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1 Introduction

In scenarios with incomplete information, players often have limited insight into the factors
influencing outcomes. For this reason, an information provider, referred to as an oracle, can
play a pivotal role in shaping players’ strategies by revealing partial information about the
underlying conditions. This partial revelation is akin to the information provided by various
forecasters (ranging from weather and sports to geopolitics), news media organizations, rating
agencies, and even prediction markets. In all these cases, external observers convey partial
information to players engaged in strategic interactions.

This paper examines incomplete-information games where players are partially informed,
both privately and publicly, about the realized state. The private information is provided to
every player by his specific partition, and the public information is disclosed by an external
source (namely, an oracle).

The oracle is endowed with a partition of the state space and communicates partial infor-
mation through a signaling function, constrained by its ability to distinguish between different
states. The oracle may not be aware of what is commonly known among the players, and typi-
cally possesses information that differs from that of at least some individuals. The combination
of the original game—defined by the players’ subjective information, action sets, and payoff
functions—together with the additional information provided by the oracle, constitutes what
we refer to as a guided game.

Any signaling function constitutes a Blackwell experiment (see Blackwell, |1951). In this
sense, an oracle can be viewed as a generator of Blackwell experiments: it may produce multiple
such experiments, each defining a distinct guided game. Each guided game, in turn, admits its
own set of equilibria, which typically differs from that of the original incomplete-information
game.

Our primary objective is to compare two oracles in terms of their ability to induce equilibria
across all games. We say that one oracle dominates another if, for every game G and every
signaling function of the latter, there exists a signaling function of the former such that the sets
of equilibrium distributions over state-action profile pairs in the corresponding guided games

coincide. In terms of players’ payoffs, this means that, in any game, the dominating oracle can



replicate the entire set of equilibrium payoffs achievable by the dominated one.

A few remarks are in order. This study focuses on comparing different oracles while keeping
the players’ information fixed: both the players’ private information and the oracles’ informa-
tional capabilities are held constant. This stands in contrast to alternative notions that must
hold for every possible configuration of players’ private information (see, e.g., Section A.1 and
Proposition 1 in [Brooks et al., 2024).

The second remark concerns the definition of dominance among oracles. One could consider
an alternative notion, where an oracle is said to dominate another if it can induce a larger set of
equilibrium distributions, rather than exactly the same set, as required by our current definition.
We adopt the stricter definition for the following reason: once partial information is provided,
the oracle has no control over which specific equilibrium will emerge. A signaling function
that induces a guided game with a large set of equilibria might allow for socially undesirable
outcomes, such as those that are Pareto-dominated. By requiring that the dominant oracle
replicate precisely the same set of equilibrium distributions as the dominated one in the stated
game, we ensure that no outcome arises that could not have been generated by the latter. At
the same time, any outcome achievable under the dominated oracle remains attainable under
the dominating one.

The third remark concerns the objectives that oracles might have. One could define domi-
nance by requiring that one oracle can induce any equilibrium preferable outcome that the other
can. However, this definition implicitly assumes that the oracle can select which equilibrium
will emerge, an assumption that typically does not hold.

An alternative approach is to model the oracle as a player with its own objectives. Under this
interpretation, an oracle is said to dominate another if it can secure a payoff that is at least as
high as that of the other. The drawback of this approach is that, as in any standard equilibrium
analysis, all elements of the game, including the oracle’s partition and payoff function, must
be common knowledge. This assumption may be unrealistic in settings where oracles act as
external information providers without known preferences.

Following [Blackwell| (1951)), who compares signaling structures in the context of single-agent

decision problems by focusing on the induced equilibrium distributions, and thus on the players’



achievable payoffs, we isolate the informational power of the oracles, abstracting away from any
objectives they may possess.

Our analysis distinguishes between two types of oracles based on their signaling capabilities:
deterministic and stochastic. In the deterministic case, when the oracle’s signaling function pub-
licly announces a signal without any probabilistic element, we show that one oracle dominates
another if and only if it can replicate the joint posterior beliefs induced by the other oracle (i.e.,
of all players simultaneously), while adjusting for redundancies arising from the players’ pri-
vate information (see Theorem [I]in Section [4)). We refer to this condition as Individually More
Informative (IMI). In other words, the comparison takes into account that different players
may interpret the same public signal differently, depending on their private information. The
informational contribution of the oracle’s announcement must therefore be evaluated relative
to what each player already knows.

Although the IMI condition may appear intuitive, it departs fundamentally from the refine-
ment criterion implied by Blackwell’s notion of dominance, as becomes evident in the stochastic
setting. Moreover, in contrast to Blackwell’s framework, we show that if two oracles dominate
each other under the IMI condition, then they must be identical (see Theorem [2]in Section [4)).
We establish these results in the deterministic case before extending the analysis to the stochas-
tic setting.

The conditions for dominance in the stochastic setting differ significantly from those in
the deterministic case. When oracles are allowed to employ stochastic signaling functions, the
resulting posterior beliefs become more intricate. As a result, establishing dominance requires
additional criteria, which hinge on two key elements derived from the players’ information
structures.

The first element is the common knowledge component (CKC)—the minimal (inclusion-
wise) set that all players commonly agree upon (see Aumann, |1976)). Building on the structure
of CKCs, we introduce a second essential concept: the information loop. To formally define
information loops, we first partition the state space into disjoint CKCs. An information loop is
then described as a closed path through the state space that links different CKCs via elements

of an oracle’s partition.



This paper is the first part out of two (the other being Lagziel et al.| 2025).[1_] The current
paper provides the complete analysis for deterministic signaling functions, while establishing
the baseline case of a single CKC given stochastic signaling functions. Part II expands the
framework to incorporate information loops and explores their central role in determining when
one oracle dominates (or is equivalent to) another when there are multiple CKCs.

Specifically, Theorem [4] in Section establishes that in the case of a single CKC, one
oracle dominates another if and only if the former refines the latter. While the “if” direction
is straightforward, the “only if” direction is more subtle. To prove it, one must construct a
counterexample: when Oracle 1’s partition does not refine that of Oracle 2, it is necessary to

exhibit a game in which Oracle 2 can induce an equilibrium outcome that Oracle 1 cannot.

1.1 Relation to literature

The current research aims to extend the classical framework established by Blackwell (1951,
1953), which focuses on comparing experiments in decision problems. In Blackwell’s frame-
work, one experiment (or information structure) dominates another if it is more informative,
enhancing the decision maker’s expected utility across all decision problems. In the context of
games, dominance implies that the information structure of one oracle enables it to replicate
the equilibrium distribution over outcomes induced by the other oracle.

Another connection to Blackwell’s comparison lies in the fact that, in our study, an oracle
can transmit any information through a signaling function, provided it is measurable with
respect to the information it possesses. In this sense, an oracle in our framework functions as
a generator of experiments, rather than a fixed entity as in Blackwell’s framework. However,
unlike Blackwell’s comparison of experts (see Blackwell, [1951)), our approach does not focus on
optimizing the decision maker’s outcome. Instead, we analyze the role of oracles in inducing
various equilibria.

Blackwell’s model was recently extended by Brooks et al. (2024)), who compare two informa-
tion sources (signals) that are robust to any external information source and decision problem.

They introduce the notion of strong Blackwell dominance and characterize when one signal

!The original (and unified) paper was split due to its length.



dominates another under this criterion: a signal strongly Blackwell dominates another if and
only if every realization of the more informative signal either reveals the state or refines the
realization of the less informative one.

There are several key differences between their framework and ours. First, while their anal-
ysis focuses on a single decision maker, we study multi-player environments. Second, they
allow for arbitrary private information structures and decision problems; in fact, their charac-
terization is entirely independent of the decision maker’s information. In contrast, our model
assumes fixed private information structures for the players and allows variation only in the
payoff functions of the underlying game. As a result, our analysis is specific to each config-
uration of the players’ information structures: every distinct configuration must be analyzed
separately. A third major difference lies in the role of the oracle. In their model, the oracle is a
fixed Blackwell experiment. In contrast, in our setting, the oracle can generate any experiment
that is measurable with respect to its partition, effectively acting as a generator of Blackwell
experiments.

Beyond Blackwell’s work, this project runs parallel to and is inspired by two additional lines
of research. The first concerns the topic of Bayesian persuasion. Originating from the classic
model of Kamenica and Gentzkow| (2011), the literature on Bayesian persuasion explores how
an informed sender should communicate with an uninformed receiver to influence the receiver’s
choices. The central question revolves around how much information—and in some contexts,
when—should the sender disclose to maximize their payoff]

The second strand of literature explores the role of an external mediator in games with
incomplete information. The mediator provides players with differential information to co-
ordinate their actions, resulting in outcomes that correspond to various forms of correlated
equilibria, as introduced by [Forges| (1993)). Importantly, in some of these studies, the mediator
does not supply additional information about the realized state but focuses solely on coordinat-
ing the players’ actions. (Gossner| (2000) examines games with complete information, comparing

mediating structures that induce correlated equilibria. The mediator’s role is exclusively to co-

2See, for example, [Horner and Skrzypacz (2016); Renault et al. (2013); Ganglmair and Tarantino| (2014]);
Horner and Skrzypacz (2016); Renault et al.| (2017); |[Ely| (2017); [Ely and Szydlowskil (2020); |(Che and Horner
(2018)); Bizzotto et al.| (2021); Mezzetti et al.| (2022). For a survey of this field, see Kamenica (2019).



ordinate the players’ actions. One mediator is considered "richer” than another if the set of
correlated equilibria it induces is a superset of those induced by the other. The characterization
is based on the concept of compatible interpretation, which aligns with the spirit of Blackwell’s
notion of garbling.

Other studies, closely aligned with the current project’s goals, investigate information struc-
tures in incomplete-information games and establish partial orderings among them. [Peski| (2008))
analyzed zero-sum games, offering an analogous result to Blackwell’s by characterizing when
one information structure is more advantageous for the maximizer. [Lehrer et al. (2010]) ex-
amines a common-interest game, comparing two experiments that generate private signals for
players, which may be correlated. The results depend on the type of Blackwell’s notion of gar-
bling used, which varies with the solution concept applied. In a follow-up study, Lehrer et al.
(2013)) extended Blackwell’s garbling to characterize the equivalence of information structures
in incomplete-information games, specifically by determining when they induce the same equi-
libria. Likewise, Bergemann and Morris (2016) characterize dominance among two information
structures through the concept of individual sufficiency—an extension of Blackwell’s notion of
garbling to n-player games. They show that an information structure S is individually sufficient
for S’ if and only if under every game, S yields a smaller set of Bayesian correlated equilibria.

In this study, we fix the players’ initial information structures and compare oracles that
provide additional information, which in turn influences the players’ beliefs. The key distinction
of our study lies in two main aspects: (a) the information provided by the oracles is public, and
therefore does not serve as a coordinator between the players’ actions, as in various versions
of correlated equilibrium; (b) since an oracle functions as a generator of experiments, we allow
the externally provided information to vary. Additionally, we do not impose any restrictions on
the type of game, whether it involves a common objective, a zero-sum structure, or any other
form. While previous results align with Blackwell’s garbling, our findings differ significantly
from any version of it.

This approach presents a unique challenge compared to the problem of comparing two fixed
information structures, as explored in previous literature. The distinction becomes evident in

the example in Section [2| where the oracles are evaluated based on the full range of signaling



functions they can generate. From an applied perspective, in many real-life scenarios, informa-
tion providers have multiple ways to share information with the public, making it crucial to

compare them as generators of information.

1.2 The structure of the paper

The paper is organized as follows. In Section [2| we provide a simple example to illustrate the
key concepts of the paper. Section |3| presents the model and key definitions. Section [4] analyzes
deterministic oracles, including a characterization of dominance and a proof that two-sided
dominance implies the oracles are identical (given a unique CKC). In Section , we examine
stochastic oracles in several stages. First, we introduce a two-stage game, referred to as a ” game
of beliefs,” which serves as a foundational tool for our characterization within each CKC. Then,

in Section we characterize dominance in the case of a unique CKC.

