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1 Introduction

What is the role of an objective mediator in reaching an agreement, such as a peace treaty,

between two opposing sides? The answer seems straightforward: to persuade both parties to

sign the deal. Yet this form of persuasion is particularly intriguing, as the mediator must shape

a joint perception shared by both sides, ensuring that each finds the agreement acceptable. Our

paper begins with this observation.

Bayesian updating is the cornerstone of belief revision under uncertainty. In strategic en-

vironments with incomplete information, players use signals to update their beliefs about the

underlying state of the world, often relying on publicly observed information. A fundamental

question, therefore, is whether a given collection of posterior beliefs, interpreted as arising from

Bayesian updating, can actually be implemented by some signal structure consistent with an

external agent’s knowledge. In this paper, we address this question by analyzing the condi-

tions under which posterior beliefs are implementable via a signal generated by an external-

information provider, a mediator, endowed with partial knowledge of the state.

Our framework assumes that the mediator’s information is described by a partition over a

finite state space, and that it can emit public signals governed by stochastic rules measurable

with respect to its own information. Players, upon observing a signal, update their beliefs via

Bayes’ rule. We ask: given a profile of posterior beliefs or likelihoods across possible states, can

we find a mediator-compatible signal that induces these beliefs?

This question is central in economics and game theory, especially in the design and compar-

ison of information structures, and in understanding how much control an information provider

has over the beliefs and behavior of rational agents. While it is always possible to construct

posterior beliefs through arbitrary signaling mechanisms, we focus on the more subtle problem

of whether such posteriors can be implemented under the restriction that signals must be mea-

surable with respect to the mediator’s limited knowledge. Moreover, the mediator’s partition of

the state space may differ from those of the players, creating the novel possibility that players

have common knowledge of events that the mediator does not know.

To address this question, we introduce a compact representation of Bayesian updating

through a posterior likelihood function, which specifies the ratio of posteriors across adjacent

states, i.e., states that lie in the same information set of some player. We then ask under what

conditions such a function can be rationalized by a mediator-generated signal. Our main tool is

the graph of information, following the framework of Rodrigues-Neto (2009), which encodes the

state space and players’ informational partitions in a concise form. On this graph, we define a

positive function φ that captures comparative likelihoods between adjacent states. While the
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graph provides a convenient representation of informational constraints, the core of our analysis

lies in understanding how these constraints shape the implementability of belief updates.

The function φ is particularly valuable in our set-up because the likelihood ratios it encodes

are shared by all players who cannot distinguish between adjacent states. As a result, the

information carried by φ is adequate for our analysis, rendering the graph-based model both

concise and sufficiently informative. Thus, our central question translates to: under what

conditions can such a function be rationalized as the output of a signal generated by a mediator,

constrained by the limits of its own knowledge?

To address this, we develop conditions under which φ admits a representation in terms

of an F -measurable function (where F denotes the mediator’s partition), allowing φ to be

expressed as the ratio of values of a positive function defined over states. These conditions,

named internal and external consistency, mirror and extend earlier consistency notions in the

literature (notably Rodrigues-Neto (2009) and Hellman and Samet, 2012), while introducing

the role of a third-party mediator.

Our results provide a bridge between abstract information structures and concrete Bayesian

updating. We show that φ can arise from Bayesian posteriors induced by a signal that the

mediator releases. This opens the door to interpreting the mediator as a generator of Blackwell

experiments and leads to new insights about the implementability of distributions over states

and the coherence of beliefs across players.

In doing so, we extend the theory of common priors and beliefs, clarify the conditions

under which players’ posteriors can be coherently derived from shared signals, and provide a

graph-theoretic approach to understanding the flow of information in multi-agent systems.

A Negotiation Game: motivating example. To motivate our model and results, consider

a game with two players, indexed by i = 1, 2. Each player has two available actions: attack

(denoted A) and compromise (denoted C). The set of states is Ω = {ω1, ω2, ω3, ω4}, endowed
with a uniform common prior. The players hold asymmetric information: player 1’s partition

is P1 = {{ω1, ω2}, {ω3}, {ω4}}, and player 2’s partition is P2 = {{ω1}, {ω2}, {ω3, ω4}}. Thus,

when either ω1 or ω2 is realized, player 2 learns the state with probability 1, while player 1’s

posterior is uniform over {ω1, ω2}. Similarly, when ω3 or ω4 is realized, then player 1 learns the

state with probability 1, while player 2’s posterior is uniform over {ω3, ω4}. This example bears

some resemblance to the framework of Hörner et al. (2015), which was recently extended by

Özyurt and Zeng (2025) to incorporate a privately informed mediator into the original game.

