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Abstract

We examine information structures in settings with privately informed agents and an
informationally constrained mediator who supplies additional public signals. Our focus
is on characterizing the set of posteriors that the mediator can induce. To this end,
we employ a graph-theoretic framework: states are represented as vertices, information
sets correspond to edges, and a likelihood ratio function on edges encodes the posterior
beliefs. Within this framework, we derive necessary and sufficient conditions, internal and
external consistency, for the rationalization of posteriors. Finally, we identify conditions
under which a single mediator can implement multiple posteriors, effectively serving as a
generator of Blackwell experiments.
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1 Introduction

What is the role of an objective mediator in reaching an agreement, such as a peace treaty,
between two opposing sides? The answer seems straightforward: to persuade both parties to
sign the deal. Yet this form of persuasion is particularly intriguing, as the mediator must shape
a joint perception shared by both sides, ensuring that each finds the agreement acceptable. Our
paper begins with this observation.

Bayesian updating is the cornerstone of belief revision under uncertainty. In strategic en-
vironments with incomplete information, players use signals to update their beliefs about the
underlying state of the world, often relying on publicly observed information. A fundamental
question, therefore, is whether a given collection of posterior beliefs, interpreted as arising from
Bayesian updating, can actually be implemented by some signal structure consistent with an
external agent’s knowledge. In this paper, we address this question by analyzing the condi-
tions under which posterior beliefs are implementable via a signal generated by an external-
information provider, a mediator, endowed with partial knowledge of the state.

Our framework assumes that the mediator’s information is described by a partition over a
finite state space, and that it can emit public signals governed by stochastic rules measurable
with respect to its own information. Players, upon observing a signal, update their beliefs via
Bayes’ rule. We ask: given a profile of posterior beliefs or likelihoods across possible states, can
we find a mediator-compatible signal that induces these beliefs?

This question is central in economics and game theory, especially in the design and compar-
ison of information structures, and in understanding how much control an information provider
has over the beliefs and behavior of rational agents. While it is always possible to construct
posterior beliefs through arbitrary signaling mechanisms, we focus on the more subtle problem
of whether such posteriors can be implemented under the restriction that signals must be mea-
surable with respect to the mediator’s limited knowledge. Moreover, the mediator’s partition of
the state space may differ from those of the players, creating the novel possibility that players
have common knowledge of events that the mediator does not know.

To address this question, we introduce a compact representation of Bayesian updating
through a posterior likelthood function, which specifies the ratio of posteriors across adjacent
states, i.e., states that lie in the same information set of some player. We then ask under what
conditions such a function can be rationalized by a mediator-generated signal. Our main tool is
the graph of information, following the framework of Rodrigues-Neto (2009), which encodes the
state space and players’ informational partitions in a concise form. On this graph, we define a

positive function ¢ that captures comparative likelihoods between adjacent states. While the



graph provides a convenient representation of informational constraints, the core of our analysis
lies in understanding how these constraints shape the implementability of belief updates.

The function ¢ is particularly valuable in our set-up because the likelihood ratios it encodes
are shared by all players who cannot distinguish between adjacent states. As a result, the
information carried by ¢ is adequate for our analysis, rendering the graph-based model both
concise and sufficiently informative. Thus, our central question translates to: under what
conditions can such a function be rationalized as the output of a signal generated by a mediator,
constrained by the limits of its own knowledge?

To address this, we develop conditions under which ¢ admits a representation in terms
of an F-measurable function (where F' denotes the mediator’s partition), allowing ¢ to be
expressed as the ratio of values of a positive function defined over states. These conditions,
named wnternal and external consistency, mirror and extend earlier consistency notions in the
literature (notably [Rodrigues-Neto| (2009) and |Hellman and Samet, 2012), while introducing
the role of a third-party mediator.

Our results provide a bridge between abstract information structures and concrete Bayesian
updating. We show that ¢ can arise from Bayesian posteriors induced by a signal that the
mediator releases. This opens the door to interpreting the mediator as a generator of Blackwell
experiments and leads to new insights about the implementability of distributions over states
and the coherence of beliefs across players.

In doing so, we extend the theory of common priors and beliefs, clarify the conditions
under which players’ posteriors can be coherently derived from shared signals, and provide a

graph-theoretic approach to understanding the flow of information in multi-agent systems.

A Negotiation Game: motivating example. To motivate our model and results, consider
a game with two players, indexed by ¢ = 1,2. Each player has two available actions: attack
(denoted A) and compromise (denoted C'). The set of states is 2 = {wy, wq, w3, ws}, endowed
with a uniform common prior. The players hold asymmetric information: player 1’s partition
is P1 = {{w1,wa}, {ws}, {ws}}, and player 2’s partition is Py = {{w1}, {wa}, {ws,ws}}. Thus,
when either w; or ws is realized, player 2 learns the state with probability 1, while player 1’s
posterior is uniform over {wy,ws}. Similarly, when w3 or wy is realized, then player 1 learns the
state with probability 1, while player 2’s posterior is uniform over {ws, w,}. This example bears
some resemblance to the framework of [Horner et al. (2015), which was recently extended by
Ozyurt and Zeng (2025) to incorporate a privately informed mediator into the original game.
The payoffs of the game are presented in Figure[I] The realized payoffs depend on the state:

rx=2ifw € {wy,w}, and x = 3 if w € {w3,ws}. Let G; denote the payoff matrix when state w;



is realized. In G and Gf3, player 1’s dominant strategy is A and player 2’s dominant strategy

is C', whereas in G5 and G4 the dominant strategies are reversed.

Player 2 Player 2
A C A C
Al (2,5 —4 Al (-5,2) (-1,-1
Player 1 (2,=5) (=4 Player 1 (=5,2) (=1,-1)
C (_17_1> (07 O) C (—4,1’) (an)
Given that w € {wy,ws} Given that w € {wa, w4}

Figure 1: Two payoff matrices with Player 1 (row player) and Player 2 (column player). If wy or ws are realized,
then x = 2, and if w3 or wy are realized, then = = 3.

The interpretation of the game is straightforward. Each player can either attack the other
or compromise by signing a peace treaty. In states w; and ws, player 1 holds the superior
attacking position, whereas in states wy and w, player 2 holds this advantageE] Nevertheless,
from a social perspective it is optimal to reach a peace agreement, as it maximizes the aggregate
payoff. Such a treaty, however, requires a joint concession by both players.

Consider now the players’ equilibrium behavior. If the realized state is either w; or ws,

11

then player 2 is fully informed while player 1’s posterior is (5, 2,0, O). In this case, given that

player 2’s dominant strategies are C' in w; and A in wy, player 1’s optimal action is A. On the

other hand, if the realized state is either w3 or wy, then player 1 is fully informed while player 2’s

11
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game, the action profile (C, C') is never played.

posterior is (0, 0 ), and player 2’s optimal action is A. Hence, in every equilibrium of the

We now introduce the role of a mediator. The mediator also possesses private information,
represented by the partition F' = {{wi,ws},{w2,ws}}. The mediator’s task is to design a
signaling mechanism that may persuade both players to accept a peace treaty in equilibrium,
with positive probability. Such persuasion, however, can never succeed with probability 1.
Namely, whenever a player is fully informed and holds the superior attacking position (i.e., in
states wy or ws), that player will necessarily choose A.

To illustrate the mediator’s role, Figure 2| depicts the players’ and the mediator’s information
structures. If the mediator fully discloses this information, both players become perfectly

informed about the state, and the peaceful outcome (C,C') is never sustained in equilibrium.

1 2

By contrast, if the mediator could hypothetically induce a posterior of (g, £, 0, O) for player 1

LA joint attack leads to the worst aggregate outcomes, (2, —5) or (—5,2), though still favorable for the player
with the superior position. If one player attacks while the other compromises, payoffs reflect the attacking
player’s advantage.
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The players’ information The mediator’s information

Figure 2: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of the mediator (green).

while player 2 remains fully informed, then player 1 is indifferent between A and C' since action
A yields an expected payoff of % 2+ % -(=5) = —%, while action C' yields % 0+ % (—4) = —%.
Hence, there exists an equilibrium in which (C, C) is played with positive probability.