2 A simple example: the rock-concert standoff

Consider a simple competition between two rock bandsE] Assume two bands, 1 and 2, arrive
in the same city during their tours and must decide whether to perform on the same day or on
different days. The issue arises because the stadiums in that city are partially open, making
bad weather a significant factor that adversely affects crowd attendance.

Assume there are 200, 000 fans eager to see these bands, with ticket prices fixed at $20 each.
The production cost for each concert is $500, 000, but this cost doubles if attendance exceeds
75,000 people. Further, assume that each fan attends at most one concert.

On a sunny day, all fans attend the concerts, splitting evenly if both bands perform on the
same day. However, under stormy conditions, attendance drops to 20,000 fans, who again split
evenly if both bands perform simultaneously. If the bands choose to perform on different days,
attendance splits such that only 10% of the fans attend the concert on the stormy day, with
the remaining fans attending the other concert.

As it turns out, weather conditions are problematic because a storm is coming either today

3We thank Alon Eizenberg from the Hebrew University and two 1990s rock bands who inspired this example.



or tomorrow. More formally, there are four equally likely states: in states n; and ns, the storm
arrives today, while in states s; and s, the storm arrives tomorrow. Each band has a unique
partition over this state space. Band 1’s partition is I1; = {{ny, s2}, {n2, s1}}, while Band 2’s
partition is Iy = {{n1}, {s1}, {n9, s2}}. In simple terms, Band 2 cannot differentiate between
no and s9, while Band 1 cannot distinguish between n; and s_; for each ¢ = 1,2. Additionally,
there are two weather forecasters with the following partitions: Fy = {{n, s1}, {na}, {s2}} and

Fy = {{n1,n2}, {51, s2}}. These information structures are illustrated in Figure [1}
Q I1,

(a) (b)

The bands’ information The weather forecasters’ information

Figure 1: On the left, Figure (a) illustrates the information structures: IT; = {{n1, s2},{n2,s1}} for Band 1
(green) and IIy = {{n1}, {s1}, {ne, s2}} for Band 2 (orange). On the right, Figure (b) depicts the information
structures Fy = {{n1,s1},{n2}, {s2}} for Forecaster 1 (red) and F» = {{ni,ns}, {s1,s2}} for Forecaster 2
(blue). These figures illustrate a unique CKC where neither of the Forecasters’ partitions refines the other.
Nevertheless, Forecaster 1 is individually more informative (IMI) than Forecaster 2, whereas the converse does
not hold. This is because Forecaster 2 cannot replicate the partition Fy = {{n1, s1,s2}, {n2}}.

Based on the realized state, the bands engage in the game depicted in Figure 2] Each band
decides whether to perform today, an action denoted by D, or tomorrow, denoted by M. The
payoffs in the matrices are given in hundreds of thousands of dollars, and the bands’ actions
have opposing impacts depending on the state of nature.

Conditional on the state, it is evident that each band has a strictly dominant action: to
perform on the day with good weather. Consequently, the analysis is straightforward. If
both bands know the exact payoff matrix, there is a unique Nash equilibrium. However, this

equilibrium is not necessarily optimal in terms of overall profit, which could be maximized if



the bands coordinated and split the performance dates.

Band 2 Band 2
D M D M
D | -3-3 | -1, 26 D | 10, 10 | 26, -1
Band 156 1710, 10 Band 11 5613, 3
Payoffs in states ny and ny (stormy today) Payoffs in states s; and sy (stormy tomorrow)

Figure 2: Payoff matrices for sunny and stormy conditions.

Assume that the payoff matrix is not common knowledge. If Band 1 knows the exact payoft
matrix while Band 2 believes the two matrices are equally likely (and assuming this is common
knowledge), an equilibrium exists in which Band 2 randomizes equally between M and D due to
symmetry, and Band 1 selects M under {ny,ns} and D given remaining states. This equilibrium
yields, on aggregate, higher expected payoffs of $1.8 million for Band 1 and $450, 000 for Band
2.

Now, we examine how the two different forecasters can influence the outcome of this game.
For simplicity, assume that forecasters are restricted to deterministic strategies, meaning they
provide deterministic public signals based on their information. Forecaster 2 has only two
options: either provide no information at all (which, in some cases, leads both bands to perform
in stormy conditions) or fully reveal all relevant information, which results in an expected payoff
of $1 million for each band. Forecaster 1 also has these two options, as fully revealing his private
information makes the realized state common knowledge between the two bands. In such cases,
we say that Forecaster 1 is individually more informative than Forecaster 2.

Yet, Forecaster 1 can achieve more than simply matching the beliefs induced by Forecaster
2. Specifically, he can signal the partition {{ni, s}, {no, s2}}, ensuring that Band 1 is fully
informed about the state and the corresponding payoff matrix, while Band 2 receives no addi-
tional information and remains unable to distinguish between ny and s;. Under these conditions
and given either of the states ny and sy, the previously described equilibrium, in which the ex-
pected payoffs are $1.8 million and $450, 000 for Bands 1 and 2 respectively, still exists. Thus,
Forecaster 1 can support a broader set of equilibria while also matching the set of equilibria
induced by Forecaster 2. This exemplifies the partial order of dominance characterized in this

study.



This simple example offers several additional insights. First, the state space comprises
a unique CKC, given the bands’ information. In other words, the smallest set (in terms of
inclusion) that the bands can agree upon is the entire space. However, the forecasters’ partitions
do not refine one another, even within this unique CKC, meaning that the IMI condition does
not imply refinement. Moreover, when stochastic signals are allowed, we later show that neither
forecaster dominates the other 4

Second, if this was a decision problem (as in [Blackwell, 1951 and Brooks et al., 2024)) rather
than a game, both forecasters would be equally beneficial to both parties. In decision problems,
superior information can only improve the expected outcome, and both forecasters could fully
reveal the true state to each party. This highlights a key distinction: the classification in games
is fundamentally different from that in decision problems and does not follow from it.

Third, the ability to induce a broader set of outcomes is distinct from coordination in the
sense of correlated equilibrium (as in [Forges|, 1993). The process here relies critically on the

forecasters’ private information and how it is disclosed to the players.

3 The model

A guided game comprises a Bayesian game and an oracle. The oracle’s role is to provide
information that enables a different, and preferably broader, range of equilibria. It does so
through signaling, and our analysis seeks to characterize the extent to which oracles can expand
the set of equilibrium payoffs.

We begin by defining the underlying Bayesian game. Let N = {1,2,...,n} be a finite set
of n > 2 players, and let {2 denote a non-empty, finite state space. Each player ¢ € N has
a non-empty, finite set of action{] A; and a partition II; over €2, representing the information
available to player 7. Denote the set of action profiles by A = X;cnyA;. The utility function
for each player ¢ € N is u; : 2 x A — R, which maps states and action profiles to real-valued

payoffs.

4Notably, given a unique CKC, we prove that two-sided IMI implies that the two partitions coincide. See
Section

5In this setting, A; is independent of the player’s information; however, the current framework can also
accommodate scenarios where it is not.
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To extend the basic game into a guided game, we introduce an oracle who provides public
information before players choose their actions. The oracle is endowed with a partition F' of
the state space {2, and a countable set S of possible signals.

A signaling strategy of the oracle is an F-measurable function 7 : Q — A(S), where A(S)
is the set of probability distributions on S with finite support. This function specifies the
distribution over signals conditional on the realized state and must be measurable with respect
to F. We denote by 7(s|w) the probability 7(w)(s) that the oracle sends signal s when the
realized state is w.

A deterministic signaling strategy is a special case in which 7 is a function from F' to S,
assigning a single signal to each element of the partition. Note that any deterministic signaling
strategy is effectively equivalent to a partition, and we will refer to it as such when appropriate.

The guided game evolves as follows. First, the oracle publicly announces a strategy 7.
Then, a state w € € is drawn according to a common prior u € A(Q2). Each player i is privately
informed of II;(w), which is a set of states containing w and also an atom of player i’s private
partition. Finally, the signal 7(w) € S is publicly announced in case 7 is deterministic, or s € S
is drawn according to 7(w) and is publicly announced in case T is stochastic.

Let the joinﬂ I1; V F' denote the updated information (i.e., partition) of player i given II;
and some partition F. In case 7 is a deterministic function, let uZ, = p(-|[Il; V 7](w)) € A(©)
denote player i’s posterior belief after observing II;(w) and 7(w). In case 7 is stochastic, let
:“i|w,s = u(-|I;(w), 7, 5) € A(2) denote player i’s posterior belief after observing II;(w) and a
realized signal s according to 7(w), and let p, s = {(/J’j—\w,s)iEN w € Qs.t. 7(s|lw) > 0} be the
set of joint posteriors associated with 7 and a signal s, across all relevant states. The joint
posteriors capture each player’s belief about the realized state and their beliefs about others’
beliefs, as well as higher-order beliefs. We use p, to denote the distribution over all joint
posteriors induced by 7 across all signals, and use Post(7) = Supp(p,) to denote its support.
Thus, every strategy 7 yields an incomplete-information game G(7) = (N, (Ai)iens fors (Ui)ien)-
Since the state space and the action sets are finite, the equilibria of the game exist. When there

is no risk of ambiguity, we denote the incomplete-information game without 7 by G.

6Coarsest common refinement of II; and F'; following the definition of Aumann| (1976).
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Example 1. Deterministic and stochastic strategies.

To illustrate the difference between deterministic and stochastic strategies, consider an
information structure where II; = {{wy,ws}, {ws}}, i is the uniform distribution on 2, and
Oracle 1 has complete information, F} = {{w1}, {wa2},{ws}}. Under deterministic strategies,
the feasible posteriors are generated by either II; (oracle provides no additional information) or
F) (complete information). On the other hand, the set of feasible posteriors under stochastic

strategies includes distributions of the form (p,1 — p,0) for every p € [0, 1].

3.1 Partial ordering of oracles

To discuss the role of the oracle in the current framework, one needs a relevant solution concept.
Thus, let us define the following notion of a Guided equilibrium, which incorporates the oracle’s
strategy. Formally, let o; : II; x S — A(A;) be a strategy of player i. A tuple (1,04,...,0,) is
a Guided equilibrium if (o1, ...,0,) is a Nash equilibrium in the incomplete-information game
G(7).

The notion of a Guided equilibrium defines a partial ordering of oracles, i.e., a partial
relation over their partitions according to the sets of equilibria. To define this relation, let
NED(G(7)) € A(Q2x A) be the set of distributions over Q x A induced by Nash equilibria given
G and 7[] Now consider two oracles, Oracle 1 and Oracle 2, and denote the generic partition
and strategy of Oracle j by Fj and 7;, respectively. Using these notations we define a partial

ordering of oracles as follows.

Definition 1 (Partial ordering of oracles). Fiz the players’ information structures. We say
that Oracle 1 dominates Oracle 2, denoted Fy =ng Fs, if for every 7o and game G, there exists

71 such that NED(G(1)) = NED(G(72)).

In simple terms, dominance implies that one oracle can mimic the signaling structure of the
other to induce the same equilibria. Note that a direct comparison of the games’ equilibria is

problematic because the players’ strategies depend on the oracles’ signaling functions.

*

"Note that a Nash equilibrium (o7}, ..., ) induces a probability distribution over  x A. Specifically, fix w

10V n
and an action profile a, the probability of (w,a) under the equilibrium strategy (o}, ...,o)) and the signaling

function 7 is given by p(w) > g T(s|lw) [T, 07 (ai|IT;(w), s). Since multiple equilibria can exist, NED(G(7)) is
a subset of A(Q2 x A).

12



Two points are worth noting here. First, if the players’ information structures were un-
known, one might consider defining the dominance order between oracles in a more flexible
way, allowing for a variety of possible partitions. In that case, the characterization problem
would likely become easier. The challenge in our framework arises from the fact that the
partitions are predetermined.