The payoffs of the game are presented in Figure 1. The realized payoffs depend on the state:

x = 2 if ω ∈ {ω1, ω2}, and x = 3 if ω ∈ {ω3, ω4}. Let Gi denote the payoff matrix when state ωi
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is realized. In G1 and G3, player 1’s dominant strategy is A and player 2’s dominant strategy

is C, whereas in G2 and G4 the dominant strategies are reversed.

Player 2

A C

Player 1
A (2,−5) (x,−4)

C (−1,−1) (0, 0)

Given that ω ∈ {ω1, ω3}

Player 2

A C

Player 1
A (−5, 2) (−1,−1)

C (−4, x) (0, 0)

Given that ω ∈ {ω2, ω4}

Figure 1: Two payoff matrices with Player 1 (row player) and Player 2 (column player). If ω1 or ω2 are realized,
then x = 2, and if ω3 or ω4 are realized, then x = 3.

The interpretation of the game is straightforward. Each player can either attack the other

or compromise by signing a peace treaty. In states ω1 and ω3, player 1 holds the superior

attacking position, whereas in states ω2 and ω4 player 2 holds this advantage.1 Nevertheless,

from a social perspective it is optimal to reach a peace agreement, as it maximizes the aggregate

payoff. Such a treaty, however, requires a joint concession by both players.

Consider now the players’ equilibrium behavior. If the realized state is either ω1 or ω2,

then player 2 is fully informed while player 1’s posterior is
(
1
2
, 1
2
, 0, 0

)
. In this case, given that

player 2’s dominant strategies are C in ω1 and A in ω2, player 1’s optimal action is A. On the

other hand, if the realized state is either ω3 or ω4, then player 1 is fully informed while player 2’s

posterior is
(
0, 0, 1

2
, 1
2

)
, and player 2’s optimal action is A. Hence, in every equilibrium of the

game, the action profile (C,C) is never played.

We now introduce the role of a mediator. The mediator also possesses private information,

represented by the partition F = {{ω1, ω3}, {ω2, ω4}}. The mediator’s task is to design a

signaling mechanism that may persuade both players to accept a peace treaty in equilibrium,

with positive probability. Such persuasion, however, can never succeed with probability 1.

Namely, whenever a player is fully informed and holds the superior attacking position (i.e., in

states ω2 or ω3), that player will necessarily choose A.

To illustrate the mediator’s role, Figure 2 depicts the players’ and the mediator’s information

structures. If the mediator fully discloses this information, both players become perfectly

informed about the state, and the peaceful outcome (C,C) is never sustained in equilibrium.

By contrast, if the mediator could hypothetically induce a posterior of
(
1
3
, 2
3
, 0, 0

)
for player 1

1A joint attack leads to the worst aggregate outcomes, (2,−5) or (−5, 2), though still favorable for the player
with the superior position. If one player attacks while the other compromises, payoffs reflect the attacking
player’s advantage.
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Ω P1 P2

ω1

ω2

ω3

ω4

(a)

The players’ information

Ω

F

ω1

ω2

ω3

ω4

(b)

The mediator’s information

Figure 2: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of the mediator (green).

while player 2 remains fully informed, then player 1 is indifferent between A and C since action

A yields an expected payoff of 1
3
· 2+ 2

3
· (−5) = −8

3
, while action C yields 1

3
· 0+ 2

3
· (−4) = −8

3
.

Hence, there exists an equilibrium in which (C,C) is played with positive probability.

A similar argument applies to player 2. If the mediator induces a posterior of
(
0, 0, 3

4
, 1
4

)
for player 2 while player 1 remains fully informed, then player 2 is indifferent between A and

C, because action A yields an expected payoff of 3
4
· (−5) + 1

4
· 3 = −3, while action C yields

3
4
· (−4)+ 1

4
· 0 = −3. Note that the previous proportions of 1

3
and 2

3
change to 1

4
and 3

4
because

x varies between states. Once again, this creates an equilibrium in which a peace agreement,

the socially optimal outcome, is reached with positive probability.

This raises a natural question: can the mediator design a signaling strategy that simultane-

ously induces these posteriors? For instance, is it possible to generate a posterior
(
1
3
, 2
3
, 0, 0

)
for

player 1 when the realized state lies in {ω1, ω2}, while at the same time generating a posterior(
0, 0, 3

4
, 1
4

)
for player 2 when the realized state lies in {ω3, ω4}? In this example, the answer is

negative. More generally, this question captures the central problem of the paper.

So why does the mediator, in this specific example, fails to generate a joint posterior of the

stated form? The obstacle arises from measurability (information) constraints. Any signaling

function based on the partition F must send the same signal in both ω1 and ω3, as well as in

ω2 and ω4. Consequently, once the mediator induces a posterior of the form (p, 1 − p, 0, 0) for

player 1, this necessarily translates into a posterior of (0, 0, p, 1−p) for player 2, and vice versa.