A similar argument applies to player 2. If the mediator induces a posterior of (O, 0, %, %1)
for player 2 while player 1 remains fully informed, then player 2 is indifferent between A and
C, because action A yields an expected payoff of % - (=5) + }1 -3 = —3, while action C' yields
% (—4)+ i -0 = —3. Note that the previous proportions of % and % change to }L and % because
x varies between states. Once again, this creates an equilibrium in which a peace agreement,
the socially optimal outcome, is reached with positive probability.

This raises a natural question: can the mediator design a signaling strategy that simultane-
ously induces these posteriors? For instance, is it possible to generate a posterior (%, %, 0, O) for
player 1 when the realized state lies in {w;,ws}, while at the same time generating a posterior
(0, 0, %, i) for player 2 when the realized state lies in {ws,w,}? In this example, the answer is
negative. More generally, this question captures the central problem of the paper.

So why does the mediator, in this specific example, fails to generate a joint posterior of the
stated form? The obstacle arises from measurability (information) constraints. Any signaling
function based on the partition F' must send the same signal in both w; and w3, as well as in
wy and wy. Consequently, once the mediator induces a posterior of the form (p,1 — p,0,0) for

player 1, this necessarily translates into a posterior of (0,0, p, 1 —p) for player 2, and vice versa.

The Characterization.  We provide necessary and sufficient conditions for when a mediator



can implement a feasible joint posterior, given the players’” information and the mediator’s parti-
tion. This characterization captures the inherent limitations of such implementation, expressed
in terms of likelihood ratios and loops ]

To illustrate, consider the sequence (wy,ws,wy,ws). The event {wy,wy} forms a common
knowledge component (CKC), that is, a minimal set on which all players can agree.ﬁ Hence, wq
and wy lie in the same CKC and are linked through the players’ knowledge. In contrast, ws and
wy are not in the same CKC but belong to the same information set of the mediator. Next, wy
and w3 again fall within the same CKC. Finally, the tail of the loop, ws, belongs to the same
mediator information set as the head, w;. Thus, the sequence is a chain of states alternating
between belonging to a player’s CKC and to a mediator information set.

The sequence (wy,ws,ws,ws) is an example of a loop, formally defined in this paper (see
Section and also employed in [Lagziel et al.| (2025a,b), in which the mediator’s knowledge
cyclically connects distinct CKCs of the players.

Our characterization establishes that, for a joint posterior to be feasible, the product of

likelihood ratios along every loop must equal one. For instance, under the posterior (1 2.0, 0)

3339
the likelihood ratio of wy to wy is Y(wy,ws) = % = % Under the posterior (0,0, %, i) the
likelihood ratio of wy to ws is @(ws,ws) = % = % In this example, the feasibility condition

fails for the proposed posteriors, but it does hold for (p,1 — p,0,0) and (0,0,p,1 — p). This
property, referred to later as external consistency, underpins our general characterization.

The second key property in our characterization, termed internal consistency, imposes a
similar condition within each CKC of the players. To formalize this, we use the notion of a
F'-cycle: a closed path of states contained in a CKC, where each pair of adjacent states is
connected by an atom of one of the players’ partitions, except for a single pair connected by an
atom of the mediator’s partition (denoted by F'). Internal consistency requires that the product
of likelihood ratios along every such F-cycle equals one.

Beyond our feasibility characterization, an additional and intriguing question concerns the
optimality of the mediator’s signaling function. Suppose that the mediator seeks to maximize
the probability that the outcome (C,C') is played. To this end, the mediator can employ
multiple signals to generate feasible posteriors of the forms (p, 1 —p,0,0) and (0,0, p, 1 — p) for
various values of p, each inducing the desired profile with different probabilities. In a broader
setting, however, this is a more advanced problem: the preliminary step is to identify which

posteriors are feasible. In other words, before addressing the question of optimality, one must

2Notably, the likelihood ratio also plays a central role in the negotiation game of [Horner et al.| (2015); see
the definition of A therein and the subsequent analysis.

3Formally, each player’s information generates this event; equivalently, a CKC is a minimal non-empty subset
that is measurable with respect to the o-algebra of all players.



first determine the feasible actions, and this is the focus of the current research.

Related literature. Several strands of the literature inform our analysis. Since the foun-
dational work of Harsanyi (1967-1968), much effort has been devoted to formalizing and un-
derstanding the informational structures that underlie such environments. A key insight in
this literature is that players’ information can be represented as partitions over a finite state
space, and the relationships among these partitions encode the possible flow and structure of
information in the game. Harsanyi| (1967-1968) provides the basis for belief-based reasoning in
strategic settings.

Aumann’s framework for knowledge and common knowledge (see Aumann), 1974) formalized
the use of partitions to represent agents’ information. Building on this foundation, our paper
extends the idea by introducing an external mediator that generates signals constrained by its
own partition. A central concept in our analysis is the CKC, which is rooted in Aumann’s
original formulation.

The question of whether a joint posterior originates from a common prior has attracted
significant attention across various settings. This inquiry has been studied extensively in con-
texts ranging from finite state spaces (see, e.g., [Morris, [1994), to compact state spaces (e.g.,
Feinberg, [2000; [Heifetz], 2006)), and to countable state spaces (see Lehrer and Samet| 2014).
In the present framework, we assume that players initially share a common prior and acquire
information through their individual partitions of the state space, subsequently updating their
beliefs via Bayesian conditioning.

The novel aspect of our model is the introduction of an external information source, the
mediator. Given the observed joint posterior profile of the players, we inquire whether such
a profile can be rationalized as arising from a known common prior, augmented by additional
public information disseminated by the mediator, which itself may be only partially informative
to the players. In other words, we ask: does the joint posterior stem from the interaction between
a common prior and an external, symmetric informational input?

The conditions we impose, internal and external consistency, are inspired by the cycle-based
consistency concepts introduced by [Rodrigues-Neto (2009) and Hellman and Samet| (2012),
though our focus is on implementability via constrained signals rather than belief structures.

At a conceptual level, our mediator corresponds to a restricted Blackwell experiment [Black-
well (1953), with implementability shaped by the mediator’s coarse knowledge. In this sense,
our work complements the Bayesian persuasion framework of Kamenica and Gentzkow| (2011)),
where a sender optimally selects signals to influence beliefs; we instead ask when a given belief

structure can be realized at all under informational constraints.



Motivated by the question of aggregating experts’ opinions and building on the results of
Kellerer| (1961)), [Strassen (1965) and (Gutmann et al. (1991), the work of Dawid et al.| (1995)
provides a characterization of joint posterior beliefs for the case of two agents. This was
recently extended by |Arieli et al.| (2021) who characterize the set of feasible distributions of joint
posterior beliefs that can arise among multiple agents in a binary state space, given a Blackwell
experiment that provides different (potentially asymmetric) information to each agent. Their
characterization is closely related to the no-trade literature in that it identifies constraints on
belief distributions that are consistent with a common prior and Bayesian updating, even when
agents receive heterogeneous private signalsE]

Independently of |Arieli et al.| (2021)), the study of Ziegler| (2020) deals with a setting in which
a mediator provides private signals to two receivers, without committing to a common infor-
mation structure. The mediator therefore chooses information structures robustly, maximizing
expected payoff against the worst-case interpretation consistent with Bayesian rationality. In
doing so, Ziegler derives necessary feasibility constraints on the joint distribution of receivers’
posteriors, conditions that coincide with those of |Arieli et al.| (2021) as both necessary and
sufficient in the case of two agents.

Our analysis distinguishes itself from existing literature in four fundamental ways, which
collectively define a novel research agenda. First, we adopt a setting in which players receive
private signals from a fixed information structure regarding an unknown state that is not nec-
essarily binary, allowing for a richer initial belief space. Second, the mediator is only partially
informed about the true state, and their own information structure is fixed, which shifts the
focus from optimal information design to the mechanics of communication under given con-
straints. Our characterization is thus framed in terms of the information structures of both
the players and the mediator. Third, the mediator utilizes a public communication channel, a
deliberate simplification that allows us to focus on the impact of generating common knowl-
edge, rather than the complexities of personalized private signals. Finally, and most critically,
our primary focus is on characterizing the specific joint posteriors that can be induced by the
mediator, rather than the distribution over these posteriors. We then build upon this to define
and characterize the entire set of implementable joint posteriors, investigating the conditions
under which any element of this set can be implemented through a stochastic public signal, a
major departure from the standard distributional analysis in this field.