The second point highlights that Definition [1|compares the equilibria induced by the oracles.
An alternative, weaker condition could involve, for example, an inclusion criterion based on the
set of equilibria or the players’ expected payoffs. We relate to these possibilities in Section
below. Nevertheless, we use the more general definition to address potential issues that
may arise from different equilibrium-selection processes. Since we do not restrict ourselves
to a specific selection process (which may diverge from the Pareto frontier), a broader set of
equilibria might not always benefit the players. This approach also addresses complications
that could emerge in a parallel setup, if oracles were to maximize some goal function.

Definition (1] also allows us to define equivalent oracles. Formally, we say that Oracle 1 is
equivalent to Oracle 2, denoted F} ~ Fj, if each oracle dominates the other. The characteriza-

tion of equivalent oracles is one of the main results of Lagziel et al.| (2025).

3.2 Alternative definitions of dominance

One could consider other notions of dominance, which might involve different types of compar-
isons between outcomes, such as combinations of (state, action-profiles), or comparisons based
on equilibrium payoffs.

An alternative definition of dominance could be based on an inclusion criterion concerning
the distribution over outcomes. Specifically, Oracle 1 dominates Oracle 2 in the inclusive sense,

if and only if, for every 7, and game G, it holds that

NED(G(n)) C | JNED(G(m)).

T1

This is a weaker condition than the one currently used. It implies that Oracle 1 dominates

Oracle 2 if any equilibrium distribution of outcomes induced by 75 can be generated by some

13



7. Unlike the condition in Definition [I} this alternative allows for different distributions over
outcomes induced by 75 to be generated by different 7, strategies.

Another approach to the issue of dominance could involve comparisons between equilibrium
payoffs. Specifically, for any game G and a signaling function 7, let NEP(G(7)) denote the set
of Nash-equilibrium expected-payoffs profiles induced by 7. Oracle 1 is said to dominate Oracle

2 in the payoff sense if, for every 7 and game G, there exists a 71 such that
NEP(G(7)) = NEP(G(72)).

Alternatively, Oracle 1 dominates Oracle 2 in the inclusive-payoff sense if, for every m and game
G, it holds that
NEP(G(r2)) € | JNEP(G(m)).

T1

The concepts related to equilibrium outcome distributions imply their corresponding payoff-
related notions. Definitions based on equilibrium outcome distributions are better suited for
policy designers that prioritize outcomes, such as individuals’ actions and their aggregate ef-
fects, over individual payoffs. Conversely, definitions grounded in equilibrium payoffs are more
appropriate for contexts where the primary focus is on individual payoffs.

An interesting direction for future research would be to identify the precise settings, if any,
where the various definitions diverge. We leave this question open for further investigation. In

the following, we adopt Definition [1}

3.3 The oracles as players

Another way to compare oracles is to treat them as players. In the spirit of sender-receiver
games, the oracle takes the role of the sender, responsible for providing information, while the
other players act as receivers, making decisions based on both their private information and
the signals they receive. In this framework, the oracle’s objective is to maximize its equilibrium
payoff in the resulting game of incomplete information. One could then compare two oracles
by saying that one is more informative than the other if, in every such game, the former always

secures a (weakly) higher equilibrium payoff than the latter.
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However, this approach has several drawbacks relative to ours. First, such games typically
admit multiple equilibria, making it unclear which equilibrium payoff should be the basis for
comparison. Second, equilibrium analysis generally presumes that players’ information par-
titions are common knowledge. In particular, it assumes that the oracles know the private
information structures of the players. In contrast, our approach imposes significantly weaker
assumptions: one oracle can often imitate another without requiring full knowledge of players’
information structures. In fact, even identifying the components that are common knowledge
is sometimes unnecessary. While our comparison focuses exclusively on the equilibrium out-
comes of the game played by the players, we assume that the private information structures are
common knowledge among the players themselves—but not necessarily known to the oracle.

The third advantage of our approach is that, by focusing on the equilibrium outcomes of
the game played by the agents, we can analyze the information structures of the oracles inde-
pendently of any objectives they might have. This enables us to concentrate on informational
aspects and to introduce new concepts into the model, such as informational loops and clusters

(in Lagziel et al., 2025)).

3.4 The case of one decision maker
3.4.1 The oracle contributes to DM’s private information

To illustrate a key contribution of this paper and connect it to the current body of knowledge,
consider a decision problem with one decision-maker (DM) and two oracles. When Oracle
1 employs a signaling strategy 7;, the DM also gains access to his own partition II. The

combination of the signaling strategy 7; and the partition Il induces a Blackwell experiment

Mi(Tia H) .
Example 2. One decision maker and two oracles.

Consider the uniformly distributed state space Q = {w1, ws, w3, wy }, with a single DM whose
private information is represented by the partition IT = {{w;, ws}, {ws,ws}}, while the oracles’
partitions are given by Fy = {{wi,ws}, {w2},{ws}}, and Fy» = {{w1, w3}, {wa,ws}}. This infor-

mation structure is illustrated in Figure [3]
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(a) (b)
The DM’s information The oracles’ information

Figure 3: On the left, Figure (a) illustrates the information structure of the DM (blue). On the right, Figure
(b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

Now, consider the stochastic strategy 7o given in Figure[dl Combined with II, this signaling

strategy Ty is equivalent to the following Blackwell experiment e, given in Figure 5

To(slw) | s1 | s2 | s3
o | 0 | 1/2]1/2
wo 1/413/4] 0
ws | 0 [ 1/2[1/2
wi | 1/4(3/4] 0

Figure 4: A stochastic Fs-measurable signaling strategy of Oracle 2.

e(slw) | s1,L | s1,R | so,L | s2,R | s3,L | s3, R
o 1 0 [0 [12] 0 [12] 0
o | 1A 0 [3/4] 0 | 0] 0
ws | 0 | 0 | 0 |12 0 |12
Wy 0 1/4 0 3/4 0 0

Figure 5: M (72,1I) - the matrix consisting of the probabilities.

Blackwell’s Theorem states that, given a signaling strategy 7 employed by Oracle 2, the
DM can achieve at least as much as he could by obtaining information from Oracle 1 with

signaling strategy 7; if and only if there exists a stochastic matrix G (the garbling) such that:

Ml(Tl,H)G = MQ(TQ,H).
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This fact immediately implies the following extension of Blackwell’s Theorem:

Observation 1. Suppose there is a single DM with a partition 11 and two oracles with partitions
Fy and F;, respectively. Then, Fy >xg Fy if and only if, for every signaling strategy 7o of Oracle
2, there exists a signaling strategy 7 of Oracle 1 such that My(m,I1)G = Ms(m2,11), for some

garbling matriz G.

Note that in the case of a single decision maker, equilibrium implies that the equilibrium
payoff is the best achievable. In addition, the statement that for every signaling strategy 7 of
Oracle 2, there exists a signaling strategy 7 of Oracle 1 such that M;(m, I[1)G = My (7, IT), for
some garbling matrix G is equivalent to F| =ng Fb.

The stochastic matrix M;(7;, 1) is the combination of two separate stochastic matrices,
7; and the one corresponding to II. For Blackwell dominance, we considered M;(7y,II) and
My (19, 11). Another possibility is to consider the Blackwell dominance between 7 and 75 first.
If 7, Blackwell dominates 75 and both 7y and 7 are independent of II, then M; (7, IT) Blackwell
dominates My(72,11) (see Theorem 12.3.1 of [Blackwell and Girshick (1954))F] Nevertheless,
the reverse does not hold. Consider, for instance, that II is fully informative, then M (7, II)
Blackwell dominates Msy(7,IT), but it does not imply that 73 dominates 5. Hence, dominance
in terms of M (7, I1) and My(7s, IT) is weaker than the dominance in terms of signaling functions
71 and Ty.

This characterization of dominance is expressed in terms of stochastic matrices. Specifically,
the question of whether Mj(7,,II) can be obtained from M;(71,11) by taking its product with
a garbling matrix reduces to a problem about transforming one set of stochastic matrices
into another. However, this characterization is not directly expressed in terms of the model’s
primitives, namely the information partitions.

In this paper, we focus on comparing information structures rather than analyzing the alge-
braic properties of the corresponding sets of matrices. Our primary objective is to examine the
relationship between two oracles based on the model’s primitives, specifically their partitions.
Referring to Example [2| we later demonstrate that Oracle 2 cannot imitate Oracle 1. This

naturally raises the question: why? What is the underlying reason? We aim to shed light on

8Note that for this result to hold, II is fixed and it is independent of 7; and 7».
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this issue while also pursuing the second objective of the paper—extending Blackwell’s model

to a setting with multiple players.

3.5 Common objectives

The game-theoretic setting closest to a one-agent decision problem is one in which all players
share a common objectiveﬂ A natural conjecture is that one oracle induces at least as high a
payoff as another in any common-objective game if and only if its partition refines that of the

other. It turns out that this is not the case.
Example 3.

In this example, there are four states and two players. The following Figure [f] illustrates
the knowledge structures of the players as well as those of the two oracles. It is clear that the

partition of Oracle 2 refines that of Oracle 1.

Q 11, 11,

eWe FCIIC
& \@ cHNG

(a) (b)

The players’ information The oracles’” information

Figure 6: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

Now consider a game where both player have two actions: D and M, and the payoffs are

given by the matrices in Figure[7] The best common payoff is attained when both players know

9As this section serves primarily as a comment, we do not undertake a detailed discussion of the definition
of a common objective. For our purposes, we assume that all players’ payoff functions are identical.
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Player 2 Player 2 Player 2 Player 2

D | M D | M D [ M D [ M

Blaver 1 LD LL| 0,0 D | 0,0] 0,0 D 0,0 0,0 D |00 L1

WL INT0,00,0 M 00 1,1 M| 1,100 M 0,0 0,0
w1 ) w3 Z!

Figure 7: Payoff matrices for each w

the realized state. Oracle 2, who is fully informed, can simply reveal the true state. Oracle 1,
who cannot distinguish between w; and ws, can nonetheless reveal his information; combined
with the players’ private knowledge, this is sufficient to fully disclose the state.

While our focus is not on comparing oracles based on the highest equilibrium payoffs they
can induce, the following proposition provides an affirmative answer to a question naturally

motivated by this example.

Proposition 1. In any common-objective game, Oracle 1 can induce an equilibrium expected
payoff at least as high as any induced by Oracle 2 if and only if, for every player i, the combined
information of Fy and 11; refines that of Fy and I1;.

The proof is deferred to the Appendix and relies on terminology introduced later in the

paper.

4 Partial ordering of deterministic oracles

Our first main result characterizes the notion of dominance among oracles, assuming they are
restricted to deterministic strategies. That is, throughout this section, we only consider oracles
that use deterministic functions, namely 7; : F; — S for every oracle ¢, and we can relate to
every such strategy as a partition (as previously noted).

The characterization is based on the ability of one oracle to match the players’ joint posterior
beliefs, for any given strategy of the other oracle. More formally, we say that Oracle 1 is
individually more informative (IMI) than Oracle 2, if for every strategy 7o, there exists a

strategy 77 that simultaneously matches the posterior partition of every player 1.
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Definition 2. Oracle 1 is individually more informative than Oracle 2, denoted Fy =), Fs, if
for every deterministic o, there exists a determunistic 7y such that 11; V 7 = 1I; V 1o for every

player i.

In other words, one oracle is more informative than another if it can always ensure that
every player has the same information as provided by the other oracle, taking into account the
player’s private information, namely the redundancies given the players’ private information, as
well as the publicly available signal (restricted to deterministic signaling functions). A different
way of defining the same relation is through partitions’ refinements, as given in the following

observation.

Observation 2. Oracle 1 is individually more informative than Oracle 2 if and only if for

every Iy C Fgm there exists F{ C Fy such that 11; vV F| =11, V F}, for every player i.

Note that Observation [2| follows directly from Definition [2| because every Fj-measurable
deterministic strategy 7; induced a sub-partition F] of F; and vice versa. Nevertheless, what
should be clear is that the notion of IMI differs from the notion of refinement, as the following

example illustrates.
Example 4. Individually More Informative versus refinement.