The Characterization. We provide necessary and sufficient conditions for when a mediator

4



can implement a feasible joint posterior, given the players’ information and the mediator’s parti-

tion. This characterization captures the inherent limitations of such implementation, expressed

in terms of likelihood ratios and loops.2

To illustrate, consider the sequence (ω1, ω2, ω4, ω3). The event {ω1, ω2} forms a common

knowledge component (CKC), that is, a minimal set on which all players can agree.3 Hence, ω1

and ω2 lie in the same CKC and are linked through the players’ knowledge. In contrast, ω2 and

ω4 are not in the same CKC but belong to the same information set of the mediator. Next, ω4

and ω3 again fall within the same CKC. Finally, the tail of the loop, ω3, belongs to the same

mediator information set as the head, ω1. Thus, the sequence is a chain of states alternating

between belonging to a player’s CKC and to a mediator information set.

The sequence (ω1, ω2, ω4, ω3) is an example of a loop, formally defined in this paper (see

Section 4.2) and also employed in Lagziel et al. (2025a,b), in which the mediator’s knowledge

cyclically connects distinct CKCs of the players.

Our characterization establishes that, for a joint posterior to be feasible, the product of

likelihood ratios along every loop must equal one. For instance, under the posterior
(
1
3
, 2
3
, 0, 0

)
the likelihood ratio of ω1 to ω2 is φ(ω1, ω2) = 1/3

2/3
= 1

2
. Under the posterior

(
0, 0, 3

4
, 1
4

)
the

likelihood ratio of ω4 to ω3 is φ(ω4, ω3) = 1/4
3/4

= 1
3
. In this example, the feasibility condition

fails for the proposed posteriors, but it does hold for (p, 1 − p, 0, 0) and (0, 0, p, 1 − p). This

property, referred to later as external consistency, underpins our general characterization.

The second key property in our characterization, termed internal consistency, imposes a

similar condition within each CKC of the players. To formalize this, we use the notion of a

F -cycle: a closed path of states contained in a CKC, where each pair of adjacent states is

connected by an atom of one of the players’ partitions, except for a single pair connected by an

atom of the mediator’s partition (denoted by F ). Internal consistency requires that the product

of likelihood ratios along every such F -cycle equals one.

Beyond our feasibility characterization, an additional and intriguing question concerns the

optimality of the mediator’s signaling function. Suppose that the mediator seeks to maximize

the probability that the outcome (C,C) is played. To this end, the mediator can employ

multiple signals to generate feasible posteriors of the forms (p, 1− p, 0, 0) and (0, 0, p, 1− p) for

various values of p, each inducing the desired profile with different probabilities. In a broader

setting, however, this is a more advanced problem: the preliminary step is to identify which

posteriors are feasible. In other words, before addressing the question of optimality, one must

2Notably, the likelihood ratio also plays a central role in the negotiation game of Hörner et al. (2015); see
the definition of λ therein and the subsequent analysis.

3Formally, each player’s information generates this event; equivalently, a CKC is a minimal non-empty subset
that is measurable with respect to the σ-algebra of all players.
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first determine the feasible actions, and this is the focus of the current research.

Related literature. Several strands of the literature inform our analysis. Since the foun-

dational work of Harsanyi (1967–1968), much effort has been devoted to formalizing and un-

derstanding the informational structures that underlie such environments. A key insight in

this literature is that players’ information can be represented as partitions over a finite state

space, and the relationships among these partitions encode the possible flow and structure of

information in the game. Harsanyi (1967–1968) provides the basis for belief-based reasoning in

strategic settings.

Aumann’s framework for knowledge and common knowledge (see Aumann, 1974) formalized

the use of partitions to represent agents’ information. Building on this foundation, our paper

extends the idea by introducing an external mediator that generates signals constrained by its

own partition. A central concept in our analysis is the CKC, which is rooted in Aumann’s

original formulation.

The question of whether a joint posterior originates from a common prior has attracted

significant attention across various settings. This inquiry has been studied extensively in con-

texts ranging from finite state spaces (see, e.g., Morris, 1994), to compact state spaces (e.g.,

Feinberg, 2000; Heifetz, 2006), and to countable state spaces (see Lehrer and Samet, 2014).

In the present framework, we assume that players initially share a common prior and acquire

information through their individual partitions of the state space, subsequently updating their

beliefs via Bayesian conditioning.

The novel aspect of our model is the introduction of an external information source, the

mediator. Given the observed joint posterior profile of the players, we inquire whether such

a profile can be rationalized as arising from a known common prior, augmented by additional

public information disseminated by the mediator, which itself may be only partially informative

to the players. In other words, we ask: does the joint posterior stem from the interaction between

a common prior and an external, symmetric informational input?