Finally, our results contribute to the broader literature on higher-order beliefs (see the review

4See also the follow-up paper and review of the no-trade history in [Morris (2020), as well as the study of
Burdzy and Pitman| (2020]), which follows|Dawid et al|(1995), to derive probabilistic bounds on the polarization
of posteriors in a two-agent setting.



by |Geanakoplos, 1994), by characterizing which belief patterns, encoded in posterior likelihoods,

can emerge from shared public signals constrained by a third party’s limited information.

The structure of the paper. The paper is organized as follows. Section [2| introduces
the model: a finite state space, players’ information partitions P;, a common prior x4, and an
external mediator whose information is represented by a partition F. Section |3| discusses joint
beliefs and joint posteriors. It formulates the central research question: given a joint belief,
does there exist an F-measurable signal that generates it as a joint posterior?

Section [4] presents the graph of information, where nodes correspond to states and edges
reflect indistinguishability under some player’s partition. The section defines the posterior
likelihood function on edges and uses it to reformulate the implementability question. Sec-
tion 4.2| introduces two key conditions, internal consistency and external consistency, which
play a central role in resolving the implementability problem. It then establishes a technical
graph-theoretic result (Theorem (1)) that serves as the backbone of our main theorem.

Section [5| reformulates the problem in terms of joint posteriors by defining a posterior
likelihood function that incorporates both the joint posterior and the prior. Theorem [2| the
main result of the paper, characterizes when a joint posterior is implementable by a mediator
in terms of the two consistency conditions applied to this function.

Section [6] generalizes the framework to accommodate for multiple signals. It introduces the
notion of positivity preservation and shows that a family of posterior likelihood functions can
be simultaneously implemented by a mediator if and only if the family preserves positivity with
respect to the prior.

Finally, Section [7] offers additional interpretations and extensions. Section extends the
analysis to settings where different players or groups of players observe different signals. It
shows that the consistency conditions apply not only globally but also within any subgroup.
Section reformulates the multiplicative consistency conditions in logarithmic terms and

relates them to potential games (see [Monderer and Shapley, 1996)) in Corollary

2 The Model

Let N = {1,2,...,n} with n > 2, denote the set of players, and let 2 be a non-empty, finite
state space with a strictly positive common prior . Each player ¢ € N has a finite partition P;
of €, representing player i’s information. For any state w € €2, we denote by P;(w) the element
of the partition P; that contains w. A Common Knowledge Component (CKC), typically

denoted by C' C €2, is a minimal non-empty subset of states that is measurable with respect to



the o-algebra of every player (see |Aumann, |1974)). The notation C(w) refers to the CKC that
contains the state w.

Let F be a partition of {2 belonging to an agent outside the set N, which we refer to as
the mediator. As before, F/(w) denotes the information set of I’ that contains w. The mediator
may provide additional information to the players beyond their private information. For this
purpose, he uses a public signaling function 7 : Q — A(S), where S is a finite set of signals
and A(S) is a distribution over S. Let 7(s | w) denote the probability that the public signal
s € S is observed given state w. Note that the signaling function is measurable with respect to

(henceforth, w.r.t.) F | Formally, 7 is an F-measurable stochastic kernel:
(i) For each state w € Q, 7(- | w) is a probability distribution over a finite set of signals S.
(i) For all W’ € F(w) and s € S, we have 7(s | W) = 7(s | w).

The signaling function 7 is also known as a Blackwell experiment (see |Blackwell, [1951)), so the

mediator can be viewed as a generator of Blackwell experiments.

3 Bayesian Updating

Recall that p is the common prior and assigns positive probability to every state. Otherwise,

we may restrict attention to the support of u. Let 7 denote the mediator’s signaling function.

3.1 Joint posterior beliefs

When the realized state is w, player i is informed of P;(w). Assuming that 7(s | Pi(w)) > 0
and upon observing s, player ¢ updates their belief. His posterior probability of w’ € P;(w),
given P;(w) and s, is

p(w)7(s | W)

pral | Pilew), o) = D ey MW)T(s [ W) @

Thus, -;(- | Pi(w), s) is a probability distribution, conditioned on both P;(w) and s, over
whose support is a subset of P;(w). For notational convenience, we define p,;(w" | P;(w),s) =0

for every w’, whenever 7(s | P;(w)) = 0.

5Measurability w.r.t. F means that if w and w’ are indistinguishable from the mediator’s perspective, namely,
in case w’ € F(w), then 7(s | w') = 7(s | w).



When the realized state may vary, we define the joint posterior associated with T and s as

the set of posterior profiles across all states that can generate s:

Mo = { (1ri(- | Pi(w), s))ieN D w € Q with 7(s | w) > O}. (2)

This joint posterior records not only each player’s beliefs about the true state but also their
beliefs about others’ beliefs and higher-order beliefs, making it a central object for analyzing

equilibrium behavior.

3.2 Joint beliefs

To allow for even greater generality, the following definition of a joint belief requires neither a
signal nor a mediator. It will be used throughout the paper to define the joint profile of beliefs

that a mediator can generate.

Definition 1. A joint belief is a stochastic map JB : Q x N — A(Q) U {1y}, where 1y is

the zero wector, such that the following conditions hold: (i) if JB(w,i)(w) > 0 for some i,

JB(w,i)(w) _ JIB(w.j)
IB(w i) (W) JB(«',5)

Pi(w) NPj(w), assuming the denominator is nonzero.

then JB(w,j)(w) > 0 for every j; and (ii) EZ% for every i,j,w and W' €

When well-defined, JB(w, ) stands for the belief distribution that player i assigns to €2 when
the set P;(w) is realized. The corresponding probability of state w’ is denoted by JB(w,7)(w’).

A few remarks are in order. First, the two conditions in Definition [I] are necessary for JB
to be induced as a posterior by a public signal. Indeed, they follow from the basic properties
of Bayesian updating given the existence of a common prior and a mediator’s public signal.ﬂ
Second, a general joint posterior specifies a profile of posterior beliefs for every feasible state.
In cases without a common prior, for instance, condition (ii) in the definition need not be
satisfied. Third, we include the indicator 1y in the definition to capture situations in which the
mediator provides additional information that assigns zero probability to some state in P;(w).
Specifically, prior to receiving the mediator’s signal, each player is subjectively informed about
an information set P;(w). The mediator may then send a signal that has zero likelihood in
certain states within this set. In such cases, the conditional posterior is not well-defined, and
we therefore set JB(w, 1) = 1y for all such states.

Given a JB and a common prior u, a natural question is whether there exists a signaling
function 7 of the mediator and a signal s that jointly induce this JB as a posterior. We approach

this question by examining posterior likelihood ratios. This builds on a key observation that,

6 A broader discussion of this point is provided in connection with Eq. below.

10



although posterior updating is typically player-dependent (as the denominator reflects player i’s

information partition), the following likelihood ratios are not:

pri(w | Piw),s) _ plw)7(s | w
pri(W' | Pilw),s)  p(w)7(s | @)

Vw,w' € P;(w). (3)

In particular, whenever w and ' lie in the same information set (i.e., w’ € P;(w), or equivalently
Pi(w) = P;(w)) and both conditional probabilities are positive, this ratio is well defined and
independent of the player. This also clarifies the two constraints imposed in Definition 1 We

explore this idea further in the following section.

3.3 Posterior likelihood and the leading question

To formally define the problem, fix a JB and a common prior u, and let €2, denote the set of
states such that JB(w,)(w) > 0 for some player i, and hence for all players. In particular, we
restrict attention to the states that are assigned positive probability. Normalizing p to this set,
we obtain the distribution (- | )]

For a pair w,w’ € Q0 such that w’ € P;(w) for some 7, consider the ratio %. We ask
whether there exists a signaling function 7 of the mediator and a signal s that induce the same

likelihood ratios. Specifically, does there exist a signal s and a function 7 such that

IBw, i)(w)  plw|Q)7(s |w)  plw)7(s |w) ()
IBw, i) (W) ' | Q)7r(s | o) plw)7(s | o)

for every player i and every w’ € P;(w)? Note that the right-hand side of Eq. does not
depend on player ¢, but only on whether w and w’ lie in the same information set for some
player. To further discuss this question and see why likelihood ratios are sufficient statistics for

generating joint posteriors, consider the following example.
Example 1.

There are five states and two players such that P; = {{wi,ws}, {ws}, {ws,ws}}, Po =
{{wr,wa, w3}, {ws}, {ws}}, and F = {{w1,ws}, {ws,ws,ws}}. Figure 3| illustrates the knowledge

structures of the players as well as that of the mediator.

