq ¡ 0. Fix ε, c P p0, 1q such that N is, w.p. c,

distributed uniformly on p�ε, εq, and w.p. 1� c is distributed uniformly on p�1,�εqY pε, 1q.

Take b1 � 1 and b2 � 1 � ε. A direct computation shows that

πpb2q �

³1
ε
vpv � εqdF pvq³1
ε
pv � εqdF pvq

,

πpb1q �
1�c
2�2ε

³1�ε
0

v2dF pvq � 1
2ε

³1
1�ε

vrε� cpv � 1qsdF pvq

1�c
2�2ε

³1�ε
0

vdF pvq � 1
2ε

³1
1�ε

rε� cpv � 1qsdF pvq
.

If cÑ 1, then

πpb1q Ñ

³1
1�ε

vrε� v � 1sdF pvq³1
1�ε

rε� v � 1sdF pvq
.

In addition, if ε Ñ 0, then πpb1q Ñ 1, while πpb2q   1. Thus, Claim 1 holds for ε and c

sufficiently close to 0 and 1, respectively.

Claim 1 shows that the DM can have a very accurate screening system, such that errors

are mild in terms of magnitude and plausibility and still encounter biases. Moreover, the

fact that the screening process is highly accurate (but still noisy) actually enables biases

1We use the term “continuous” to describe a non-atomic random variable that is fully supported on an

interval.
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to emerge. The expected value is sensitive to changes in valuations relative to their mass;

therefore biases are amplified by the fact that valuations are highly accurate although some

errors are still possible.

The next result further extends the last conclusion. By restricting the discussion to finitely

discrete distributions, one can prove that biases exist as long as the noise is not completely

negligible relative to the impact variable. Formally, given finitely supported variables V

and N , the noise variable is considered V -distinguishable if for every two adjacent values,

v1   v2, of the impact variable it follows that
��N �N

�� ¡ v2 � v1. That is, a noise variable

is V -distinguishable if its support cannot be bounded by two adjacent values of V . The

following claim shows that any distinguishable noise produces biases.

Claim 2. For every finitely supported impact and noise variables where the noise is V -

distinguishable, there exists α P p0, 1q such that αN produces screening biases.

Proof. Consider V and N where N is V -distinguishable, SupppV q � tv1   v2   � � �  

vmu, and SupppNq � tn1   n2   � � �   nku. Denote βij � vi � nj for any i and j. Since

the two variables have finite support, we can take any contraction αN such that the βijs are

distinct. Fix a cap of b1 � βm1. Then

PrpV �N ¥ b1q � PrpV � vm, N � n1q �
¸
n¡n1

PrpV ¡ βm1 � n,N � nq,

so that the second term in the RHS contains positive-probability events where V   vm due

to the assumption on N .

If the cap is infinitesimally increased to b2 ¡ b1, without crossing the following βij, we

get PrpV � N ¥ b2q � PrpV � N ¥ b1q � PrpV � vm, N � n1q, and the probability

PrpV � vm|V � N ¥ bq decreases. Since vm � maxtV u, the conditional probability of non-

maximal values of V increases as well. Thus, the weighted average of V (given V �N ¥ b)

decreases if the cap is increased from b1 to b2, and Claim 2 follows.

The role of the scaling factor α is twofold. On the one hand, it is technically used to

eliminate potential equalities and ensure that all assessments are distinct. On the other hand,

the factor shows that a high-magnitude noise is not a necessary condition for a screening bias.

These two attributes exemplify how the noise magnitude is relevant only to the extent to
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which it enables strict ordinal changes of the original valuations. Moreover, the proof of

Claim 2 is based on the top two values of V (i.e., v2 � maxtV u), so one can weaken the

condition on the distinguishable noise to these two values specifically.

It is not a mere coincidence that the top valuations are essential for the proof of Claim

2. The result of the following lemma builds on this notion, showing that biases are likely

to emerge at a top-level screening rather than at a lower one. Specifically, biases do not

occur when thresholds are bounded from above by ErV s �N , which implies biases are more

prevalent in screening at high levels. In addition, Lemma 1 shows that the magnitudes of

biases are bounded by the size of the noise, meaning that the decrease in expected impact is

limited to the support of the noise.