The partial ordering generated by the notion of “individually more informative than” need
not coincide with the notion of “finer than”. Consider, for example, the three partitions II; =
{{wr, wo}, {ws,ws}}, Fi = {{w1,wa, w3}, {ws}} and Fy = {{w1,ws}, {ws}, {ws}}. Note that F,
strictly refines F; and II;, but Oracle 1 remains individually more informative than Oracle 2.
This is illustrated in Figure [§] Nevertheless, in Section we prove that if Oracle 1 is IMI
than Oracle 2 and vice versa, then their partitions partially coincide.

One can also bridge the gap between the notions of IMI and refinement by considering the
possibility that the players’ partitions are not ﬁxedﬂ In other words, we can also consider the

possibility that Oracle 1 is IMI than Oracle 2 for any set of the players’ partitions. Once we

10A partition F} is a subset of partition Fy if the o-field generated by Fj is a subset of the o-field generated
by FQ.

' This resembles the condition of strong Blackwell dominance, in the context of decision problems, in [Brooks
et al.| (2024)).
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Individually More Informative versus Refinement

Q

Figure 8: The notion of “individually more informative than” does not imply “finer than”, though the latter does
imply the former. In this figure, F5 (red) strictly refines F; (green) and II; (blue), but for every deterministic
To, there exists a deterministic 7y such that II; V 7 = II; V 79, so Fj is individually more informative than Fb.

account for all possible partitions, we must also account for the trivial partition, so that Oracle
1 must match any deterministic strategy of Oracle 2. This implies that F} refines F5, at least

weakly.

4.1 First characterization result - deterministic oracles

Our first main result, given in Theorem (1| below, presents an equivalence between oracle dom-
inance and the notion of individually more informative. Specifically, we prove that one oracle
dominates another if and only if it is individually more informative. The proof is constructive.
We assume that Oracle 1 is not more informative than Oracle 2, and depict a game such that
the players’ expected payoffs given a deterministic strategy 7 differ from their expected payofts
for every deterministic strategy 7;. The game is constructed such that a strictly more infor-
mative 71, in the sense that II; V 71 refines II; V 7 for some player ¢, yields a strictly higher
expected payoff for the players, whereas a (strictly) less informative 7 yields a strictly lower

expected payoff. (Unless stated otherwise, all proofs are deferred to the Appendix.)

Theorem 1. Assume that oracles are deterministic. Then, Oracle 1 dominates Oracle 2 if and

only if Oracle 1 is individually more informative than Oracle 2.

Though the proof of Theorem [I]is deferred to the appendix, let us provide some intuition for

it. The first derivation is straightforward—if Oracle 1 can simultaneously match the information
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available to every player given 75, then the sets of equilibria coincide. We emphasize that
Oracle 1 actually matches the information conveyed by Oracle 2, so the set of equilibria can be
preserved by Oracle 1, even if, for instance, there exists a specific equilibrium selection process
that influences the players’ expected payoffs in one way or another.

Proving the reverse statement is a bit more difficult. To gain some intuition for this result,
consider a single-player decision problem. If Oracle 1 is not individually more informative than
Oracle 2, then there exists a strategy 7 such that for every 7 there are two possibilities: either
IT; V 71 strictly refines I1; V 75, or there exists an element of II; V 77 that intersects two elements
of II; V 7.

For this purpose, we design a game based on the partition elements of 1I; V 75. Namely, for
every element B in II; V 75, take all permutations p : B — {1,2,...,|B|}. The player’s action
set is the set of all such permutations. Once a state w is realized and an action p is chosen,
the player receives a payoff that depends on p(w) in case p is supported on the realized state,
or a very low negative payoff otherwise. Figure [ below depicts a specific example for this
payoff function given a uniform distribution on four possible states and two partition elements
in Ily V 7. Thus, if II; V 7 strictly refines II; V 75, the player can secure a strictly higher
expected payoff, and if an element of II; V 71 intersects two disjoint elements of II; V 75, the
player receives a very low expected payoff. Either way, expected payoffs are either higher or
lower given 7, relative to 75, and the result follows.

An example with 4 states and two partition elements in II; V 7

w1 Wa w3 W4q

ay 1 2 3 —212
a2 1 3 2 —212
as 2 1 3 —212
ay 2 3 1 —242
as | 3 1 2 | 2P
as | 3 2 1 | 2%
a; | — 242 _242 _ 242 1

Figure 9: Assume that Q = IT; = {w1, ws,ws,ws} and u is the uniform distribution. Further assume that II; V 7o
consists of two elements By = {w1,ws,ws} and By = {w4}. So, there are 6 permutations/actions for By and a
single one for By. If 71 = {{w1,wa},{ws}, {ws}}, then the player can secure a strictly higher expected payoff,
and if 11 = {{w1, w2}, {ws,ws}} the player would get —2%2 with positive probability, thus generating a strictly
lower expected payoff.
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Remark 1. We repeatedly use the fact that if the players’ expected payoffs in equilibrium
differ when following T instead of T2, then NED(G(7)) # NED(G(m)) for the specified game
G. This holds because v is fized, meaning that every element in A(2 x A) determines the
players’ expected payoffs in the corresponding equilibrium. The reverse deduction, however, is

not necessarily true, as different such distributions may, in fact, yield the same expected payoffs.

Remark 2. In situations where the information available to the players is unknown, a rea-
sonable definition of dominance is that one oracle dominates another if Definition (1| holds,
regardless of the players’ knowledge. Considering the case where the players have no private

information, Theorem (1] implies that this notion of dominance is equivalent to refinement.

Remark 3. Though following a different comparison rule, note that Theorem [l is consistent
with Proposition (1| in the setting of common-objective games. The distinction is that Propo-
sition [1| concerns the best (i.e., most preferred) equilibrium outcome, whereas Theorem (1| deals
with the entire set of equilibrium outcomes induced by the oracles.

The proof of Theorem (1| shows that if Oracle 1 is not individually more informative than
Oracle 2, then Oracle 1 does not dominate Oracle 2. The constructed game (in the proof of
Theorem can be slightly modified by aggregating the players’ payoffs into a common objective,
yielding a common-objective game in which there exists an equilibrium distribution induced by

Oracle 2 that cannot be induced by Oracle 1.

4.2 Common knowledge components

Theorem |[1| characterizes dominance (under deterministic signaling functions) using the notion
of IMI, and Example [ shows that if Oracle 1 is IMI than Oracle 2 it does not imply that Fy
refines F,. Nevertheless, Example [4] does show that F refines F5 in every information set of
player 1. That is, given an element of player 1’s partition, F} refines F,. This raises the general
question of whether the notion of IMI leads, in some way, to a refinement of partitions while
taking into account the players’ private information.

To study this aspect in the context of games, rather than in decision problems, we first

need to define the notion of a “Common Knowledge Component.” Following |Aumann, (1976),
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an event £ C Q is a common knowledge component (CKC) if E is common knowledge (among
all players) given some w € E, and there is no event £’ C E which is also common knowledge
given some w’' € E’. Formally, an event F is a CKC of the partitions II;, Iy, ..., II, if it is an
element in the meet A}, II;, which is the finest common coarsening of all the partitions. For
example, Figure [§ depicts two CKCs: {wy,ws} and {ws,ws}.

With respect to players’ payoffs, their sole concern is the information available within each
CKC. Moreover, all possible posteriors within a given CKC are derived collectively from the
players’ private and public signals within that CKC. This implies that players’ expected payoffs
can be decomposed across CKCs. As a result, the impact of each oracle can be analyzed
independently within each CKC.

Using this definition, we can now debate the general hypothesis of whether an IMI oracle
also has a finer partition in every CKC. The answer for this question is no. The following
example shows that even in the case of a unique CKC, the fact that Oracle 1 is IMI than
Oracle 2 does not imply that F; refines F5.

Example 5. IMI does not imply refinement in every CKC, and refinement in every CKC does
not imply IMI.

To see that IMI does not imply refinement in every CKC, consider the information structure
given in Figure [I0] It depicts a unique CKC that covers the entire state space, such that
I = {{wr,wi}, {wa} {wst}, o = {{wi} {w2}, {ws,wal}, and 3 = {{wi}, {ws,ws}, {wa}}
One can see that there exists a unique CKC, €2, as the finest common coarsening of all players’
partitions is 2. The oracles, however, have the following partitions: Fy = {{w1, w2}, {ws}, {ws}}
and Fy = {{w1,ws}, {w2,ws}}.

Both oracles can either withhold all information or fully disclose their information, thereby
ensuring that all players become fully informed of the realized state. In addition, Oracle 1
can signal the partition F] = {{w;,ws,ws}, {ws}}, which provides complete information to
players 1 and 2 but provides no information to player 3. Oracle 2 cannot do the same, because
any information provided by Oracle 2 (other than the trivial set €2) gives all players complete
information. Thus, Oracle 1 is IMI than Oracle 2 because Oracle 1 can provide full information

to all players simultaneously, whereas Oracle 2 is not IMI than Oracle 1. Note that neither of
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the two partitions is finer than the other.

QO 1

(a) (b)
The players’ information The oracles’ information
Figure 10: On the left, Figure (a) illustrates the information structures: Iy = {{w, w4}, {w2}, {ws}} of player
1 (blue); Iy = {{w1}, {wa}, {ws,wa}} of player 2 (red); and II3 = {{w1}, {ws,ws}, {wa}} of player 3 (black). On
the right, Figure (b) portrays the information structures Fy = {{w1, w2}, {ws}, {wa}} of Oracle 1 (orange) and
Fy = {{w1,ws}, {wa,ws}} of Oracle 2 (green). This illustrates a unique CKC in which neither oracle refines the

other. Nevertheless, F; is IMI than F» whereas the converse is not true, because Oracle 2 cannot replicate the
partition F| = {{w1,wz, w3}, {wa}}.

Another aspect of this example, which resonates with the key insight of the stochastic
setting in Section |5, is that there exists a stochastic strategy m that Oracle 1 cannot imitate.
Specifically, consider the stochastic strategy 75 given in Figure One can verify that there
exists no 7, that yields the same vectors of posteriors as the stated strategy 7, and this hinges
on the fact that F; does not refine Fy. A broader discussion of this issue is given in Example [0]
at the beginning of Section [5

T(s|lw) | s1 | S2
w1 1/312/3
W 2/311/3

ws | 1/3]2/3
Wy 2/3 1/3

Figure 11: A stochastic Fy-measurable strategy of Oracle 2.

To demonstrate that refinement in every CKC does not imply IMI, consider the following
example with two players whose partitions are Iy = {{w1, w2}, {ws, ws}, {ws,we}} and Il =
{{w1, wa}, {ws, ws}, {ws,we}}. In this case, there are two CKCs, {wy,ws} and {ws,wy, ws, we}.

Next, assume the two oracles have the following partitions, F; = {{w1,ws,ws}, {ws,ws,ws}},
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Fy = {{w1, w2}, {ws, wa}, {ws, we}}, as illustrated in Figure[12] Observe that in every CKC, F;
refines F.

Now consider a completely revealing, deterministic strategy 75 that maps the three different
partition elements of Fy to three different signals: m(si|lw1) = Ta(si|lwa) = 1, Ta(s2lws) =
To(S2|ws) = 1, and 7o(s3|ws) = T2(s3ws) = 1. Can Oracle 1 produce a signaling function 7y such
that II; V 7, = II; V 7, for every player 7

Note that under 75, neither player can distinguish w; from ws. Therefore, in order for
to satisfy II; V 7 = II; V 1o for every i, the strategy 7 must map all F; partition elements
to the same signal. Consequently, under 7, Player 1 cannot distinguish w, from ws;, which is
achievable given 75. We therefore conclude that Oracle 1 is not IMI than Oracle 2, even though

Fy refines F; in every CKC. However, in the special case where {2 consists of a single CKC,

Figure 12: Refinement in every CKC does not imply IMI. Suppose II; = {{w1,ws}, {ws,ws}, {ws,ws}} and
Iy = {{w1,wa}, {ws,wa}, {ws,we}}. There are two CKCs, {wy,ws} and {ws,ws,ws,ws}. Consider Fy (orange)
and F» (teal) depicted in the figure. Despite Fj refines F» in every CKC, F} is not individually more informative
than F5.

refinement does imply IMI.