"We discuss the case where some states are assigned zero probability in Section

11



oW1 oWy
o W9
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The players’ information The mediator’s information

Figure 3: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of the mediator (orange).

Starting with a basic set-up and in the absence of any mediator, one may ask whether there

exists a common prior that induces the joint posterior given in Table [I]

Player 1 Player 2
wr | (1/2,1/2,0,0,0) | (Y/3,Y/3,1/5,0,0)
wy | (1/2,1/2,0,0,0) | (Y/3,1/3,1/3,0,0)
ws | (0,0,1,0,0) | (Y/3,Y/3,1/3,0,0)
wy | (0,0,0,/2,1/2) (0,0,0,1,0)
ws | (0,0,0,1/2,12) | (0,0,0,0,1)

Table 1: A JB; player-specific posteriors conditional on the realized states.

Indeed, such a prior exists: the uniform distribution over {2 induces exactly these posterior
beliefs.

same information set for both players (in contrast to the four-state example presented in the

Most importantly, in this example there are two states, w; and w,, that lie in the

introduction).
1/2

1/2
for player 2) is identical across players. This property persists even when

As a consequence, the ratio between the probabilities assigned to these states (namely,

1/3
73

a mediator provides additional information, as illustrated in the next table, and it constitutes

for player 1 and
a cornerstone of our characterization.

Suppose now that the common prior is uniform. Does there exist a public signal that the

mediator could reveal so as to induce the JB given in Table

12



Player 1 Player 2
wy | (1/3,2/3,0,0,0) | (1/5,2/5,2/5,0,0)
wy | (1/3,2/3,0,0,0) | (1/5,2/5,2/5,0,0)
ws | (0,0,1,0,0) | (1/5,2/5,2/5,0,0)
wy | (0,0,0,1/3,2/3) (0,0,0,1,0)
ws | (0,0,0,1/3,2/3) (0,0,0,0,1)

Table 2: The JB conditional on the mediator’s signal, under a uniform prior.

The answer is yes. Consider a stochastic signal, say s, sent by the mediator according to the
following conditional probabilities: P(s | w;) = 1/5 for i = 1,4, and P(s | w;) = 2/s for i = 2, 3, 5.
Note that the conditional probabilities given w; and wy are equal, and the same applies to wo,
ws, and ws. Therefore, the signal s is F-measurable.

Suppose now that the common prior is uniform, and that in the Table [2], the posteriors of
,%, %) rather than those originally stated. The table then
forms a joint belief (see Definition . Is there still a signal that the mediator could make public

player 1 in w, and ws; were (0,0,0

that would induce this joint belief? The answer is no.
The reason is that if, under wy, the posterior of player 1 is (%, %, 0,0, O), then due to the

F-measurability restriction, the ratio

must match

However, in the former case, the ratio is %, while in the latter it is }l.

A hierarchy of beliefs.

In a strategic setting, the entire profile of beliefs, as described in the tables above, plays a
fundamental role. In equilibrium, players choose actions based not only on their own beliefs,
but also on their beliefs about the beliefs of others, and further on higher-order beliefs, i.e.,
what players believe about others’ beliefs about their beliefs, and so forth. This recursive
structure, commonly referred to as a hierarchy of beliefs, is fully captured by the specification
of each player’s belief at every possible state. The richness of this hierarchy ensures that players’
strategic reasoning accurately reflects the underlying information structure of the game.

Consider, for instance, Table [1| and the belief of player 1 when state wy is realized. At this
state, player 1 assigns equal probabilities to ws and ws, and thus assigns equal probabilities to
the events that player 2 knows the true state is w4 or that it is ws. In other words, player 1 is
uncertain not only about the true state, but also about player 2’s information, illustrating the

higher-order beliefs embedded in the structure.
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The importance of generating appropriate priors in each environment lies in the need to
initialize the entire hierarchy of beliefs correctly. Priors determine how beliefs virtually prop-
agate through the system, shape expectations, and ultimately influence equilibrium behavior.
Without a well-specified prior structure, the analysis of strategic interaction under incomplete
information remains fundamentally incomplete. This consideration forms the foundation of the
present study.

This example also highlights the central role of likelihood ratios in characterizing which pos-
terior beliefs can be implemented by a given mediator. Specifically, likelihood ratios capture
the relative plausibility of states within the same information set from the perspective of the
players. Any feasible public signal must preserve these ratios, in accordance with the under-
lying measurability constraints imposed by the information structure. As a result, analyzing
likelihood ratios offers crucial insight into both the design and the limitations of the signals

that a mediator can publicly disclose.

4 The Graph of Information and Consistency Conditions

4.1 The Graph and the Posterior Likelihood Function

In this section, we introduce the graph of information, which will serve as the key tool for
addressing the question of whether a given joint posterior can be implemented by the mediator.
We follow [Rodrigues-Neto| (2009) and define a graph G = (V, E), where the set of vertices
V' coincides with the state space (2; that is, each vertex represents a state. The set of directed
edges E is defined as follows: for any pair of states w,w’ € Q, we have (w,w’) € E, and denoted
(w — ') if there exists a player i € N such that w’ € P;(w). Note that whenever (w,w’) € E,
it also holds that (w',w) € E. We explicitly include both directions because it will be essential
in what follows.
Example (1}, continued. The graph of information corresponding to the model described in
Example [} omitting arrows from a state to itself, is given in Figure [}
Using the graph of information, we can define a posterior likelihood (PL) function, which

will be used to translate a joint posterior to likelihood ratios.

Definition 2. A positive function ¢ defined over E is a posterior likelihood function if it
satisfies the condition)

p(w,w') = o) (5)

8We abuse notation and use ¢(w,w’) instead of p((w,w’)).
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w1 Wy

W2 ws Ws

Figure 4: The graph of information; In this example, there are two connected components, each corresponding
to a CKC.

Example [1I, continued. Recall Table 2] Note that the likelihood ratio of the probabilities of
wy and ws is /2. This is true for both players since w; and wy belong to the same information
sets of the two. We therefore obtain that ¢(w;y,ws) = 1/2, and the other values of the PL

function are:

@(W27W3) = 17 (,0(&)37(,01) = 27 and QO(LU4,Q}5> = 1/2’ (6)

while preserving the relation in Eq. ().

4.2 The mediator-induced PL function: Internal and External con-
sistency
The first question we consider concerns the information structure (7;); and the mediator’s

partition F' through the notion of a PL function. Specifically, fix a PL function ¢: does there

exist an F-measurable, strictly positive function f : Q2 — R, that yields

for every edge (w,w’) € E?

Given the ability and tools to answer this question, we can translate any JB to its respective
PL function (as in Theorem [2 below) and check whether the mediator can induce a function f
that replicates the ratios given in the last equation, as well as in Eq. above. If the mediator
can indeed generate such a function, then it will correspond to the probabilities of a feasible
signal that generates the needed JB (see Remark |1 below).

To address this question, we introduce the notions of an F-cycle and a loop, and build
upon them two conditions: internal and external consistency. As we prove in Theorem (1| below,
internal and external consistency are necessary and sufficient conditions to answer our question.

Formally, an F'-cycle is a sequence of edges ((wi,wiﬂ));l such that (w;,w;41) € E for all

i=1,...,n,and w,41 € F(w;). The next property, referred to as Internal consistency, parallels
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Definition 2 in Rodrigues-Neto| (2009), where cycles are defined solely in terms of the players’

information, independently of the mediator.ﬂ
Definition 3. Let (w;,w;11), be an F-cycle. Then, Internal consistency [INC| holds if

n

[T elws, wisn) = 1. (7)
i=1
Hellman and Samet| (2012) refer to the left-hand side of Eq. (7)), in the case where F is
trivial, as the type ratio of a chain. Note that for every (wy,ws) € E, the sequence (wy,ws,w;)
is an F-cycle. Thus, due to the condition given in Eq. , a positive function ¢ defined over
E is a PL if and only if Eq. is satisfied for every such F-cycle. In particular, a function ¢
that satisfies [INC] is a PL.
We can now use [INC] to extend every ¢ over any connected pair of states within a CKC.
To do so, denote by — the transitive closure of —. That is, w — «’ if there is a sequence of
edges ((wi,wiﬂ))?:l such that w = w; and w,1; = &'. It is well known that a set of states
connected, w.r.t. —, are in the same CKC (see Rodrigues-Neto, 2009). The following Lemma

uses [INC] to extend ¢ in a consistent manner. (The proof is relegated to the appendix; see

Section [A.1])

Lemma 1. Assume [INC]|. Then, ¢ can be extended to any pair (w1, wn11) where w; — wWpy1,
and it holds that for any sequence of edges ((cui,(,uz-ﬂ))?l1 n B,

1=

[T e, win1) = e(wr, wnsa). (8)
i=1
In Example |1, the sequence ((wl,wg), (wa, w3), (wg,wl)) forms an F-cycle, and indeed, in

Table , the product of the corresponding values that ¢ assigns to these edges does equal 1 (see
Eq. (6) above).