The conditions we impose, internal and external consistency, are inspired by the cycle-based

consistency concepts introduced by Rodrigues-Neto (2009) and Hellman and Samet (2012),

though our focus is on implementability via constrained signals rather than belief structures.

At a conceptual level, our mediator corresponds to a restricted Blackwell experiment Black-

well (1953), with implementability shaped by the mediator’s coarse knowledge. In this sense,

our work complements the Bayesian persuasion framework of Kamenica and Gentzkow (2011),

where a sender optimally selects signals to influence beliefs; we instead ask when a given belief

structure can be realized at all under informational constraints.
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Motivated by the question of aggregating experts’ opinions and building on the results of

Kellerer (1961), Strassen (1965) and Gutmann et al. (1991), the work of Dawid et al. (1995)

provides a characterization of joint posterior beliefs for the case of two agents. This was

recently extended by Arieli et al. (2021) who characterize the set of feasible distributions of joint

posterior beliefs that can arise among multiple agents in a binary state space, given a Blackwell

experiment that provides different (potentially asymmetric) information to each agent. Their

characterization is closely related to the no-trade literature in that it identifies constraints on

belief distributions that are consistent with a common prior and Bayesian updating, even when

agents receive heterogeneous private signals.4

Independently of Arieli et al. (2021), the study of Ziegler (2020) deals with a setting in which

a mediator provides private signals to two receivers, without committing to a common infor-

mation structure. The mediator therefore chooses information structures robustly, maximizing

expected payoff against the worst-case interpretation consistent with Bayesian rationality. In

doing so, Ziegler derives necessary feasibility constraints on the joint distribution of receivers’

posteriors, conditions that coincide with those of Arieli et al. (2021) as both necessary and

sufficient in the case of two agents.

Our analysis distinguishes itself from existing literature in four fundamental ways, which

collectively define a novel research agenda. First, we adopt a setting in which players receive

private signals from a fixed information structure regarding an unknown state that is not nec-

essarily binary, allowing for a richer initial belief space. Second, the mediator is only partially

informed about the true state, and their own information structure is fixed, which shifts the

focus from optimal information design to the mechanics of communication under given con-

straints. Our characterization is thus framed in terms of the information structures of both

the players and the mediator. Third, the mediator utilizes a public communication channel, a

deliberate simplification that allows us to focus on the impact of generating common knowl-

edge, rather than the complexities of personalized private signals. Finally, and most critically,

our primary focus is on characterizing the specific joint posteriors that can be induced by the

mediator, rather than the distribution over these posteriors. We then build upon this to define

and characterize the entire set of implementable joint posteriors, investigating the conditions

under which any element of this set can be implemented through a stochastic public signal, a

major departure from the standard distributional analysis in this field.

Finally, our results contribute to the broader literature on higher-order beliefs (see the review

4See also the follow-up paper and review of the no-trade history in Morris (2020), as well as the study of
Burdzy and Pitman (2020), which follows Dawid et al. (1995), to derive probabilistic bounds on the polarization
of posteriors in a two-agent setting.
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by Geanakoplos, 1994), by characterizing which belief patterns, encoded in posterior likelihoods,

can emerge from shared public signals constrained by a third party’s limited information.

The structure of the paper. The paper is organized as follows. Section 2 introduces

the model: a finite state space, players’ information partitions Pi, a common prior µ, and an

external mediator whose information is represented by a partition F . Section 3 discusses joint

beliefs and joint posteriors. It formulates the central research question: given a joint belief,

does there exist an F -measurable signal that generates it as a joint posterior?

Section 4 presents the graph of information, where nodes correspond to states and edges

reflect indistinguishability under some player’s partition. The section defines the posterior

likelihood function on edges and uses it to reformulate the implementability question. Sec-

tion 4.2 introduces two key conditions, internal consistency and external consistency, which

play a central role in resolving the implementability problem. It then establishes a technical

graph-theoretic result (Theorem 1) that serves as the backbone of our main theorem.

Section 5 reformulates the problem in terms of joint posteriors by defining a posterior

likelihood function that incorporates both the joint posterior and the prior. Theorem 2, the

main result of the paper, characterizes when a joint posterior is implementable by a mediator

in terms of the two consistency conditions applied to this function.

Section 6 generalizes the framework to accommodate for multiple signals. It introduces the

notion of positivity preservation and shows that a family of posterior likelihood functions can

be simultaneously implemented by a mediator if and only if the family preserves positivity with

respect to the prior.

Finally, Section 7 offers additional interpretations and extensions. Section 7.1 extends the

analysis to settings where different players or groups of players observe different signals. It

shows that the consistency conditions apply not only globally but also within any subgroup.