Fy

4.2.1 Two-sided IMI implies equivalence in every CKC

Though we substantiated that an IMI oracle need not have a finer partition in every CKC, this
does hold in case both oracles dominate one another, under deterministic signaling strategies.
The following theorem provides this equivalence by stating that, given a specific CKC, both

oracles dominate each other if and only if their partitions coincide.
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Theorem 2. Fix a unique CKC. Then, Oracle i is IMI than Oracle —i for every i if and only
if Fi = F,.

By applying the result within each CKC, the theorem asserts that the partitions F; and F3
are equivalent in every CKC if and only if they are mutually IMI within that CKC, given any
fized set of players’ partitions. This aligns with our previous observation in Example [4| that
IMI with respect to any set of partitions implies refinement. As a result, the issue of CKCs
arises naturally in the context of deterministic oracles and becomes even more significant when

studying stochastic ones, as examined in Section

5 Partial ordering of (stochastic) oracles

In this section we analyze dominance among oracles who can exercise general signaling strate-
gies, not restricted to deterministic ones. The main result characterizes when one oracle domi-
nates another in the case of a single CKC.

To achieve this result, we take the following gradual steps. In Section we describe a
two-stage game, entitled “a game of beliefs”. Given a profile p of probability distributions, the
players’ expected payoffs in this game are maximized if and only if their individual beliefs match
p. We use the game of beliefs to show that if an oracle dominates another, it must be able to
produce the same joint posteriors as the other oracle. In Section we consider a set-up with
a unique CKC and show that Oracle 1 dominates Oracle 2 if and only if F} refines F3.

The next stages of this analysis are provided in Part II of the paper (i.e., in |Lagziel
et al.l 2025)), where we introduce the concept of information loops between common knowl-
edge components (CKCs). In the absence of such loops, we show—building on the result in
Section [5.2}—that oracle-dominance is equivalent to partition refinement within each CKC.
However, in the general case, the refinement condition alone is not sufficient. To fully char-
acterize dominance, it must be combined with an additional condition expressed in terms of
information loops.

Before we proceed with the aforementioned road map, we start with a simple example that

illustrates the difference between the deterministic and the stochastic settings. In the following
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two-player set-up, we show that even if Oracle 1 is IMI than Oracle 2, it does not mean that
Oracle 1 can match the posteriors that Oracle 2 generates under stochastic strategies (whereas
this can be achieved under deterministic strategies). This example also resonates with the key

issue in Example [5 showing that IMI does not imply refinement in every CKC.
Example 6. IMI s insufficient under stochastic oracles.

The ordering generated by the notion of IMI need not hold when we transition to stochas-
tic strategies. Consider, for example, the following uniformly distributed state space 2 =
{w1, we, w3, wy}, with two players whose private information is given by the two partitions
I, = {{w1,ws}, {ws}, {ws}} and Ty = {{w1}, {w2}, {ws,ws}}. The oracles, to differ, have the
following partitions Iy = {{w1,was}, {wa,ws}} and Fy = {{w1,ws}, {w2,ws}}. This information

structure is illustrated in Figure |13]

Hl H2 Q

CNe
C

() (b)

The players’ information The oracles’ information

Figure 13: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

First, assume that every Oracle i is restricted to a deterministic Fj-measurable strategy.
Thus, every oracle can either convey no information, i.e., a constant signaling strategy, or
he can reveal his partition element, thus ensuring that all players have complete information.
Therefore, we can say that Oracle 1 is IMI than Oracle 2, and vice versa.

Now, consider the stochastic strategy 7 given in Figure [I4 Given w; and assuming s» is

28



realized, the posteriors of players 1 and 2 are uiﬂ%@ = (2/5,3/5,0,0) and M32|w1,52 =e =
(1,0,0,0), respectively[™]

To(s|lw) | s1 | s2 | s3
w | 0 | 1/2]1/2
Wo 1/413/4] 0
ws | 0 |1/2]1/2
Wi | 1/4|3/4] 0

Figure 14: A stochastic Fr-measurable strategy of Oracle 2.

To mimic this joint posterior, there must exist a signal s, such that 7 (s4|w;) = @ > 0 and

71 (S4|we) = %a. However, 7 is Fj-measurable, so 71(s4|ws) = o and 7 (s4|lws) = %a. Hence,

given wz and assuming s, is realized, we get a joint posterior of u;‘ws’&l =e3=(0,0,1,0) and
,uzllm ., = (0,0,3/5,2/5), which does not exist in the support of 7. So, although Oracle 1 is

IMI than Oracle 2 under deterministic strategies, he cannot convey the same information under
stochastic ones.

Note that the players’ partitions form two CKCs, the first is {w;, ws } and the second {ws, w4 }.
In every CKC, every oracle refines the other, so each of them can mimic the other, even under
stochastic strategies, in that CKC. Yet, the example shows that one cannot extend this result
to the entire state space.

This raises the question of the fundamental difference between the deterministic and stochas-
tic settings. This issue should be addressed on two levels: within every CKC and between CKCs.
Example [5] suggests that, under stochastic signaling functions, one cannot restrict the discus-
sion to IMI alone but must require that Fy refines Fy within every CKC. Example [6] further
complicates this problem by demonstrating that even a refinement within every CKC may not
be sufficient.

The critical distinction arises from the significance of the joint profile of posteriors. The
induced Bayesian game and its equilibria depend not only on the players’ marginal posteriors
but also on the joint profile of posteriors. In the deterministic setup, there is a unique public
signal in every state, leading to a unique posterior for each player. Consequently, the IMI

condition ensures that the profiles of posteriors coincide and the dominant oracle induces the

h

12\We use e; to denote the vector whose i" coordinate is 1, while all other coordinates equal 0.
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same Bayesian game as the other oracle. However, this is not necessarily the case in the
stochastic setting, where multiple public signals can induce various marginal posteriors in each
state. This poses a challenge both within and across CKCs.

The fact that every state has potentially multiple signals allows the oracles to use the
same signals, with different weights, across various states. The basic structure of the players’
partitions is not rich enough to cover all the information that the oracles can convey this way.
Namely, one cannot use the players’ interim partitions (i.e., given the information conveyed
by the oracles), to cover all feasible profiles of posteriors, rather than compare these profiles
directly, for every signaling function. Thus, one oracle can dominate another if the former can
mimic every signaling function of the latter, and this necessitates refinement within CKCs, as

well as a supplementary condition across CKCs.

5.1 A game of beliefs

In this section, we construct a two-stage game for every profile of posteriors p, which we refer
to as a game of beliefs. The key property of this game is that the sum of equilibrium expected
payoffs is maximized if and only if players adhere to the specified profile of beliefs p. Therefore,
if one oracle can support that profile of posteriors, the only way for the other to match the
players’ expected payoffs in equilibrium is to also induce p. We repeatedly use this game in
Section || to characterize dominance among oracles.

Formally, fix a profile of probability distributions p = (p',...,p") € (A(R2))", and consider
the following game G(p). The actions and utility of every player i are A; = {w € Q|p}, > 0}

and

2
ui(a,wlp) = Ri(as, wlp) — —— > Ri(aj,w|p)liweay,
i#i

respectively, where the function R;(a;,w|p), for every player i, is defined by
—2, if w ¢ Aia
Ri(aiuw‘p> = p—l-, if a; = w € Ai,

0, otherwise.




In simple terms, every player ¢ aims to match the realized state w, and in any case would suffer
a penalty of —2 if the realized state does not have a strictly positive probability according to
p. Note that the utility function of every player ¢ also depends on the actions of each player
J # %, but R; is independent of player i’s actions. The game yields to following result.

Proposition 2. Consider the game G(p). If p represents the players’ actual beliefs, then the
expected equilibrium payoff of every player is —1. However, if there exists a player © with a
belief ¢ # p', then the aggregate expected payoff (over all players) in equilibrium is strictly

below —n.

The result given in Proposition [2|is rather straightforward. If p represents the players’ actual
beliefs then, in equilibrium, every player i chooses an action a; = w such that p! > 0. This
is the players’ best option, given the information conveyed through p. One can easily verify
it is indeed an equilibrium that yields an expected payoff of —1 for every player. Any other
profile of beliefs would either yield a state with zero-probability according to p thus generating
a strictly low payoff, or allow for the player to choose an action that secures an expected payoff
above —1 (thus reducing the payoffs of all others).

We use this single-stage game G(p) to construct a two-stage game which enables us to cross-
validate the true signal and joint posterior that the players receive. The game is specifically
defined given some strategy 7 of Oracle 2, to check whether Oracle 1 can indeed mimic the
feasible posteriors of 7.

The two-stage game is defined as follows. First, fix a strategy 7 of Oracle 2 and consider
some signaling function 7. Assume that w and s are realized according to p and 7, respectively.
Thus, every player ¢ maintains a posterior Ni|w,30 € A(Q). Next, every player i privately
announces the perceived signal s € S and a posterior p* € A(2) from the set of the player’s
feasible posteriors given the (previously fixed) signaling function 7, private information II; and
the stated signal s°. Let s = (s!,s%,...,5") be the profile of declared signals and denote by
p = (p")ien the declared posteriors of all players. If s and p are not feasible profiles according
to the information induced by every II; and 75 (including a mismatch between signals so that
s' # 7 for any two players i and j), then all players receive —M for some M > 1. However,

if s' =s?=..-=s"€ S5, and p = (ul,, a)ien € Post(r), then all players proceed to the
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second stage in which they play G(p). The two-stage game G, is illustrated in Figure .

Fix

w and s° are realized
according to
1 and some 7, respectively

|

Every player privately
announces the perceived
signal s* and posterior p’

— I

If s =5/ €8, Vi,j, | Otherwise
and
p= (NZTQ\M,SI%GN € Post(72)

J Every player receives
Play G(p) -M < -1

Figure 15: The two-stage game G,, under any signaling strategy 7.

This two-stage game G, is constructed such that players have to match their declared
signals and posteriors between themselves because every mismatch leads to a very low expected
payoftf. Moreover, for the same reason, the players must also ensure that the declared signals
and subsequent posteriors match a feasible profile (s,p) given their private information and
signaling function 5.

The following claim analyzes the two-stage game G, given that the signaling function 7 is
either 75 or 71, and assuming that the set Post(7) is not a subset of Post(7y), i.e., assuming that
Post(71) ¢ Post(rz). It proves that under 75, players can achieve a strictly higher aggregate

expected payoff compared to what they can achieve in equilibrium under 7.
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Lemma 1. Consider the two-stage game G.,. If 15 is the signaling function, then there exists
an equilibrium so that the aggregate expected payoff is —n. However, given 171 and assuming

that Post(m1) € Post(m2), then the aggregate expected payoff in equilibrium is strictly below —n.

An immediate conclusion from Lemma [I]is Proposition [3, which establishes a condition for
the existence of a strategy 7, such that NED(G(7)) # NED(G(m)) for every 71. Proposition
states that, given a strategy 7 and for every 71 such that Post(r1) € Post(7), there exists
a game in which Oracle 1 cannot dominate Oracle 2 due to its inability to match the set of
equilibria induced by the latter. The proof is straightforward, given the construction of G,
and Lemma [I], and is therefore omitted. Yet, as in the proof of Theorem [1, we emphasize that
the deduction follows from the fact that once the expected payoffs in equilibrium do not align
between G(71) and G(73), then the equilibrium distributions over profiles of actions and states

cannot match.