Remark 1. Lemma (1| shows that if ¢ satisfies [INC], then it can also induce a probability
distribution, denoted by p,(- | C), over any connected component C' of the graph G. Specifically,

for a connected component C,

o' €)= A 2

where w is an arbitrary state in C'.

9In specific cases, Hellwig| (2013) simplifies the consistency test of Rodrigues-Neto| (2009)) for verifying whether
a given set of players’ posteriors is compatible with a common prior.
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Next, we use the extended ¢ to define a loop and the external consistency property. Suppose
that ¢ is already defined for every pair connected by —. An F-loop is a sequence of pairs

((wi, @i))?:1 such that, for each i = 1, ..., n, the following conditions hold:
(i) wi — @i,
(ii) @i A wit1,

(iii) w; € F(wjy1), with the convention that w, 1 = w;.

Condition (i) requires that each pair of states (w;, @;) belongs to the same connected component,
that is, they are transitively connected and lie within the same CKC. In contrast, condition (ii)
stipulates that successive pairs are separated across CKCs: the states w; and w;, | are not
transitively connected and thus belong to different connected components. Nevertheless, as
specified in condition (iii), every two such states are indistinguishable to the mediator: they
lie within the same cell of the mediator’s partition. This represents a situation in which the
mediator is less informed than the players: it cannot distinguish between states that all players
can. For instance, the example given in the introduction depicts a situation where the mediator
cannot distinguish between states w; and ws, both in different CKCs, and between states ws
and wy, although the two players commonly distinguish between these states. This forms an
F-loop of ((w1,ws), (wy,ws)).

The concept of a loop plays a pivotal role in [Lagziel et al| (2025a,b) to provide condi-
tions such that one mediator dominates another, in an extension of Blackwell’s work on the
comparison of experiments (see [Blackwell, 1951} |1953)).

Similar to the notion of an F-cycle and the internal consistency property, we employ the

loop to define external consistency as follows.

Definition 4. Let ((wi,@i))nzl be an F-loop. Then, External consistency [EXC] holds if

i

n

ng(wi,wi) =1 (10)
i=1
The [EXC] property has substantive content only in situations where the mediator lacks
knowledge of the players’ common knowledge. Equivalently, if for every w we have F(w) C C(w),
then no F-loops arise, and [EXC] becomes vacuous. An extreme example of this is an all-
knowing mediator, who knows the exact identity of the realized state, i.e., F(w) = {w} for
every w € €. In this case, [INC] reduces to simple cycles, as in Rodrigues-Neto| (2009) and
Hellman and Samet| (2012)).
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Before presenting our first main result and characterization, we revisit the introductory
example to illustrate the role of [EXC] in our setting. Suppose the mediator aims to induce a
JB in which player 1’s belief is (%, %, 0, 0) and player 2’s belief is (0, 0, %, }l) The corresponding
posterior likelihood ratios are p(wy,ws) = 3 and ¢(wys,ws) = 3. The product of ratios along
the loop is therefore ¢(wy,ws)p(ws,ws) = ¢ # 1, and as previously stated, this JB is indeed
infeasible.

Our first main result, stated in Theorem (I} establishes that internal and external consistency,
w.r.t. a given PL function ¢, are necessary and sufficient conditions for the existence of an F'-
measurable function that reproduces the likelihood ratios encoded by . (The proof is relegated

to the appendix; see Section [A.2])

Theorem 1. Fix p. There exists an F-measurable and strictly positive function f defined on
V' such that, for every (w,w') € E,

n_ f
plw,w') = ) (11)

if and only if [INC] and [EXC] hold for the extension provided by Lemma [1]

Once Theorem (1] establishes a characterization of a given PL function, we can employ it in
Section [p| to show how one can take a JB, translate it into a PL function, and then replicate
this JB for a given mediator.

As stated in Remark [T, when ¢ satisfies [INC] it induces a distribution (- | C') on any
connected components C'. The next section is devoted to implementation. In particular, it
shows, based on Theorem , that when ¢ satisfies also [EXC], a mediator may generate by a

proper signal, say s, the combination
He = ZM(C | $)pe(- | C), (12)
c

where the summation is over all connected components of GG, and

2weo T(s | W)p(w)
2wea T(s [ w)pw)

In simple terms, p, is the posterior distribution over €2 generated after observing the message

p(C | s) =

s, sent by the mediator.
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5 Application to Bayesian Updating

In this section, we apply Theorem [1| to the context of Bayesian updating. Suppose all players
share a common prior p, and let JB denote a joint belief, as defined in Definition [ Can this
joint posterior be induced by a signaling function 7 of the mediator and a signal s?

We employ Theorem [If to answer this question. To see this, let us focus first on the subset
Q4 C Q of states w for which| JB(w,i)(w) > 0 for some player i. Consider the graph G, =
(Q4, E4) , which is the restriction of the original graph G = (2, E)) to the subset Q. Using
Eq. (4), define a new PL function p;p on the edge set £ as follows:

IB(w,i)(w)  p(w')

SOJB(Waw,) = JB(w’,i)(w’) ' M(w) ) v (w7w/) € E+' (13)

Since both p and JB(w,i)(w) are strictly positive on €2, ;g is strictly positive as well, and
a well-defined PL function. Given that [INC] holds, we can extend ¢;p to every pair (w,w’)
in a given CKC as done in Lemma [l So, whenever [INC] holds, we henceforth consider the
extended PL function.

Recall that .  (see Eq. above) denotes the joint posterior associated with 7 and s. As
an implication of Theorem 1], the following theorem states that internal and external consistency
(w.r.t. pjp) are necessary and sufficient conditions for the existence of an F-measurable signaling

function 7 and a signal s, such that p, ;= JB. (The proof is relegated to the appendix; see

Section [A.3])

Theorem 2. Fiz a joint belief JB. Then there exists an F'-measurable signaling function T and

a signal s, such that p, . = JB if and only if
(i) Q4 is measurable w.r.t. F; and
(ii) @B satisfies conditions [INC] and [EXC] in G4 ]

The economic implication of Theorem [2] is as follows. Suppose a function ¢ is given. By
Remark [T ¢ induces a probability distribution over each connected component, and thus de-
termines the posterior beliefs of all players. Theorem [2| identifies conditions under which there
exists a signaling mechanism, implemented by the mediator, that induces these posterior beliefs,
as described in Eq. .

0Recall that JB(w, i) is a distribution while JB(w,i)(w) is a probability.
HTEXC] is satisfied using the extension provided by Lemma 1} ensured by [INC].
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6 A Mediator as a Blackwell-Experiments (Generator

In the previous sections we provided necessary and sufficient conditions for a JB to be generated
by a single F-measurable signaling function and a single signal. Now suppose we are given
several beliefs, JBy,...,JB,. As in Eq. (13), each JB; induces a PL function ¢p,. Assume
that each pjp, satisfies the [INC] and [EXC] conditions, thereby enabling the application of
Theorem [2 This means that for each 4, there exist a signaling function 7; and a signal s; such
that the posterior they induce coincides with p; = pjgp,, as in Eq. . Thus, each posterior is
individually generated by a distinct signaling function and signal. Our question here is whether
there exists a single signaling function 7 that generates all of these posteriors with positive
probability, and no others.

To formally introduce this question, denote

ey (s | )
@) ) (1)

el ] 5) = 55

which is the posterior probability of w given that the signal s has been generated by 7. The
corresponding posterior distribution over €2 will be denoted by p,(- | s). Note that the signaling
function and the signal are constructed so as to retain all posterior probabilities consistent with
the respective JBs and subject to the mediator’s informational constraint. Once constructed,
they induce a distribution over the state space obtained through standard Bayesian updating.