Section 7.2 reformulates the multiplicative consistency conditions in logarithmic terms and

relates them to potential games (see Monderer and Shapley, 1996) in Corollary 2.

2 The Model

Let N = {1, 2, . . . , n} with n ≥ 2, denote the set of players, and let Ω be a non-empty, finite

state space with a strictly positive common prior µ. Each player i ∈ N has a finite partition Pi

of Ω, representing player i’s information. For any state ω ∈ Ω, we denote by Pi(ω) the element

of the partition Pi that contains ω. A Common Knowledge Component (CKC), typically

denoted by C ⊆ Ω, is a minimal non-empty subset of states that is measurable with respect to
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the σ-algebra of every player (see Aumann, 1974). The notation C(ω) refers to the CKC that

contains the state ω.

Let F be a partition of Ω belonging to an agent outside the set N , which we refer to as

the mediator. As before, F (ω) denotes the information set of F that contains ω. The mediator

may provide additional information to the players beyond their private information. For this

purpose, he uses a public signaling function τ : Ω → ∆(S), where S is a finite set of signals

and ∆(S) is a distribution over S. Let τ(s | ω) denote the probability that the public signal

s ∈ S is observed given state ω. Note that the signaling function is measurable with respect to

(henceforth, w.r.t.) F .5 Formally, τ is an F -measurable stochastic kernel:

(i) For each state ω ∈ Ω, τ(· | ω) is a probability distribution over a finite set of signals S.

(ii) For all ω′ ∈ F (ω) and s ∈ S, we have τ(s | ω′) = τ(s | ω).

The signaling function τ is also known as a Blackwell experiment (see Blackwell, 1951), so the

mediator can be viewed as a generator of Blackwell experiments.

3 Bayesian Updating

Recall that µ is the common prior and assigns positive probability to every state. Otherwise,

we may restrict attention to the support of µ. Let τ denote the mediator’s signaling function.

3.1 Joint posterior beliefs

When the realized state is ω, player i is informed of Pi(ω). Assuming that τ(s | Pi(ω)) > 0

and upon observing s, player i updates their belief. His posterior probability of ω′ ∈ Pi(ω),

given Pi(ω) and s, is

µτ,i(ω
′ | Pi(ω), s) =

µ(ω′)τ(s | ω′)∑
ω′′∈Pi(ω)

µ(ω′′)τ(s | ω′′)
. (1)

Thus, µτ,i(· | Pi(ω), s) is a probability distribution, conditioned on both Pi(ω) and s, over Ω

whose support is a subset of Pi(ω). For notational convenience, we define µτ,i(ω
′ | Pi(ω), s) = 0

for every ω′, whenever τ(s | Pi(ω)) = 0.

5Measurability w.r.t. F means that if ω and ω′ are indistinguishable from the mediator’s perspective, namely,
in case ω′ ∈ F (ω), then τ(s | ω′) = τ(s | ω).

9



When the realized state may vary, we define the joint posterior associated with τ and s as

the set of posterior profiles across all states that can generate s:

µτ,s =
{(

µτ,i(· | Pi(ω), s)
)
i∈N : ω ∈ Ω with τ(s | ω) > 0

}
. (2)

This joint posterior records not only each player’s beliefs about the true state but also their

beliefs about others’ beliefs and higher-order beliefs, making it a central object for analyzing

equilibrium behavior.

3.2 Joint beliefs

To allow for even greater generality, the following definition of a joint belief requires neither a

signal nor a mediator. It will be used throughout the paper to define the joint profile of beliefs

that a mediator can generate.

Definition 1. A joint belief is a stochastic map JB : Ω × N → ∆(Ω) ∪ {1∅}, where 1∅ is

the zero vector, such that the following conditions hold: (i) if JB(ω, i)(ω) > 0 for some i,

then JB(ω, j)(ω) > 0 for every j; and (ii) JB(ω,i)(ω)
JB(ω′,i)(ω′)

= JB(ω,j)(ω)
JB(ω′,j)(ω′)

for every i, j, ω and ω′ ∈
Pi(ω) ∩ Pj(ω), assuming the denominator is nonzero.

When well-defined, JB(ω, i) stands for the belief distribution that player i assigns to Ω when

the set Pi(ω) is realized. The corresponding probability of state ω′ is denoted by JB(ω, i)(ω′).

A few remarks are in order. First, the two conditions in Definition 1 are necessary for JB

to be induced as a posterior by a public signal. Indeed, they follow from the basic properties

of Bayesian updating given the existence of a common prior and a mediator’s public signal.6

Second, a general joint posterior specifies a profile of posterior beliefs for every feasible state.