Proposition 3. Fiz 7 and consider the game G.,. For every 1y satisfying Post(m1) € Post(r),
the maximal aggregate expected equilibrium payoff in G, (7o) is strictly greater than in G'., (1),

which also implies that NED(G.,(12)) # NED(G,(11))-

In other words, given the game G, a necessary condition for Oracle 1 to dominate Oracle 2 is
that, for every strategy 7o, there exists a strategy 71, such that Post(r;) C Post(7). Henceforth,
we relate to this as the inclusion condition.

The next proposition proves the reverse inclusion condition, such that a necessary condition
for Oracle 1 to dominate Oracle 2 is that for every strategy 7o, there exists a strategy 7, such
that Post(7z) C Post(7y). This builds on a different game which exploits the Kullback-Leibler

divergence (KLD) to elicit a unilateral and truthful revelation of individual posteriors.

Proposition 4. Fiz 7. There exists a game G, such that for every T satisfying Post(7y) ¢

Post(71), it follows that NED(G’ (72)) # NED(G/, (71)).

The combination of Propositions [3] and [ provides a key insight into the dominance of one
oracle over another: the dominant oracle can match the set of posterior beliefs induced by the
other oracle. To formalize this, we define a combined game that integrates the game of beliefs

with a KLD-based game. The following Theorem [3] establishes this result.
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Theorem 3. If F| =xg F», then for every o, there exists 11, such that Post(r) = Post().

The intuition for this result follows from the previous propositions such that the players
need to align their signals and posteriors with each other, as well as to truthfully match them
with the feasible outcomes of 75. When players are unable to achieve a truthful alignment, they
encounter the issue of mismatched beliefs and misaligned incentives while playing the sub-games
G,, and G’,. Notice that one can reach the result of Theorem |3 even when using the weaker
(previously mentioned) dominance condition which states that Oracle 1 dominates Oracle 2 if
and only if for every 7 and game G, it follows that NED(G(72)) C J,, NED(G(r1)). Yet, the
general question of whether matching the set of posteriors is not only a necessary condition for

dominance, but also a sufficient one, is left for future research.

Remark 4. Recall the weaker dominance notion in the inclusive sense (see Subsection [3.2)).
The proof of Theorem [3| also demonstrates that if Fy dominates Fy in the inclusive sense, then

the conclusion of this theorem holds. Specifically, there exists Ty such that Post(r,) = Post(7z).

Beyond Theorem [3| the result given in Proposition [3] also raises an immediate question
about the implications of the inclusion condition on the signaling functions 7; and 75. Namely,
how does the inclusion condition translate to the oracles’ strategies, which in turn reflect on
the oracles’ partitions? We provide an analysis of this condition in Lemma [2] below, focusing
on a specific binary signaling function 7. The lemma shows that the distribution of each signal
of 71 is proportional to the distribution of some signal of 7.

Formally, fix two distinct signals {s;, so} and assume that the partition Fy = {Ay, Ay, ..., A}
has m elements, as noted. Let pi,ps,...,p, be m distinct probabilities such that all ratios of
two distinct numbers from the set A = {p;,1 —p; : 7 = 1,2,...,m} are pairwise differentH

Define the signaling function 7, such that
Ta(s1]4j) =1 — ma(s2]ld;) = pj, V<j<m. (1)

Given this signaling function and assuming that the state space comprises a unique CKC,

13To achieve this, one can consider m distinct prime numbers r, < r9 < --- < 7,,. Define Tg = Q, and for
every j > 1, let T; be the extended field of T;_; with ,/r;. Take p; € T} \T;_.
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Lemma [2| states that the inclusion condition implies that 7, is partially proportional to 7o,

restricted to a subset of feasible signals.

Lemma 2. Fiz 75 given in Equation and a unique CKC. If Post(m) C Post(my), then for
every signal t € Supp(7y) there exists a signal s € {s1,s2} and a constant ¢ > 0 such that

71 (t|w) = ema(s|w) for every w € Q.

The result in Lemma [2| pertains to fundamental aspects of Bayesian inference. When the
inclusion condition holds, the probability weights for each signal of 71 must be proportional
to the weights of some signal of 7; otherwise, the posteriors would not align. The impact of
this condition is rather extensive, because it implies (at least in some cases) that the partition
of Oracle 1 refines that of Oracle 2. We utilize this result in the characterization of oracle

dominance under a unique CKC in the following Section [5.2]

5.2 A unique CKC

In this section, we characterize oracle dominance under the assumption that €2 consists of a
unique CKC. Specifically, we prove in Theorem [4] that, given a unique CKC, Oracle 1 dominates
Oracle 2 if and only if F} refines F5. This is also equivalent to the condition that for every
strategy 7o, there exists a strategy 7 such that the inclusion condition holds (by itself and as an
equality), and it is also equivalent to the condition that the set of distributions over posteriors
profiles are identical (namely, that for every strategy 7o, there exists a strategy 7 such that
fr, = firy). While this result has significant merits on its own, it also serves as a foundational
building block for subsequent results in |Lagziel et al.| (2025) that address the partial ordering

of oracles in more general probability spaces.

Theorem 4. Assume that Q) comprises a unique common knowledge component. Then, the

following are equivalent:
o Fy refines Fy;
o [ =Nk by
e For every 1o, there exists 71, so that Post(ry) C Post(7);
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e For every 1o, there exists 71, so that Post(ry) = Post(7);
o For every To, there exists 71, so that ji;, = fir,.

Theorem [4, which builds on Lemma [2| presents an intriguing equivalence between parti-
tion refinements and the inclusion condition. Notably, this result applies to any information
structure with a unique CKC, independent of any specific game. Furthermore, the refinement
condition implies that Oracle 1 can effectively mimic any strategy of Oracle 2, allowing Oracle
1 to support the same sets of distributions on €2 x A induced by Nash equilibria in incomplete-

information games for any given 7.

6 Final comments and a pointer to part 11

6.1 The main results in part I

This paper provides a comprehensive analysis of the case where the signaling strategy is de-
terministic. In contrast, the stochastic signaling case is only partially explored, and even then,
only in the specific context where there is a single CKC.

This naturally leads to the following question: what happens when there are multiple CKCs,
and the oracles lack access to the players’ common knowledge—in particular, the ability to
distinguish between states that belong to different CKCs? In such scenarios, the informational
limitations of the oracles may lead to significant complications. The implications of this gap

are addressed more thoroughly in Part II of the paper.

6.2 Information loops

Revisiting Example [6] we ask: What is the fundamental reason that Oracles 1 and 2 domi-
nate each other—hence are equivalent—when attention is restricted to deterministic signaling
functions, yet fail to be equivalent once stochastic signaling strategies are allowed?

The key lies in the structure of the information that oracles can induce. Under deterministic
signaling, both oracles generate the same joint posterior beliefs, accounting for redundancies

due to private information, and thus satisfy the Individually More Informative (IMI) condition
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in both directions. As a result, they are equivalent with respect to the set of equilibrium
outcomes they can support.

However, when oracles are allowed to use stochastic signaling, the informational structure
becomes richer and more nuanced. |Lagziel et al. (2025) introduces the concept of information
loops, which capture the recursive flow of information across distinct components of common
knowledge. In general, an Fj-loop is a closed path among distinct CKCs, connected via the
information sets of Oracle i.

While Oracles 1 and 2 may be indistinguishable under deterministic signaling (generating
the same posterior beliefs and satisfying the IMI condition), they can induce different infor-
mation loops when employing stochastic strategies. These differences affect how information
is disseminated and interpreted, and in particular, influence the extent to which each oracle is
constrained in its ability to shape the players’ beliefs.

As a result, the sets of achievable equilibria may diverge. The failure of equivalence under
stochastic signaling thus stems from the oracles’ ability to influence the game’s informational
dynamics in fundamentally different ways—differences that deterministic signaling cannot cap-
ture. These structural distinctions are precisely what the notion of information loops is designed

to formalize.
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A Appendices

A.1 Proof of Proposition

Proof. Necessity. Suppose, by way of contradiction, that there exists a player, say player 1,
such that the combined information of £} and II; does not refine that of F5 and II;. Then there
exists an information set of II; on which F; does not refine Fy. By Blackwell (1953), this implies
that there is a decision problem defined on this information set in which F3 induces a higher
expected payoff than Fj.

Now consider a common objective game in which all players except player ¢ are dummies

(i.e., have only one available action). Suppose that payoffs are zero outside this information set
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and coincide with player ¢’s payoff within it. In this game, the highest equilibrium expected

payoff induced by F; is strictly greater than that induced by Fi, contradicting the assumption.

Sufficiency. Assume that for every player ¢, the combined information of F; and II; refines
that of F3y and II;. Fix a CKC. We first show that in any common objective game, confined to
this CKC, and for every partition F', the highest equilibrium payoff is achieved when F' is fully

revealed. In fact, we prove a stronger statement.

Claim 1. Let 7 be a signaling function measurable with respect to F'. Then the highest equilib-
rium payoff under T is at least as high as the highest equilibrium payoff under any garbling of
TB denoted TM .

Suppose that the experiment 7 uses signals in the set S, while 7M uses signals in the set
T. Let (0;)ieny be the equilibrium profile that maximizes the players’ payoff, using signals
produced by 7M and the private information available to the players. Finally, let M = (mg)
be the garbling matrix, where my > 0 for every (s,t) € S x T and ) ,.my = 1 for every
seS.

Unlike the case with a single decision-maker, the players cannot use the signal generated
by 7 in conjunction with M to replicate the signal of 7M. The reason is that M is typically
stochastic, and if the players were to use M privately, they would generate independent signals,
thus lacking coordination.

To prove the assertion, we construct an auxiliary signaling strategy, 7, that players can
follow and generate the same distribution over pairs of state and action profiles as under M

and (0;);en. The set of signals that 7 uses is S x T'. Define
7((s,t)|w) := mg7(s|w).

Note that for any fixed s € S, all signals of the form (s,t) € S x T induce the same
posterior—namely, the posterior that s induces under 7. Define the following strategy profile:
for each player i, let

ai((s,t),m) = o;(t, m),

14Here we refer to 7 as a Blackwell experiment.
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where 7; denotes the private information of player i, that is, the element of II; containing
the realized state. In other words, when player i observes the signal (s,t) and the private
information 7;, he plays according to o;(¢, ;). The signaling strategy 7T serves to coordinate the
players regarding the outcome of the garbling.

The profile (7;);en, when used in conjunction with the signal generated by 7, induces the
same distribution over states and action profiles as the original strategy profile (0;);cny under
the signal generated by 7M. Consequently, it yields the same expected payoffs.

The profile (7;);eny may not constitute an equilibrium, however. In that case, a sequence of
pure-strategy, payoff-improving deviations by individual players benefits all players and even-
tually (after finitely many such deviations) leads to an equilibrium induced by 7. The resulting
payoff is at least as high as the one generated by 7M and the profile (7;);en-

Since, for a fixed s € S, all signals of the form (s,t) induce the same posterior, we can
assume that for every player i and private information ;, the actions 7;((s,t), ;) are identical
across all t € T. It follows that the strategies 7; can be equivalently defined on the signal set
S associated with 7.

We conclude that there exists an equilibrium under 7 that yields a payoff at least as high
as that generated by the profile (7;);en. This completes the proof of Claim [1]

Observe that any F-measurable signaling function is a garble of the full revelation of F.
Thus, the highest equilibrium payoff induced by F;,7 = 1,2 is when it is fully revealed. Finally,
since for every player ¢, the join of F} and II; refines the join of F, and II;, any equilibrium
strategy that is measurable with respect to the latter is also measurable with respect to the for-
merﬂ If these strategies do not constitute an equilibrium under F7, then a process of sequential
improvement—where players unilaterally deviate one at a time—leads to an equilibrium that
yields a higher payoff. This concludes the proof.

O

15We cannot reuse Claim [1] here because there is no common garbling for all players: each has its own garbling
matrix.
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A.2 Proof of Theorem [1I

Proof. One derivation is straightforward. Assume that Fj = (), Fa. For every 73, take 71 such
that II; V 7y = II; V 75 for every player . Thus, we get NED(G(71)) = NED(G(72)) for every
game G. This holds for every strategy 7o, so F} >ng F5 as needed.