We then ask: under what conditions does there exist a signaling function 7, measurable

with respect to F', such that the signals it produces with positive probability are sq, ..., s, and

{M’T(' ‘ Sl)?' - 7:“’7'(' | Sn)} = {:uw‘ - mun}? (15)

If the answer is affirmative, the mediator effectively serves as a generator of Blackwell
experiments and, in particular, can generate the corresponding posteriors. To investigate this
question, we begin with the following definition. A nonzero function u : 2 — R is called an

option (or a state-contingent claim), as it specifies a monetary payoff for each possible state.

Definition 5. (i) We say that the family of distributions vy, ..., v, preserves positivity (PP)
w.r.t. p if, for every option w such that E, [u] > 0 for every i, it follows that E,[u] > 0.

(ii) We say that the family of distributions v, . .., vy strictly preserves positivity (SPP) w.r.t. p
if, for every option u such that E,(u) =0 and E,,(u) > 0 for every i, it follows that E,,(u) =0

for every i.
To better understand the notion of positivity preservation, suppose that p is the prior belief
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a decision maker holds about the state space €2, and let puq,...,u, be the posteriors induced
by observed signals. If the posteriors py, ..., 1, do not preserve positivity w.r.t. u, then there
exists a utility function assigning payoffs to states such that the expected utility under the prior
1 is strictly lower than the expected utility under each posterior p;. This represents a case of
time inconsistency: ex ante (i.e., under the prior), the option yields a negative expected reward,
while ex post (i.e., conditional on any posterior), the same option yields a positive expected
reward, regardless of the specific signal realized.

Strict positivity preservation w.r.t. © means that the distributions p1, . . ., u are fully aligned
with p in the following sense: there is no option whose expected value is nonnegative under all
Wi, zero under pu, and strictly positive under at least one p;. Formally, if a function v has zero
mean under p, that is, p regards it as “fair”, and each p,; weakly favors it (i.e., E, [u] > 0 for
all ¢), then it must be that E,,[u] = 0 for all 4. In other words, for any option that is p-neutral,

if it is weakly favorable for all p;, then it is strictly favorable for none.

Observation 1. To show that SPP w.r.t. u implies PP w.r.t. u, assume the former. Consider
an option u such that E, [u] > 0 for every i and assume, contrary to PP, that E,[u] < 0. Define
the option v =u—E,[u]. Then, E,[v] =E,[u] —E,[u] >0 and E,[v] = E,[u] —E,[u] =0. By
SPP, E,,[v] =0 and thus E,,[u] = E,[u] <0 for every i, which contradict the assumption.

We can now discuss the following Theorem 3| that extends previous results to a set of joint
posteriors. Fix a family of PL functions ¢yg,, ..., ¢;s, (induced by the aforementioned JBs)
that satisfy [INC] and [EXC], and recall Eq. which prescribes a distribution for every such
PL function. In particular, ¢; corresponds to the posterior ;. The first part if the following
Theorem (3| states that PP is a necessary and sufficient condition for the existence of a strategy
7 whose signals generate posterior distributions, all of which are contained in {1, ..., . }. The
second part of the theorem uses SPP to characterize when there is a signaling function whose

set of posterior coincides with {1, ..., i, }. (The proof is given in Section in the appendix.)

Theorem 3. Let pu be a common prior, and let vyg,,...,pB, be PL functions that satisfy
[(INC] and [EXC]. For every JB;, assume that V', , defined as in in Theorem [2| is measurable
w.r.t. F'. Then, there exists an F-measurable signaling function T such that:

(i) for every signal s generated by T with positive probability, the posterior it induces belongs to
the family {1, ..., pua} if and only if this family PP w.r.t. p;

(i) the set of posteriors it generates with positive probability coincides with {p1, ..., un} if and
only if this family SPP w.r.t. p.

One should note the construction underlying Theorem [3] First, a common prior and a set of

JBs are fixed to satisfy the conditions of Theorem [2l Next, the implied strategies are employed
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to construct a set of posteriors over () that abstract from the players’ private information. The
necessary and sufficient conditions stated in Theorem |3 are then imposed on these posteriors,
relative to the prior, to guarantee the existence of an F-measurable unified strategy. Once this
strategy is applied, together with the common prior and the players’ private information, it
induces the desired JBs.

7 Extensions, Comments and Discussion

7.1 From Public to Private Signals: Differential information to dif-

ferent groups

The preceding discussion has focused on the case of public signals, where all players observe
the same realization from the information structure. In this section, we turn to a more general
setting in which different groups of players receive different signals. Such a structure allows for
asymmetric information across groups, introducing a richer set of strategic considerations.

Formally, let I C N be a subset of players. A larger group of players generally induces a
coarser partition of the state space into CKCs. That is, the set of CKCs for [ is finer than the
set of CKCs generated by the full set of players N. In other words, every CKC of the players
in I is a subset of some CKC of the players in N.

This reduction in the group of players can alter both the internal and external properties
that depend on the structure of CKCs. To illustrate, consider the model presented in Example[T]
where the full set of players is N = {1,2}. Now, take the subset I = {1}, consisting only of
player 1. In this case, a CKC corresponds to an information set of player 1, and the collection
of CKCs is simply the partition Py, player 1’s information. That is, with only player 1 in the
group, common knowledge coincides with individual knowledge.

Denote by G the graph induced by the entire group and by G its restriction that corre-
sponds to the information structure induced by /. That is, the set of vertices of G is the set
of states, and (w,w’) is an edge if there is a player i € I such that w’ € P;(w). In this case, and
for a given joint posterior JB, the PL function ¢;g(w,w’) is the same in the two graphs.

Let I-[INC] and I-[EXC] denote the internal and external consistency conditions corre-
sponding to group [ in the subgraph G;. Given a joint posterior profile for group I, one may
ask, analogously to the earlier case, whether this profile can be generated by a public signal
emitted by a mediator and received by all members of group I. Theorem [l| addresses this

question by providing necessary and sufficient conditions for such a representation, expressed
in terms of I-[INC] and I-[EXC].
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It is evident that if a signaling function induces the joint posteriors of the entire group N,
then it also induces the joint posteriors of any subgroup I C N. Consequently, Theorem
implies that if the corresponding PL function ¢;p satisfies N-[INC] and N-[EXC], it must
also satisfy I-[INC] and I-[EXC]. In the following Proposition [1} we demonstrate that this
implication can be established directly, without appealing to Theorem . (For the proof, see
Section in the appendix.)

Proposition 1. Fiz a JB. If the PL function ¢;p satisfies conditions N-[INC] and N-[EXC],
then it also satisfies I-[INC] and I-[EXC] for any subgroup I C N.

7.2 An Additive Interpretation and Implications to Potential Games

The concepts, structure, and results derived from the graph of information extend well beyond
Bayesian updating and apply to a variety of other frameworks, one of which is that of potential
games, as described below. In particular, this section employs an additive version of the internal

consistency property to derive a characterization of potential games.

To this end, consider a PL function ¢ and a function f such that p(w,w’) = ;((:’,)). Define
g = log(f) and take the logarithmic transformation of the previous equality. The resulting
quantity

p(w,w') = log(p(w,w')) = g(w) — g(w'),

can be interpreted as capturing the difference (or “gap”) between connected vertices, where g
represents a form of “height” or potential assigned to each vertex.

Formally, let (V, E) denote a finite, directed, and connected graph, and let p : E — R be
a real-valued function defined on its edges. A discrete analogue of the [INC] constraint arises

when F' is discrete. Specifically, assume that F' is discrete, meaning that every atom of F
i=1
such that (w;,w;11) € Eforalli=1,...,n, and w,41 = wi. An additive analogue of the [INC]

consists of a single state. In this setting, a basic cycle is a sequence of edges ((wi,wi+1))

condition, abstracting from any mediator or probabilistic interpretation, can then be stated as

follows:

Definition 6. Let (wi,wiﬂ)?:l be a basic cycle where w,1 = wi. Then, Additive Internal
Consistency [INC-ADD] holds if

Z p(w;, wit1) = 0. (16)

This condition reflects additive path-independence and echoes a multiplicative version, for
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example, as in |[Rodrigues-Neto| (2009) and Hellman and Samet| (2012).
We now connect this idea to an immediate implication of Theorem[I] The following corollary
states that [INC-ADD] is a necessary and sufficient condition for the existence of a function

g, whose differences match the values of p.
Corollary 1. Let (V, E) be a finite, directed, connected graph, and let p : E — R be a real-valued
function. Then there exists a function g : V — R such that

g(w) = g(w') = p(w,w") for every (w, ') € E,

if and only if p satisfies [INC-ADD)].