In cases without a common prior, for instance, condition (ii) in the definition need not be

satisfied. Third, we include the indicator 1∅ in the definition to capture situations in which the

mediator provides additional information that assigns zero probability to some state in Pi(ω).

Specifically, prior to receiving the mediator’s signal, each player is subjectively informed about

an information set Pi(ω). The mediator may then send a signal that has zero likelihood in

certain states within this set. In such cases, the conditional posterior is not well-defined, and

we therefore set JB(ω, i) = 1∅ for all such states.

Given a JB and a common prior µ, a natural question is whether there exists a signaling

function τ of the mediator and a signal s that jointly induce this JB as a posterior. We approach

this question by examining posterior likelihood ratios. This builds on a key observation that,

6A broader discussion of this point is provided in connection with Eq. (3) below.
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although posterior updating is typically player-dependent (as the denominator reflects player i’s

information partition), the following likelihood ratios are not:

µτ,i(ω | Pi(ω), s)

µτ,i(ω′ | Pi(ω′), s)
=

µ(ω)τ(s | ω)
µ(ω′)τ(s | ω′)

, ∀ω, ω′ ∈ Pi(ω). (3)

In particular, whenever ω and ω′ lie in the same information set (i.e., ω′ ∈ Pi(ω), or equivalently

Pi(ω) = Pi(ω
′)) and both conditional probabilities are positive, this ratio is well defined and

independent of the player. This also clarifies the two constraints imposed in Definition 1. We

explore this idea further in the following section.

3.3 Posterior likelihood and the leading question

To formally define the problem, fix a JB and a common prior µ, and let Ω+ denote the set of

states such that JB(ω, i)(ω) > 0 for some player i, and hence for all players. In particular, we

restrict attention to the states that are assigned positive probability. Normalizing µ to this set,

we obtain the distribution µ(· | Ω+).
7

For a pair ω, ω′ ∈ Ω+ such that ω′ ∈ Pi(ω) for some i, consider the ratio JB(ω,i)(ω)
JB(ω′,i)(ω′)

. We ask

whether there exists a signaling function τ of the mediator and a signal s that induce the same

likelihood ratios. Specifically, does there exist a signal s and a function τ such that

JB(ω, i)(ω)

JB(ω′, i)(ω′)
=

µ(ω | Ω+)τ(s | ω)
µ(ω′ | Ω+)τ(s | ω′)

=
µ(ω)τ(s | ω)
µ(ω′)τ(s | ω′)

, (4)

for every player i and every ω′ ∈ Pi(ω)? Note that the right-hand side of Eq. (4) does not

depend on player i, but only on whether ω and ω′ lie in the same information set for some

player. To further discuss this question and see why likelihood ratios are sufficient statistics for

generating joint posteriors, consider the following example.

Example 1.

There are five states and two players such that P1 = {{ω1, ω2}, {ω3}, {ω4, ω5}}, P2 =

{{ω1, ω2, ω3}, {ω4}, {ω5}}, and F = {{ω1, ω4}, {ω2, ω3, ω5}}. Figure 3 illustrates the knowledge

structures of the players as well as that of the mediator.

7We discuss the case where some states are assigned zero probability in Section 5.
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Ω
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(a)

The players’ information

Ω F

ω1

ω2

ω3

ω4

ω5

(b)

The mediator’s information

Figure 3: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of the mediator (orange).

Starting with a basic set-up and in the absence of any mediator, one may ask whether there

exists a common prior that induces the joint posterior given in Table 1.

Player 1 Player 2

ω1 (1/2,1/2,0,0,0) (1/3,1/3,1/3,0,0)

ω2 (1/2,1/2,0,0,0) (1/3,1/3,1/3,0,0)

ω3 (0,0,1,0,0) (1/3,1/3,1/3,0,0)

ω4 (0,0,0,1/2,1/2) (0,0,0,1,0)

ω5 (0,0,0,1/2,1/2) (0,0,0,0,1)

Table 1: A JB; player-specific posteriors conditional on the realized states.

Indeed, such a prior exists: the uniform distribution over Ω induces exactly these posterior

beliefs. Most importantly, in this example there are two states, ω1 and ω2, that lie in the

same information set for both players (in contrast to the four-state example presented in the

introduction).

As a consequence, the ratio between the probabilities assigned to these states (namely, 1/2
1/2

for player 1 and 1/3
1/3

for player 2) is identical across players. This property persists even when

a mediator provides additional information, as illustrated in the next table, and it constitutes

a cornerstone of our characterization.

Suppose now that the common prior is uniform. Does there exist a public signal that the

mediator could reveal so as to induce the JB given in Table 2?