Lemma 1. If b   ErV s � N , then the expected impact πpbq is an increasing function. Mo-

reover, for every two feasible caps b2 ¡ b1, we have that πpb2q ¥ πpb1q � |N �N |.

Proof. Fix V , N , and b1   b2   ErV s � N . A necessary and sufficient condition for a

bias is ErV |V �N P rb1, b2qs ¡ ErV |V �N ¥ b2s. Since the LHS equals ErV |b1 �N ¤ V  

b2 � N s and b2 � N   ErV s w.p. 1, we conclude that the LHS is bounded by ErV s while

ErV |V �N ¥ b2s ¥ ErV s (as needed for Lemma 1).

For the second part of the lemma, fix feasible caps b2 ¡ b1, and define Y � V �N . Then

πpb2q � πpb1q �N �N � ErY �N |Y ¥ b2s � ErY �N |Y ¥ b1s �N �N

¥ ErN |Y ¥ b1s � ErN |Y ¥ b2s �N �N

¥ N �N �N �N ¡ 0,

which concludes the proof.

Both statements follow the same motivation as Claim 2 — the ordinal changes are boun-

ded by the magnitude of the noisy deviation, and filtering at bottom levels cannot generate

a significant impact. The leading conclusion, therefore, is that designers should not concern

themselves with biases whenever screening is restricted to low-level elements and when the

potential loss from a limited noise is negligible.
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2.1.1 Screening biases and the monotone likelihood ratio property

Two probability distributions are said to have the monotone likelihood ratio property (MLRP)

if their ratio is non-decreasing. In our context, one can take two realized signals s1 ¡ s2 and

consider the ratio between the distributions of V |tV � N � s1u and V |tV � N � s2u.

Under the MLRP, this ratio is a non-decreasing function. Moreover, if the MLRP holds,

then the distribution of V |tV � N � s1u first-order stochastically dominates the distribu-

tion of V |tV � N � s2u, which leads to a higher expected value (i.e., ErV |V � N � s1s ¡

ErV |V �N � s2s). Therefore, the law of total expectation implies that a screening bias can

exist only if the MLRP fails. This observation becomes useful in Section 3, where we provide

a weaker property than MLRP to eliminate screening biases, which also characterizes optimal

threshold strategies.

2.2 Implications of screening biases

2.2.1 Credit ratings

Potential errors in credit ratings occur more frequently than thought. In many cases, either

high- or low-risk debtors are wrongfully flagged as low- and high-risk ones, thus posing a

substantial problem in credit markets.2 To address this problem using our formulation,

assume that V defines the actual solvency of a group of debtors and N denotes the evaluation

error of the rating agency. Thus, screening biases correspond to stricter loan conditions that

generate lower expected returns. Typically, this is not surprising in credit markets. Stricter

screening regularly limits the potential profit by reducing the risk. Yet, our screening biases

are fundamentally different since the relation between returns and risk via the interest-rate

mechanism is irrelevant. In our context, the lower expected returns are due to bad loans,

rather than safer ones. In other words, a stricter screening eliminates high-value debtors who

could increase expected profits, while reducing the creditor’s risk.

Building on the result of Theorem 1, extreme screening biases suggest that not only

expected returns decrease, but the investment becomes riskier. Specifically, once πpbq is

2For example, see the CNBC article, “The real problem with credit reports is the astounding number of

errors”, Aaron Klein, September 27, 2017.
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ε-close to optimality, the variance over accepted valuations is close to zero. This result

follows directly from the Bhatia-Davis inequality (see Bhatia and Davis (2000)), stating that

VarpXq ¤
�
X � ErXs

�
pErXs �Xq for every bounded random variable X. Therefore, for

every extreme screening bias with a sufficiently small ε, the transition from a low cap to a

higher one increases the variance over the investment and decreases the expected return: a

lose-lose situation.