This observation naturally leads us to the notion of potential games. A potential game is a
strategic game I' = (N, (A4;)ien, (w;)ien), where N is the set of players, with |N| = n; A; is the
finite set of actions available to player 7; and u; : A — R is the payoff function of player i, with
A = X;enA; being the set of action profiles.

We say that T' is a potential game (see, [Monderer and Shapley, 1996) if there exists a
function g : A — R such that for every player ¢ € N, every action profile a = (ay,...,a,) € A,
and every action a; € A;, it holds that

gla) —glay,....a....;a,) = ui(a) —ui(ay,...,a, ... a,).

To apply Corollary , define a graph associated with the game I'; denoted Graph(I'). Its

vertex set is A, and its edge set consists of all pairs of the form

((ag,...,an), (a1, ..., a% ... a,))

for some i € N and a; € A;. We then define a function pr : £ — R on this edge set by:

pr ((ay, ... an), (ag,....dk ... an)) = ui(a) —wiay, ... a;, ... a,).

Thus, an immediate consequence of Corollary [1]is the following characterization:

Corollary 2. Let I' be a strategic game. Then I' is a potential game if and only if pr satisfies
[INC-ADD)] over Graph(I').

Corollary [2| resembles Proposition 2.8 in Monderer and Shapley| (1996)) that provides a
necessary and sufficient condition for a finite game to be an exact potential game in terms of

the cross-differences of players’ payoffs.
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A related, though somewhat tangential, question concerns the class of ordinal potential
games. We say that a game is an ordinal potential game if there exists a function g : A — R
such that for every player i € N, every action profile a = (ay,...,a,) € A, and every deviation

a; € A;, it holds that
gla) —g((ar,...,a;,...,a,)) >0 & wi(a) —wi((ay,...,a;, ... a,)) > 0.

In other words, the direction of improvement in each player’s utility is perfectly aligned with that
of the potential function. An intriguing question, which remains beyond the current analysis,
is what characterizes ordinal potential games in terms of underlying structural or consistency

properties. We leave this question for future exploration.
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A  Proofs

A.1 Proof of Lemma [

For every pair (wy, w,4+1) such that wy — w11, define

n

plwr,wnir) == [ ] lws wit),
=1

provided that the sequence ((wi, wi+1))n:1 lies in E. To show that this is well defined, suppose

i

there are two sequences connecting w; and wy,11:

((Wiawi—&—l))j:l and ((@vfﬁl))?:l’
with & = w; and &,,11 = w,+1. Concatenating the two sequences, with the first in its original

order and the second reversed, produces an F-cycle.
By [INC] and Eq. (5), we have

m m

n n 1
HSD(wi,wz‘H) : H‘P(fﬂlfj) = ggp(wi’wiﬂ) . H m -

i=1 j=1 j=1
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Therefore,
n m

H QP(WZW wi-i—l) = H Qo(gjv §j+1)7

i=1 j=1
shows that the definition of ¢(w;,w,;1) does not depend on the particular sequence and is
therefore well defined. O]

A.2 The proof of Theorem [

Part 1: Necessity. Suppose that there is an F-measurable positive function f that satisfies
Eq. (11). To show [INC], let ((wi,wiﬂ))?:l be an F-cycle. Then,

n

i) = - f(wi) _ f(wr) _
H@(W“ z—‘rl) :il_Ilf(wi-i-l) f(wn+1) 1.

The first equality is due to Eq. [II} and the last follows from the assumption that f is F-
measurable and that w, 1 € F(wy).
To show [EXC], let ((wi,@i))nzl be an F-loop. By Eq. and Eq. , we have

%

- - a f(wi) fwr)
o(w;, w;) = — = =1.
[etena) =115 =5
The first equality follows from Eq. , the second equality follows from the fact that f is
F-measurable and the second property of F-loops, and the third equality follows from the same

property, since @, € F(w;).

Part 2: Sufficiency. Assume [INC] and [EXC] with the extension provided by Lemma [1]
We claim first that for every connected set of V', say C, there is an F-measurable positive
function fo, defined over C', that satisfies Eq. . Let wy be an arbitrary state in C. Set
f(wo) = 1. Now, by induction on the distance{ﬂ to wy.

Suppose that f has been defined on all states in a connected component C' whose distance
from the state wg is k. Let w’ be a state in C at distance k + 1 from wy. Then, there exists a
state w” at distance k such that (w”,w’') € E. Define

fow') = fo(w") - p(w',u").

Using [INC] and the same argument as in Lemma , one can show that f is well defined.

12The distance between two states in C is defined as the minimal number of edges in a path connecting them.
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To show that fo is F-measurable, consider w € F(w') N C. Then, there is an F-cycle w; =
W, ...,wpy1 = w'. By [INC] and by the definition of fg,

fC Wz—‘rl fC(wn-‘rl) fc(w/)

. PO H folw) _ folw) _ folw)
=1

Thus, the values that fo takes on w and w’ coincide. So far, we have constructed fo for each
connected component C' of V. We now show that there exists a single F-measurable function
f satisfying Eq. .

To this end, we define a new graph, G = (V, E) as follows. The set of vertices, V', consists
of the connected components of V. Two components C,C’ € E are connected by an edge if
there exist states w € C' and w’ € C’ such that w € F(w'). That is, the edge set, E, consists
of all pairs (C,C") for which there exist w € C' and w’ € C’ such that w and ' belong to the
same information set of F'.

Fix a vertex Cy, and set f := fo, on Cy. We proceed by induction on the distance of a
vertex C' from Cjy. Suppose that an F-measurable function f > 0, satisfying Eq. , has been
defined on all vertices whose distance from Cj is less than or equal to k. Let C be a vertex at

distance k 4 1 from Cj. Then there exists a path of edges in £,
(CO7 Cl)a (Cl7 02)7 SR (Ck7 C>7

and in particular, there exist w, € C) and w € C such that wy and w belong to the same

information set of F. Define
f (@)
fe(w)
on C. Clearly, if f is well defined in C, then it satisfies Eq. , since it differs from fo by a
multiplicative factor of a positive constant. Moreover, f(w) = f ().

We first verify that f is well defined and then show that it is F-measurable. To establish

f=fc- (17)

that f is well defined, suppose that there exists another path
(COv Gi)? (Cia Cé)’ T (Cé, C)a

connecting Cy and C, with w; € C; and w’ € C such that w, and w’ belong to the same
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information set of F[2] We have to show that

Note that the path
(C(b C’1)7 (Cla 02)7 R (Ck7 C)? (CJ Cé)a ceey (Céu Ci)? (Cia CO)
is a cycle in the graph G, that corresponds to an F-loop:

(w07 (DO)u (wla @1)7 R (wk—h ajk—l)? (wka (Dk)7 (w7w,)7 (Wé, (IJ;)? ) (W;, (IJ;), (wi,@i)

That is, any two states in a pair belong to the same vertex in G, e.g., wy and @y belong to Cj,

wy and Wy belong to C1; w and W' belong to C, and wj}, w; belong to C}. Also, in two adjacent
pairs, the second coordinate of the left pair belongs to the same information set of F as the
first coordinate of the right pair. For instance, w; € F(wit1), wr € F(w), ' € F(w),) and
Wiy € F(w)). Finally, w) € F(wo).

By [EXC], and specifically by Eq. , the corresponding product equals 1. That is,

[H so(wi,wi)] ) [wa;,w;)] -1 (19)

Due to F-measurability and to Eq. (1I), we get Hf:o o(w;, ;) = ;Egi%, olw,w) = ch(w)

and H;:g p(wj, ;) = % Thus, by Eq. we obtain the following;:

which confirms Eq. .

The final step in the proof is to show that f is F-measurable. We consider two cases:

13The asymmetry in the notation between @y (with a bar) and w) (without) will become clear immediately.
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Case I. Let w € C and w’ € (', where the distance from C’ to Cj is less than or equal to k,
and suppose that w € F(w'). We need to show that f(w) = f(w'). By assumption, (C,(C") € E
and (C,C}) € E. Moreover, C" and C}, are connected by paths of length at most k. This forms
a cycle in the graph G, which in turn corresponds to an F-loop. Applying the same technique

used earlier, we conclude that f(w) = f(').