12



Player 1 Player 2

ω1 (1/3,2/3,0,0,0) (1/5,2/5,2/5,0,0)

ω2 (1/3,2/3,0,0,0) (1/5,2/5,2/5,0,0)

ω3 (0,0,1,0,0) (1/5,2/5,2/5,0,0)

ω4 (0,0,0,1/3,2/3) (0,0,0,1,0)

ω5 (0,0,0,1/3,2/3) (0,0,0,0,1)

Table 2: The JB conditional on the mediator’s signal, under a uniform prior.

The answer is yes. Consider a stochastic signal, say s, sent by the mediator according to the

following conditional probabilities: P(s | ωi) = 1/5 for i = 1, 4, and P(s | ωi) = 2/5 for i = 2, 3, 5.

Note that the conditional probabilities given ω1 and ω4 are equal, and the same applies to ω2,

ω3, and ω5. Therefore, the signal s is F -measurable.

Suppose now that the common prior is uniform, and that in the Table 2, the posteriors of

player 1 in ω4 and ω5 were
(
0, 0, 0, 1

5
, 4
5

)
rather than those originally stated. The table then

forms a joint belief (see Definition 1). Is there still a signal that the mediator could make public

that would induce this joint belief? The answer is no.

The reason is that if, under ω1, the posterior of player 1 is
(
1
3
, 2
3
, 0, 0, 0

)
, then due to the

F -measurability restriction, the ratio

τ(s | ω1)

τ(s | ω2)
must match

τ(s | ω4)

τ(s | ω5)
.

However, in the former case, the ratio is 1
2
, while in the latter it is 1

4
.

A hierarchy of beliefs.

In a strategic setting, the entire profile of beliefs, as described in the tables above, plays a

fundamental role. In equilibrium, players choose actions based not only on their own beliefs,

but also on their beliefs about the beliefs of others, and further on higher-order beliefs, i.e.,

what players believe about others’ beliefs about their beliefs, and so forth. This recursive

structure, commonly referred to as a hierarchy of beliefs, is fully captured by the specification

of each player’s belief at every possible state. The richness of this hierarchy ensures that players’

strategic reasoning accurately reflects the underlying information structure of the game.

Consider, for instance, Table 1 and the belief of player 1 when state ω4 is realized. At this

state, player 1 assigns equal probabilities to ω4 and ω5, and thus assigns equal probabilities to

the events that player 2 knows the true state is ω4 or that it is ω5. In other words, player 1 is

uncertain not only about the true state, but also about player 2’s information, illustrating the

higher-order beliefs embedded in the structure.
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The importance of generating appropriate priors in each environment lies in the need to

initialize the entire hierarchy of beliefs correctly. Priors determine how beliefs virtually prop-

agate through the system, shape expectations, and ultimately influence equilibrium behavior.

Without a well-specified prior structure, the analysis of strategic interaction under incomplete

information remains fundamentally incomplete. This consideration forms the foundation of the

present study.

This example also highlights the central role of likelihood ratios in characterizing which pos-

terior beliefs can be implemented by a given mediator. Specifically, likelihood ratios capture

the relative plausibility of states within the same information set from the perspective of the

players. Any feasible public signal must preserve these ratios, in accordance with the under-

lying measurability constraints imposed by the information structure. As a result, analyzing

likelihood ratios offers crucial insight into both the design and the limitations of the signals

that a mediator can publicly disclose.

4 The Graph of Information and Consistency Conditions

4.1 The Graph and the Posterior Likelihood Function

In this section, we introduce the graph of information, which will serve as the key tool for

addressing the question of whether a given joint posterior can be implemented by the mediator.

We follow Rodrigues-Neto (2009) and define a graph G = (V,E), where the set of vertices

V coincides with the state space Ω; that is, each vertex represents a state. The set of directed

edges E is defined as follows: for any pair of states ω, ω′ ∈ Ω, we have (ω, ω′) ∈ E, and denoted

(ω → ω′) if there exists a player i ∈ N such that ω′ ∈ Pi(ω). Note that whenever (ω, ω′) ∈ E,

it also holds that (ω′, ω) ∈ E. We explicitly include both directions because it will be essential

in what follows.

Example 1, continued. The graph of information corresponding to the model described in

Example 1, omitting arrows from a state to itself, is given in Figure 4:

Using the graph of information, we can define a posterior likelihood (PL) function, which

will be used to translate a joint posterior to likelihood ratios.

Definition 2. A positive function φ defined over E is a posterior likelihood function if it

satisfies the condition8

φ(ω, ω′) =
1

φ(ω′, ω)
. (5)

8We abuse notation and use φ(ω, ω′) instead of φ((ω, ω′)).
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Figure 4: The graph of information; In this example, there are two connected components, each corresponding
to a CKC.