To establish the converse derivation of the theorem, we assume that Oracle 1 is not individu-
ally more informative than Oracle 2, and prove that Oracle 1 does not dominate Oracle 2. Fix a
strategy 7o, so that for every 7, there exists a player ¢ such that II;V # II; V7. Consider such
71, and with no loss of generality, assume that I1; V71 # II; V79, Denote I1; V1o = { By, ..., B}
where B; = {w], ... ,w‘ij‘} C Qforevery 1 < j <k.

Consider the following decision problem. Define Pp; to be the set of all permutations of By,
so that every element p € Pp, is a function p : B; — {1,2,...,|B;[} where p(w]) is the location
of wlj according to that permutation. Let A; = J ; Pp, be the action set of player 1, so that
player 1 chooses a permutation p over a partial set of €). Define the following utility function

p(wi)

) N T
el B P E By

u(a,w) = Ul(Pawzj) = ol
2

—mmaey P& Pp,

where p(w!|B;) is the probability of w! conditional on B;. In simple terms, player i needs to
match his action, i.e., a permutation, to the realized state wlj . If the action of player 1 is not
a permutation on the states of the realized element of the partition (generated by his private
information and the information that Oracle 2 conveys), he gets an extremely low negative
payoff. However, in case the action of player 1 is a permutation on the relevant block, he
receives a positive payoff based on the ordinal location of the realized state according to the
chosen permutation.

Let us compare the expected payoffs of player 1 given the additional information conveyed

separately by the two oracles. Given the partition II; V 75 and after w is realized, player 1 is
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informed of the relevant block B; of the partition such that w € B;. Thus, for every p € Pp,,

_ 1BV (. 0l — SIB pwi) p(wl) |Bj|+1
Elu (p,w)|Bj] = Y p(w]|Bj)ui(p,wf) = > u( z|BJ)—M(wlj|Bj)|Bj| 2 g T 2

w! €B; wl€B; w! €B;

Note that the expected payoff is independent of the chosen permutation p given that p € Pp..

Hence,

Bil+1
max E[u; (p, w)|Il; V 7] ZZN(BJ)—‘ d :
P

Now consider the two possible scenarios given that II; V 7y # II; V 7p: either II; V 7 is a
strict refinement of II; V 7, or there exists at least one block of II; V 7y that intersects two
disjoint blocks of II; V 7.

Starting with the former, assume that II; V7; is a strict refinement of II; V 75, so there exists
a block B} that II; V 7y splits into at least two separate blocks. Without loss of generality,
assume that B; is such a block, and denote the two disjoint sub-blocks by B;; and B, so
that By = By1 U By 5. Assume that for every B; # B, player 1 follows the same strategy as

with II; V 75 so that we can focus on the difference in expected payoffs given B;. Evidently,

1
plw
E[ul(p,w)|B1,1] = Z W Wl ]Bll U p,wl Z M |B11 Wi;’m
l

wl €B1,1 wj €B1’1

_ gy B plw)
= 2 B s BB

wi€B1,1

p(B1) Z 1
= 5 5 p(wl )
((Br1)| B e

Note that player 1 can choose a permutation on B; which maximizes the sum of all states in
Bl,ly i.e.,

||Bl|+1

IIl&X Z |Bl|+|B1|—1+ +|B1|—’Bl’1|+1> ’Bl,l 5

w; EBl 1
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Thus,

w(By) |Bl|+1
E ,w)|By1] > B
pegs Bl Bl = Sop Oy Pl

Y

and a similar computation holds for B ;. Therefore,

B[+ 1 p(By) B +1
Elu (p,w)|h V7] > B, B BB
max Efus (p,w)|My V 7i] jzgu( =g TuBu) (Bn)|Bl|| S
(Bl) |Bl|+1
+ ﬂ(Bl,Q) ( >|B“312‘
k
Bt PBH\ lel} B +1
_ e T (MBS
>z Bl BT
B;| +1
_ Z ’ | _mzz}XE[ul(p,w)leﬁ]a

=1

and player 1 can guarantee a strictly higher expected payoff using the information conveyed
through Oracle 1 than through Oracle 2.

Next, consider the other possibility that II; V 71 is not a refinement of Iy V 75. This implies
that there exists at least one block of I1; V7 that intersects two disjoint blocks of I V7. Denote
this block by B*. For every state wlj and every permutation p € Pp;, note that p(wlj ) < |Bjl,

so uq(p, wlj ) < ; (w{1|Bj)' Hence, in the optimal case in which player 1 is completely informed of

the realized state, his payoff cannot exceed |Q2]. However, in case player 1 wrongfully chooses a
210]Q|

ming, p(w)

permutation that does not match the realized block in II; V 7, his payoff is given by —
Thus,

Elu(p,w)[B] = ) p(w|B*)u(p,w)
. 1 210\Q|
< 2 PG o el |-
. 210|Q\
< |B |—m.
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This suggests that the expected payoff of player 1 given II; V 77 is bounded from above by
maXE[ul(p,w)]H1 V 7'1] < ‘Q‘ — 210‘Q| < 0,
p

which is strictly below the expected payoff given the information transmitted through Oracle
2.

To conclude, for every player ¢, we can define a decision problem such that whenever II; vV
71 # II; V 1, it follows that the expected payoff of player ¢ given 75 differs from the player’s
expected payoff given 7. Hence, there exists 7o which yields a unique profile of expected payoffs
in equilibrium that cannot be matched by any 7y, thus for every 7, we get NED(G(7)) #
NED(G(7)), and this concludes the proof. O

A.3 Proof of Theorem [2

Proof. Fix a unique CKC. One direction is trivial, so assume that F; is IMI than F_; for every
1 = 1,2, and let us prove that F; = F5. Assume, to the contrary, that I} # F,. W.l.o.g, there
exist wy # wy, such that F)(w;) = Fi(wy) whereas Fy(wy) # Fy(ws).

Consider the partition Fj = {Fy(w), (F»(w))°}. By assumption, there exists a partition
F| such that II; vV F| = II;, V F}, for every player i. Denote A = F{(w1) N Fy(wy), B =
Fl(wy) N (Fy(w1))¢, C = (F{(w1))* N Fy(wy), and D = (F](w1))¢ N (Fy(wq))¢. See Figure [16](a).

If there exists a player i such that II;(w;) = II;(w2), then wy € (F] V II;)(wy), while wy ¢
(Fy v 11;)(w2), which contradicts the equation II; V F] = II; V Fj. Thus, for every (w,w’) €
AXx BUAXx DUB x C and for every player i, we conclude that IT;(w) # II;(w’).

Because this is a unique CKC, every two states w and w’ have a connected path, in the
sense that there exists a finite sequence of states starting with w and ending with w’ where
every two adjacent states are in the same information set of some player. Fix such a path from
wy to wy, and denote it by (wy,wi1, w12, .., W1, W3, .. .,wy) where {wy; : 1 <t <[} € C and
w3 € D. This holds, w.l.o.g., because states in A are directly connected (through a partition
element of some player) only to states in A U C, and the same holds for states in B that

are directly connected only to states in B U D. Note that wy, € (Fi(wy))¢ for every t and
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[llustrations of sub-partitions in the proof of Theorem
Fo(wr) (Fo(wr)) Fa(wr)

!
Wy

o W9

w3 e ] oW1

Figure 16: Figures (a) and (b) depict the partition F3 and the sub-partition F] that mimics it. Figure (b) also
illustrates the path between w; and ws, as well as the possible connections between the different sets. Figure
(c) depicts the partitions F}’ and Fj along with the path from w; to ws.

w3 € Fy(wi) N (Fi(wr))e. See Figure [16] (D).

Now consider the partition Fy = {Fj(w1), (Fi(w1))¢}. By assumption, there exists a par-
tition FY such that II; vV F/ = II; V FY, for every player i. Denote A’ = Fj(wy) N FY(wy),
B' = (Fi(w)) N FY(wy), C" = (Fi(w1))° N (FY(w1))¢, and D' = Fy(wy) N (Fy (wq))¢. See Figure
16} (c).

Similarly to the previous analysis, states in A" are directly connected only to states in A’'UC",
and states in B’ are directly connected only to states in B’ U D’. In addition, note that w; €
Fi(lw)NFy(w) CA, wig € (Fi(wy)) € B'UC for every t, and w3 € Fa(wy) N (F1(w1))° C B'.
If w1 € B’, we can make a direct connection between A" and B’, which yields a contradiction.
Thus, w1 € C’, and the sequence (wy 1, w1 2,...,w1,,ws) which starts in C” and ends in B’ has

at least one direct connection between B’ and C’. A contradiction, as well. Thus, for every
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w; # we, we conclude that Fj(w;) = Fi(ws) if and only if Fy(w;) = Fy(ws), and the result
follows. O

A.4 Proof of Proposition

Proof. For every player i, we can focus our analysis on the function R;. Assuming that player

i’s belief is ¢', we get
q, ‘
B, [Ri(as,w _ W _ “ 1ipmanr| — 2 i
max B, [Ri(ai,wlp)] = max Lze;z G i(a; |p)] B L; Do { Z}] %- "

The second term in independent of a;, so player ¢ maximizes only the first one. If p’ = ¢ for

every player 7, then

glea,if [Z qw 1{w az}] -2 Z qw aies pal

weA paz wgA; w@A;

independently of the chosen action a; € A;. Therefore,

max By o, wlp)] = 1 - ——= 371 = -
J#i
as stated.

Moving on to the second part of the proposition, assume that there exists a player ¢ whose
actual belief is ¢° # p'. The proof is now divided into two parts: either ¢* is supported on a
subset of Supp(p'), namely Supp(q’) C Supp(p'), or not.

Starting with the former, assume that Supp(¢‘) C Supp(p’). Evidently,

max Ei [R;(a;,w|p)] =

a;€EA; a;€EA; pa

Denote maxg,ca, Eqi[Ri(a;,w|p)] = 1+ c¢. Assuming that the beliefs of all other players align
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with p, the expected equilibrium payoffs of player ¢ and of every other player j # i are

2
Egilui(ai,wlp)] = 14+c¢— p— 1(n —1)=—-1+¢,
2 2c
Eiluj(aj,wlp)] = 1— p— 1(n— l+c¢)=-1- —
respectively. Thus, the aggregate expected payoff in equilibrium is
2c
-1 -1 |-1- =-—n—c<—
(—14¢)+(n )[ n—l] n—c<-n,

as stated. Note that we get a similar result for every additional player j whose belief is ¢7 # p’.
Next, assume that there exists a player ¢ with a belief ¢* such that Supp(q’) € Supp(p). If
Supp(q’) N Supp(p’) = ¢, then the player’s expected payoff is

2

(n—1)=—4.

For players other than player i, since 1y,e4,) = 0, it follows that their expected payoff is

2

Byl ag,lp)] = 1= ——

(n—2).

The aggregate expected payoff over all players is —4 + (n — 1) [1 — %(n — 2)] =-n—1, as
needed.
i i _ i i 4l
If Supp(q’) N Supp(p') # ¢, denote go = 3° 44, @, € (0,1) and 7y, = 72,
Thus, > ,c4. 75, = 1, and we get

7
max —1ig=0y > 1,

a; €A; j28

OJGAZ' z

which implies that
d := max q—wl{,h _y) = max ﬂl{al —w} = 1—qo.

a;€A; p a;€A; p .
GA ai we Az @i
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Thus, the expected payoff of player i, assuming that ¢/ = p’ for every other player j # i, is

»
E i\, W = _w]- a=w} | — 2 - = 1
max I, i (ai, w|p)] max D, {ai=w} % q, 1
w i w j#i
= max q—wl{ai:w} —2q0—2=d—2qy — 2,
ai€A; weA pzi

and the expected equilibrium payoff of every other player j # i is

2
Ep[uj(aj,wlp)] = 1-——=(n—2+4d),

Aggregating over all players,

2
Z i[uj(aj,wlp)] = d—2go— 2+ (n—1) ——(n—2+d)
= —n—q+(1—q—d

S _n_q0<_n7

where the two inequalities follow from d > 1 — qo and ¢y > 0, as stated above. Again, we
get a similar result for every additional player j whose belief is Supp(¢’) € Supp(p’), and the
statement holds. O

A.5 Proof of Lemma [1I

Proof. We start by analyzing the game given that the signaling function is 7. Consider the
profiles s = (s',s%,...,5") and p = (p')ien, so that all players declare the true public signal
st = &7 for every two players i and j, and p' = F‘i2|w7si is the true posterior of every player i.
In the second-stage sub-game, as stated in Proposition [2 every player receives a payoff of —1
and the aggregate expected payoff in the two-stage game G, is —n. Let us prove that this is
indeed an equilibrium.