2.2.2 Auctions and the winner’s curse

Aside from the general screening problem, our model also applies to auctions. For example,

consider an English auction where b is the starting price. Under uncertainty regarding the

value of the auctioned item, whether it is a given commodity in regular auctions or a certain

project in procurement auctions, the opening price is of key importance. Assuming that the

valuation among bidders is given by V , and bidders’ uncertainty is projected through N , then

the opening bid determines the distribution of valuations among the auction participants.

Only bidders with noisy valuations above the cap (i.e., V � N ¥ b) would participate, and

screening biases suggest that a higher opening bid is not necessarily productive and does not

guarantee efficiency.

The implication of screening biases to auctions is related to the well-known phenomenon

of the winner’s curse. The fact that bids depend on a mean-preserving spread of the true

valuation suggests that the winning bidder may not be the one with the highest valuation,

but only the most optimistic one. Such inefficiency becomes crucial in credit auctions,3 as a

higher cap possibly increases the probability of a default.

2.2.3 General trade

The last implication we provide relates to general trade. Let V represent the intrinsic quality

of products in a given market, whereas V � N reflects the subjective assessments among

sellers. If b is the current price, then only sellers with a valuation of V � N ¤ b will agree

to sell. With a few algebraic adjustments, it follows that a screening bias is equivalent to

3Credit auctions are auctions where payments are not immediate, as in long-term infrastructure and

real-estate projects. See Parlane (2003), Board (2007), and Lagziel (2018), among many others.
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non-monotonicity of ErV |V � N ¤ bs with respect to the price b. Namely, a higher price

may reduce the expected quality of products in the market by introducing relatively more

low-value products with overzealous sellers.

3 The optimality of threshold strategies

The model and results of Section 2 are based on two key assumptions: (i) the DM’s goal is

to maximize the expected value of V ; and (ii) the DM uses a threshold strategy. Though

both assumptions seem straightforward, one should bear in mind that the DM can exercise

more sophisticated policies to maximize a utility function that depends on V . In the current

section, we extend the basic model by considering an expected-utility maximizer DM who

faces a screening problem subject to the information encapsulated in V � N . Our goal

is to establish conditions under which threshold strategies are indeed optimal, and study

the practical implications in cases where they are suboptimal. Doing so, we also establish a

relation between the optimality of threshold strategies and the preceding analysis of screening

biases.

3.1 The extended model and main result

Fix an impact variable V and a noise variable N , and consider a DM with a utility function

u : R Ñ R. As an expected-utility maximizer, the DM sets a screening strategy σ : R Ñ

t0, 1u, where 1 denotes the acceptance of a specific valuation and 0 denotes a rejection. Given

σ, the DM’s expected utility is

upσq � E
�
upV q1ltσpV�Nq�1u

�
.

That is, the DM tries to maximize the expected utility from the accepted elements, subject to

the noisy evaluation V �N . Evidently, the decision to accept an element hinges on the sign

of the utility function, thus the DM would accept any positive-probability set A of valuations

if E
�
upV q1tV�NPA0u

�
¥ 0 for every subset A0 � A. Note that all definitions and statements

hold almost surely, i.e., hold up to a zero-measure deviation.
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A strategy σ is a threshold (cut-off) strategy if the acceptance of some values with positive

probability implies that higher valuations are not rejected with a positive probability. For-

mally, a strategy σ is a threshold strategy if for every t, the condition Prps ¤ t : σpsq � 1q ¡ 0

implies that Prps ¡ t : σpsq � 0q � 0. Define σu to be the optimal strategy given u, where

the notion of optimality is taken in the usual sense that upσuq ¥ upσq for every strategy σ.

We can now address the question of optimal threshold strategies and, specifically, to

characterize the conditions ensuring that such strategies are optimal. For that purpose, the

following notations are needed. For every A � R, let V |A be the conditional distribution of V

given V �N P A. Denote first-order (second-order) stochastic-dominance by ©I (respectively,

©II). The following theorem provides a characterization for optimal threshold strategies,

based on the stochastic dominance of V conditional on different feasible valuations.