Case II. Let w € C and W' € ', where the distance from C’ to Cy is exactly k + 1, so
that both C' and C” are introduced in the induction process at the same step, and assume that
w € F(W"). Then (C,C") € E, and both C' and C” are connected to Cy by paths of length & + 1.
This forms a cycle in G passing through C' and C’, which corresponds to an F-loop. Using
[EXC], we conclude that f(w) = f(w'), verifying that f is F-measurable. O

A.3 The proof of Theorem

Proof. Assume that 7 is a signaling function and that s is a signal generated by 7 with positive
probability such that p,, = JB. Then, clearly, the set of states w such that 7(s | w) > 0
is measurable w.r.t. the mediator’s partition F', and matches the set 2, previously defined
according to JB.

Similarly to Eq. (), the equality p,, = JB implies that TT((S‘TU‘:‘%Z EZ,)) = J‘;B(S:‘,’z;gig) Applying
Eq. , we get

o B pw) _ r(sk)
Pl ) = B ) ) Tlsle)

and Theorem [1| guarantees that ;g satisfies conditions [INC] and [EXC] in G;. This proves

the necessary direction.

For the sufficiency direction, assume that JB satisfies conditions (i) and (ii). Since 2 is
measurable w.r.t. ', we can define 7(s | w) = 0 for every w ¢ €, and otherwise, 7(s | w) is
positive.

On €, since p;p satisfies [INC] and [EXC] in G, Theorem [l| ensures the existence of a
function f > 0 satisfying Eq. and we get

JBw,i)(w) p) _ fw)
B, )W) @) fw@)

By multiplying f by a constant if needed, we may assume without loss of generality that
sup,, f(w) < 1. We then define 7(s | w) = f(w) for all w € O, so that the previous equation

can be written as

(s |wplw) _ IBw, i)(w)
(s [wW)uw)  IB(w,i)(w)’
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which matches Eq. (). This guarantees that 7(s | -) implements JB, as needed. To ensure that
7 is a well-defined kernel, we can extend it using an arbitrary signal sg, so that 7(so|lw) = 1— f(w)

for every w € €2,. O

A.4 The proof of Theorem

Proof. Part (i) We start by proving sufficiency. Suppose there exists an F-measurable
signaling function 7 as described in the theorem. The induced posteriors thus form a martingale.

That is, if the posterior y; is realized with probability ¢;, where ). ¢; = 1, then
Z iy = [

Let u be an option. So,

By (1) = 3 0 (0).

If each E,,(u) > 0, then E,(u) > 0 as well. Therefore, the family {y, ..., u,} PP w.r.t. p.

Moving on to prove necessity, suppose that no F-measurable signaling function 7 exists
such that all the posteriors it generates are in {1, ..., i, }. Note however that every y; can be
generated through a specific F-measurable strategy and appropriate signal, and also note that
convex combinations of F-measurable kernels are F-measurable as well. Thus, by standard
results on Blackwell experiments, if u € conv{vy,..., vy}, namely if p can be expressed as
a convex combination of the 1;’s, then there is an experiment that produces signals whose
posteriors are precisely {v1,...,v}.

Our assumption implies that g ¢ conv{uy,..., u,}. Since this convex hull is closed, the
separating hyperplane theorem guarantees the existence of a nonzero vector u € R® and a
constant ¢, such that

E,,(u) = (i, u) > ¢ for all 7,

while

E, (1) = (1) < c.

By subtracting ¢ in the two inequalities above and replacing v with v — (¢, ..., ¢), noting that
the separation theorem is applied here to probability distributions, we conclude that the family

{11, .., pn} does not PP w.r.t. pu. This is a contradiction.

Part (ii) We prove sufficiency first. Suppose there exists an F-measurable signaling function
7 as described in Part (ii) of the theorem. Let u be an option such that E,(u) = 0and E,,,(u) > 0
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for every i. We show that E,, (u) = 0 for every i. As before, if the posterior p; is realized with

probability ¢; > 0, where ) . ¢; = 1, then
Z qift; = [

Let u be an option. So,
k
E,(u) = Z iy, ().
i=1

If each E,,(u) > 0 and E,(u) = 0, then E, (u) = 0 for every ¢ . Therefore, the family
{1, .., tn} SPP w.r.t. .

To establish necessity and similarly to the proof of Part (i), we show that u can be expressed
as a convex combination of u, ..., u,, each with a positive weight. For this purpose, we prove

the two following lemmas.

Lemma 2. SPP implies that for every j there is a convexr combination = Y. g, where

Qj>0.

Proof. Fix an index j. Suppose, to the contrary, that there is no convex combination p =
> s @iy with g; > 0. This implies that the set

D= {Qjﬂj +Z%‘/ﬁz’ ;q;>0, ¢ =>0fori#j, and g; +Z%’ = 1}
i#] i#]
does not contain u. Note that D is convex and has a nonempty interior relative to the simplex
of all distributions over €2; in particular, the point % >, i is an interior point of D.

Consider now the closure of D, denoted D. This set is also convex and contains all the ;s
(including 7). The point g may lie outside D or on its boundary. In either case, there exists
a nonzero hyperplane u (referred to here as an option) such that E,(u) = 0 and E, (u) > 0 for
every v € D[] In particular, this implies that E,, (u) > 0 for every i.

We now apply SPP to the option u, which yields E,,[u] = 0 for all <. Consider, however,
the interior point v = %ZZ 1, which belongs to D. Being an interior point, we have on the
one hand E, [u] > 0 (see Theorem 11.3 in |[Rockafellar, |1970)), while on the other hand,

Eufu] = By y = 5 Y Bl =0,

14Note that every option u derived from the separating hyperplane theorem can be adjusted with a positive
constant to ensure the stated conditions.
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This is a contradiction. Hence, there must exist a convex combination p = ). ¢;; with g; > 0,
as required. O
Given Lemma 2] we now turn to the next lemma, which shows that p can be expressed as

a convex combination of uq, ..., u,, each with a positive weight.

Lemma 3. If for every j there is a conver combination of i, ..., pu, such that =, qiju,

where q; > 0, then there exists a combination where all ¢; are strictly positive.

Proof. Fix j and suppose that p = ). qg [; 1s a convex combination, where q? > 0. Take
= %Z?:I > qf i, and note that in this combination, the weight of every u; is positive. [
Combining the two lemmas, we derive from SPP that p is a convex combination (with

strictly positive weights) of 1, ..., t,, as needed. O

A.5 The proof of Proposition

Proof. To verify that N-[INC] implies I-[INC], observe that any cycle in Gy is also a cycle
in G, since every connected component of GGy is contained within a connected component of
Gn. Therefore, Eq. ([7) holds in G; due to N-[INC].

To verify I-[EXC], let the sequence of pairs ((Wﬁ@i))::l be an F-loop in G;. Since the
partition into CKCs in G is finer than that in Gy, we can group the pairs in this sequence
according to their membership in the CKCs of G . Specifically, suppose there are k CKCs in

G, denoted (71, ..., Cy, such that for each £ =1,..., k, we have
(wj,@j) S Og for j = i[,. .. ,’ig+1 —1.

By Lemma , the expression ¢;p(w;,,w;,,,—1) is well defined, because they belong to the
same CKC of Gy. Moreover, since for each i, the states w; and w;;; belong to the same

information set of the mediator, we have for every £ =1, ..., k:

ipp1—1

IT emw),@;) = esm(wi, @iy, 1)- (20)

J=te
It follows that:

n k
H B (wi, w;) = H @B (Wi, Wiy, —1)-
i=1 =1

Now consider two cases:

Case 1: k > 2. In this case, the sequence (w;,,w;,,,—1) for £ = 1,... k forms a loop in Gy.
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By condition N-[EXC], it follows that:

k

HSOJB(wip@i“_l—l) =1,
=1

and hence [[_; ¢sp(w;,@;) = 1.

Case 2: k = 1. Then, by Eq. (20), [T, vss(w:, @;) = ¢yp(wi, @,), which equals 1. The reason
is that, due to Egs. and , we have pjp(w,w’) = 1 whenever w and ' lie in the same
information set of the mediator. By the assumption that the sequence forms a loop, we deduce

that w;, and @, belong to the same information set of F'.
Thus, in both cases, we conclude that ;g satisfies I-[EXC]. O
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