The negative payoff —M ensures that a unilateral deviation to a different signal is sub-

optimal, so we need only to consider the case in which some player ¢ deviates to a posterior
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pt # Ug\w,si- Notice that, given an element in II; and for every signal s' € S,,, there exists
a unique feasible posterior on II;. Thus, there are only two possible deviations concerning p':
either the updated profile p is no longer feasible and again all players receive a payoff of —M, or
p is feasible, but p’ is supported on a different partition element whose probability is zero given
player i’s actual partition element. Due to the negative expected payoff of —M in the former
case, we need only to consider the latter possibility. If player ¢ declares a zero-probability belief
(relative to the true posterior), then the proof of Proposition [2|shows that the player’s expected
payoff in the second stage is —2. Thus, we conclude that a truthful revelation of all information
comprises an equilibrium, and the aggregate expected payoff given this equilibrium is —n.
Next, consider the signaling function 71 so that Post(1) € Post(72), and fix any equilibrium
profile. Evidently, the players must coordinate on some feasible combination of s and p accord-
ing to 75, otherwise they all get —M. However, with some positive probability, the declared
posterior p’ of some player i mismatches the realized one 'uj'l\w,si' In that case, Proposition
shows that the aggregate expected payoff is strictly below —n. So, the expected aggregate
payoff in the two-stage game G, given the stated strategy 7, is also strictly below —n, as

needed. O

A.6 Proof of Proposition

Proof. Fix 5 and let Post’(73) be the set of feasible posterior beliefs of player i under 7. Define
the game G’,, as follows. The set of player i’s actions is A; = Post’(7). His payoff function is
ui(p,w) = lim_,o+ log(p}, + €). For every player, the game is a single-person decision problem
in which the objective of a player is to choose a belief in Post’(7;) that maximizes his expected
payoff, given his actual belief ¢, which may be different from p’.
Claim 1. If the actual belief is ¢' € Post'(1y), then the optimal strategy for player i is p' = ¢'.
Any p' € Post'(ry) that is different from ¢ would yield player i a strictly lower payoff.

To prove this claim, first observe that it is not optimal to choose a p* where Supp(q’) ¢
Supp(p?). Otherwise, there exists w € Supp(q’) \ Supp(p'), such that with a positive probability
q’, player i would receive a payoff that tends to —oo.

Next, we show that among those p’ that share the same support as ¢, the unique optimal
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choice is p' = ¢*. To see this, note that

> qilogl) = > d.log(q.) — Dxu(d'llp),
weSupp(q?) weSupp(q?)
where Dxr(q'||p) is the Kullback-Leibler divergence. Since Dxkr,(¢'||p’) is uniquely minimized
when p’ = ¢, it follows that player i’s expected payoff is uniquely maximized when p* = ¢'.
Finally, we show that it is not optimal to choose p’ where Supp(q’) € Supp(p'). Consider

such a p'. Since p! < 1, we can allocate the remaining probability mass to states

w€eSupp(g*)
in Supp(q’) to obtain a probability distribution p* where Supp(p’) = Supp(¢*) and pi, > p! for

every w € Supp(¢’). Hence,

> dilog(al) > > qilog(pl) > > dllog(pl),
w€ESupp(q*) w€ESupp(q*) w€eSupp(q*)
where the first inequality follows from the fact that ¢* is the unique optimal choice among
probability distributions that share the same support, and the second inequality follows from
Pt > pl, for every w € Supp(q'). This concludes the claim.

It follows from Claim 1 that under 7, the set of posterior belief profiles in Post(r,) are
all chosen with positive probability in the equilibria of the game G’ (72). On the other
hand, for every strategy 71 satisfying Post(ms) € Post(r1), there exists a posterior belief
profile p € Post(mz) \ Post(7), that is chosen with zero probability in every equilibrium of
the game G’ (7). Thus, for every 7 that satisfies Post(r;) € Post(ry), we conclude that
NED(G, (7)) # NED(G/, (7). =

A.7 Proof of Theorem [3

Proof. Fix 75, and consider the games G,, and G/, as defined above, where the sets of actions

T2
for each player in these games are disjoint. Define the game G as the one in which G,, and
G/, are played with equal probability, i.e., with probability 1/2 each.

If Post(7) # Post(my), then either there exists a posterior profile p € Post(m) \ Post(r),

or there exists a posterior profile p € Post(r) \ Post(r;). Following Proposition [3 and [4]
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in each of the mentioned sub-games, it follows that NED(G(m,)) # NED(G(7)) where G €
{G,,, G, }. Thus, if no 7, satisfies Post(7;) = Post(72), there exists a game G and 75, such that
NED(G(72)) # NED(G(7)) for every 71, which contradicts the dominance assumption. O

A.8 Proof of Lemma [2

Proof. Assume, to the contrary, there exists a signal ¢ € Supp(7;) such that for every signal

s; € {s1, 2}, there exist two states wy,w* € Q such that

n(tlwr) , 7i(tlw?)

7'2(&‘@1) 7'2(3i|w*>.

(2)

Note that 7o(s;jw) > 0 for every s; and w, so the fractions are well defined. In addition,
it must be that either 7 (¢t|w;) > 0 or 7 (tjw*) > 0, so assume that 7 (t|w;) > 0. Because w;
and w* are in the same CKC, there exists a finite sequence (wy,ws,ws, .. .,w") such that every
two adjacent states are in the same partition element for some player. Assume, w.l.o.g., that
{w1,ws} and {wq, w3} are in the same partition elements of players [; and [; respectively. Using
the definition of 7, it follows that in every posterior (piﬂw’&)le ~n € Post(m), the coordinates
relating to II;(w) are strictly positive (for every player [ and every signal s;). Thus, for every
state w and signal s;,

o (w)>0e ut (wy) >0,

M7'2|W75i T2|w,s;

and

2o (wy)>0e 2 (ws) > 0.

M72|W75i T2lw,s;

Take a posterior (u! | ,)ien such that ul;l'w (w1) > 0. Because Post(ry) C Post(7), it follows

1|w,t
that Mill\w,t(“’?) > 0, hence 7y (t|wz) > 0. The fact that 7 (¢|ws) > 0 implies that ulfl‘w%t(a@) > 0,
and so ulfl‘wz (ws) > 0. We thus conclude that 7;(tjws) > 0. Continuing inductively, it follows
that 7 (tJw) > 0 for every w € {wy,wa,...,w*}.

According to the definition of 75 and using Bayes’ rule, for every signal s; and for every
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posterior where p! (w) > 0, which implies that w € II;(w”), we know that

T2lw' 85

P, (W silw)p(w)  m(silw)p(w)
p, (W, 5i) [T (W), (W, 57)°

Ml72|w”,si (w)
Thus, for every w’ € II;(w), we get

Miﬂw”,si (W) m(silw) ‘ Miﬂw,si (@)

p(w) B To(si|w’) pw(w’)

Note that 22890 — 1 if and only if Fy(w) = F3(w'), and otherwise, the ratio n26ilw) o oiven by

T2(s:|w’) T2(si]w’)

c€{f: x,y € A}. Thus, for every such s; where ! (w) -,ulmlw,,,si (W) > 0, there exists a

7—2‘“)//751

unique ¢ € {7 : z,y € A} U{1} such that

:ui—2|w”,si (w) — . Hi—ﬂw”,si (w,)
fi(w) plw')

In case ¢ = 1, then the last equation holds for every signal s; because 75 (s;|w) = T2 (s;|w’) if and
only if W' € Fy(w).

By the inclusion criterion, for every posterior (u!

o ien generated by 7y, there exists a

posterior (,ulT S Si) len generated by 7o, such that the two are identical. We thus conclude that

/’Lflrll‘wQ’t<w1) /’L'lrglw”,si (w1> c /’L'lr12|w”’si (w2> c ILLflrll‘wZ’t<w2)
= = 1 @ —_——— — — 1 - —_—
p(wr) p(wr) f(w2) f1(w2)
and l l l l
/"L7—21‘w27t<w2) M7‘22|w”75i (w2> c /"L7'22|w”75i (wg) c /"L7'21‘w27t<w3)
== = 2 - —_———— —— — 2 - —_—
fi(w2) fi(w2) 1(ws) 1(ws)

as well. Using Bayes’ rule, the last two equations are equivalent to

TQ(SZ‘|W1) = C(C1- 7'2(8”(4)2) = C1*Co- 7'2(81‘|CU3), (3)

Tl(t|w1> = (1 Tl(t|w2) = C1Co- Tl(t|(,U3).

Note that these equations hold for every s; in case ¢; = ¢o = 1, and otherwise hold for a specific
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signal, which could be taken as s; without loss of generality.

One can continue inductively along the sequence (wy,ws,ws, . ..,w") to get
TQ(SZ'|(,U2> = C9- TQ(Si|W3) — Cy*C3- TQ(SZ‘|CU4)7 (4)
7'1(t|a)2> = C2- 7'1(t|a)3> — C2 - C3 - Tl(t\w4),

and the first equality in Equation (4)) coincides with the second equality in Equation (3).
Namely, Equations and either hold for every signal s;, or hold for the same signal s.
Repeatedly following the same procedure, we get that

To(silwi) = ¢ 7a(silws) =+ = [[>1c4] - 72(si|w®), (5)

T (tlwr) = ¢ - 7mi(tlwy) = -+ = [Hgs10] - 1 (t|lw™). (6)

Dividing Equation (6) by Equation (5), we get nltle) 1l Cwhich contradicts (2), as

To(silw1) — Ta(si|lw*)?

needed. O

A.9 Proof of Theorem {4

Proof. Proving that the first condition yields the second which, in turn, yields the third, is
immediate. Assume that F; refines F;. Then, for every 75, there exists 77 such that 7 = 7.
It thus follows that Oracle 1 dominates Oracle 2. Next, assume that there exists 7 such that
for every 7, it follows that Post(r1) € Post(72). According to Proposition , Oracle 1 does not
dominate Oracle 2. Now, let us prove that the third condition yields the first, that is: if F} does
not refine F, then there exists 75 such that for every 7, it follows that Post(r) € Post(7s).
If F does not refine Fy, there exists wy and w*, so that F(wg) = F1(w*) and Fy(wp) # Fo(w*).
Consider the signaling function 75 defined in (1) and take any strategy 71. Assume, to the
contrary that Post(r;) C Post(7z). According to Lemma [2} for every signal ¢ € Supp(7;) there
exists a signal s; € Supp(my) and a constant ¢ > 0 such that 7 (t|w) = cm(s;|w) for every w.
In addition, the measurability condition of 7 imply that 7 (t|wg) = 71(t|w*) for every signal

t. Thus, (s;|lwo) = T2(s;|w*) and this contradicts the definition of 7. This establishes the
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equivalence between the first three conditions.

Now, notice that the first (refinement) condition implies the equivalence of distributions
over posteriors profiles (fifth condition), because Oracle 1 can exercise any strategy of Oracle 2.
The fifth condition in turn implies the forth condition (so that the set of joint posterior profiles

match), which implies the third condition, thus concluding the proof. O
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