Theorem 2. The optimal strategy σu is a threshold strategy for every increasing (increasing

and concave) utility function u if and only if for every two positive-probability sets A,B � R

such that a ¡ b for every a P A and b P B , it holds that V |A ©I V |B (respectively, V |A ©II

V |B).

Proof. We prove the first part of the theorem, and the second part follows similarly

by taking an increasing and concave utility function. For every two sets A,B � R, denote

A ¡ B if a ¡ b for every a P A and for every b P B.

For the first part we use a proof by contradiction. Assume that for every two sets A ¡ B

of positive probability we have that V |A ©I V |B, and that there exists an increasing utility

function u such that σu is not a threshold strategy. Namely, there exists t0 such that Prps ¤

t0 : σpsq � 1q ¡ 0 and Prps ¡ t0 : σpsq � 0q ¡ 0. Let A � ts ¡ t0 : σpsq � 0u and

B � ts ¤ t0 : σpsq � 1u. The sets A and B are of positive probability and, by definition,

A ¡ B. FOSD implies that ErupV q|V �N P As ¥ ErupV q|V �N P Bs. However, σpAq � 0

and σpBq � 1 suggest that ErupV q1tV�NPBus ¥ 0 ¡ ErupV q1tV�NPAus, which contradicts the

previous inequality.

For the converse, assume there exist sets A ¡ B of positive probability such that V |A «I

V |B. Thus, there exists an increasing utility function u such that ErupV q|V � N P Bs ¡

ErupV q|V �N P As. Consider an auxiliary utility function ũ � u� c where ErũpV q|V �N P

Bs ¡ 0 ¡ ErũpV q|V �N P As, which implies that ErũpV q1tV�NPBus ¡ 0 ¡ ErũpV q1tV�NPAus.

14



Hence, σũpAq � 0 and σũpBq � 1, up to a zero-measure deviation. Therefore, σũ is not a

threshold strategy.

Let us explain Theorem 2 in simple terms. Consider any two sets of evaluations A and

B both of positive probability such that A is (point-wise) above B. Assuming that V |A

stochastically dominates V |B, then threshold strategies are optimal since a non-negative

expected payoff at the lower values leads to a non-negative expected payoff at higher ones.

As it turns out, the other direction holds just as well: once stochastic dominance fails, one

can easily construct a relevant utility function which does not obey the threshold-strategy

optimality criteria.

Before we elaborate on the applicable aspects of Theorem 2, we relate it to the results

given in Section 2. In particular, note that the necessary condition for optimal threshold

strategies given in Theorem 2 disallows screening biases to emerge. That is, if a screening

bias exists, then there exist sets A ¡ B of positive probability such that ErV |Bs ¡ ErV |As.

The last condition is weaker than MLRP (as discussed in Section 2.1.1), since monotonicity

is required only in terms of expected values rather than in terms of the ratio of distributions.

The combination of Theorems 1 and 2 raises the question of optimal threshold strategies

that still allow screening biases to emerge. The answer to this question is based on the

chosen utility function. Since a screening bias contradicts the condition given in Theorem

2, one can construct a utility function such that threshold strategies are suboptimal. This,

however, does not imply that threshold strategies should never be used since, for some utility

functions, threshold strategies are indeed optimal (for example, for any positive function).

3.2 Applications

3.2.1 The Peter Principle

The Peter Principle was initially coined by Peter and Hull (1969) and later studied in a the-

oretical framework by Lazear (2004) in the context of consecutive screening. Lazear showed

that regression to the mean prompts an upwards bias once a threshold strategy is used. This

bias explains numerous phenomena, ranging from failed managerial promotions to unsuccess-

ful movie sequels. The threshold strategies in Lazear’s model ensure that accepted elements
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have a temporal advantage over rejected ones due to the realized noise. However, such

strategies are potentially suboptimal, whereas the implementation of optimal non-threshold

policies can completely eliminate the mentioned bias. Let us consider a concrete example to

explain this phenomenon.

Take a uniformly distributed impact variable V � Up�0.5, 0.5q, and a symmetric binary

noise variable N � �0.5. For simplicity, assume that upxq � x. Fix a threshold strategy

σ � 1r0,1s which screens out every negative valuation. This strategy would produce the same

uniform distribution as the original one, i.e., V |r0,1s � Up�0.5, 0.5q. As Lazear points out,

the expected noise of every accepted (rejected) element is positive (negative, respectively),

so the upward bias is evident. Formally, the computation shows that

ErN |σpv �Nq � 1s � 0.5   �0.5 � ErN |σpv �Nq � 0s.

However, this analysis follows a threshold strategy that is clearly suboptimal.

Consider the strategy σ � 1r�0.5,0sYr0.5,1s which accepts elements of noisy valuation bet-

ween r�0.5, 0s and r0.5, 1s. This strategy yields an expected noise ErN |σpV � Nq � 1s � 0

and a positive expected value ErV 1tσpV�Nq�1us �
1
8
. In other words, a non-threshold strategy

produces positive expected value with no expected bias. It is important to note that the

latter strategy is indeed optimal, and strictly dominates any threshold strategy. The same

non-monotonicity holds for other limited noises such as N � �n where n ¡ 0.25. This

simple example illustrates how suboptimal threshold strategies generate a bias that optimal

non-threshold policies can overcome.

3.2.2 Affirmative action

Affirmative action advocates the promotion of education and employment for discriminated

individuals of certain groups. These policies are aimed at levelling the playing field, i.e.,

maintaining equal opportunities. To illustrate this notion in our model, consider a continuous

impact variable V which denotes the true valuation of individuals in a certain position, and a

finitely supported N which depends on various irrelevant characteristics. In our formulation,

affirmative action is manifested through different screening criteria among heterogeneous

individuals, namely the screening is based on a non-threshold strategy, while the absence of
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affirmative action suggests a threshold strategy.

To exemplify this idea, consider the previous example where V � Up�0.5, 0.5q and

N � �1{3 with equal probabilities. A straightforward computation shows that the optimal

screening strategy is σ � 1r0,1{6sYr1{3,5{6s and not a threshold strategy. The
�
0, 1

6

�
-acceptance

condition targets negative noise realizations, while the
�
1
3
, 5
6

�
-condition targets positive ones.

This optimal strategy specifically targets individuals with different noise realizations, illustra-

ting the positive economics of affirmative action which go beyond the normative ones. Claim

3 generalizes this example.

Claim 3. If V is continuous and N has finite support, there exists positive-probability sets

A ¡ B such that V |A «I V |B.

Proof. Fix V and N as stated such that SupppNq � tn1   n2   � � �   nku. If

nk�V ¥ V �nk�1, then V |rnk�V ,nk�V s
� V which does not dominate V |rV�nk�1�ε,V�nk�1s

, for

a sufficiently small ε ¡ 0. Therefore, consider δ � nk � nk�1   V � V , and fix ε � δ
2
. Denote

V k�1 � V � nk�1, and define the intervals A � pV k�1, V k�1 � εq and B � pV k�1 � ε, V k�1q.

By definition A ¡ B, but SupppV |Aq � pV � δ, V � εq while SupppV |Bq � pV � δ � ε, V �

δq Y pV � ε, V q. Hence, PrpV ¡ V � ε|Bq ¡ 0 � PrpV ¡ V � ε|Aq and the claim follows.

Note that the proof carries some resemblance to Lemma 1 in the sense that the strategies’

discontinuity is imminent at top valuations.

4 In conclusion

This paper deals with two screening-related problems: the first concerns the adverse effect

of stricter screening and the second focuses on the actual screening method. In the first part

of the paper we establish the existence and robustness of screening biases, and in the second

part we characterize optimal threshold strategies. We combine the two problems and results

by showing that screening biases exist as long as the necessary and sufficient condition for

optimal threshold strategies fails. Thus, although the two parts deal with slightly different

goals, they lead to similar conditions overall.
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