Example 1, continued. Recall Table 2. Note that the likelihood ratio of the probabilities of

ω1 and ω2 is 1/2. This is true for both players since ω1 and ω2 belong to the same information

sets of the two. We therefore obtain that φ(ω1, ω2) = 1/2, and the other values of the PL

function are:

φ(ω2, ω3) = 1, φ(ω3, ω1) = 2, and φ(ω4, ω5) = 1/2, (6)

while preserving the relation in Eq. (5).

4.2 The mediator-induced PL function: Internal and External con-

sistency

The first question we consider concerns the information structure (Pi)i and the mediator’s

partition F through the notion of a PL function. Specifically, fix a PL function φ: does there

exist an F -measurable, strictly positive function f : Ω → R++ that yields

φ(ω, ω′) =
f(ω)

f(ω′)

for every edge (ω, ω′) ∈ E?

Given the ability and tools to answer this question, we can translate any JB to its respective

PL function (as in Theorem 2 below) and check whether the mediator can induce a function f

that replicates the ratios given in the last equation, as well as in Eq. (4) above. If the mediator

can indeed generate such a function, then it will correspond to the probabilities of a feasible

signal that generates the needed JB (see Remark 1 below).

To address this question, we introduce the notions of an F -cycle and a loop, and build

upon them two conditions: internal and external consistency. As we prove in Theorem 1 below,

internal and external consistency are necessary and sufficient conditions to answer our question.

Formally, an F -cycle is a sequence of edges
(
(ωi, ωi+1)

)n
i=1

such that (ωi, ωi+1) ∈ E for all

i = 1, . . . , n, and ωn+1 ∈ F (ω1). The next property, referred to as Internal consistency, parallels
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Definition 2 in Rodrigues-Neto (2009), where cycles are defined solely in terms of the players’

information, independently of the mediator.9

Definition 3. Let (ωi, ωi+1)
n
i=1 be an F-cycle. Then, Internal consistency [INC] holds if

n∏
i=1

φ(ωi, ωi+1) = 1. (7)

Hellman and Samet (2012) refer to the left-hand side of Eq. (7), in the case where F is

trivial, as the type ratio of a chain. Note that for every (ω1, ω2) ∈ E, the sequence (ω1, ω2, ω1)

is an F -cycle. Thus, due to the condition given in Eq. (5), a positive function φ defined over

E is a PL if and only if Eq. (7) is satisfied for every such F -cycle. In particular, a function φ

that satisfies [INC] is a PL.

We can now use [INC] to extend every φ over any connected pair of states within a CKC.

To do so, denote by ↠ the transitive closure of →. That is, ω ↠ ω′ if there is a sequence of

edges
(
(ωi, ωi+1)

)n
i=1

such that ω = ω1 and ωn+1 = ω′. It is well known that a set of states

connected, w.r.t. ↠, are in the same CKC (see Rodrigues-Neto, 2009). The following Lemma

1 uses [INC] to extend φ in a consistent manner. (The proof is relegated to the appendix; see

Section A.1.)

Lemma 1. Assume [INC]. Then, φ can be extended to any pair (ω1, ωn+1) where ω1 ↠ ωn+1,

and it holds that for any sequence of edges
(
(ωi, ωi+1)

)n
i=1

in E,

n∏
i=1

φ(ωi, ωi+1) = φ(ω1, ωn+1). (8)

In Example 1, the sequence
(
(ω1, ω2), (ω2, ω3), (ω3, ω1)

)
forms an F -cycle, and indeed, in

Table 2, the product of the corresponding values that φ assigns to these edges does equal 1 (see

Eq. (6) above).

Remark 1. Lemma 1 shows that if φ satisfies [INC], then it can also induce a probability

distribution, denoted by µφ(· | C), over any connected component C of the graph G. Specifically,

for a connected component C,

µφ(ω
′ | C) =

φ(ω′, ω)∑
ω′′∈C φ(ω′′, ω)

, (9)

where ω is an arbitrary state in C.

9In specific cases, Hellwig (2013) simplifies the consistency test of Rodrigues-Neto (2009) for verifying whether
a given set of players’ posteriors is compatible with a common prior.
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Next, we use the extended φ to define a loop and the external consistency property. Suppose

that φ is already defined for every pair connected by ↠. An F-loop is a sequence of pairs(
(ωi, ω̄i)

)n
i=1

such that, for each i = 1, . . . , n, the following conditions hold:

(i) ωi ↠ ω̄i,

(ii) ω̄i ̸↠ ωi+1,

(iii) ω̄i ∈ F (ωi+1), with the convention that ωn+1 := ω1.

Condition (i) requires that each pair of states (ωi, ω̄i) belongs to the same connected component,

that is, they are transitively connected and lie within the same CKC. In contrast, condition (ii)

stipulates that successive pairs are separated across CKCs: the states ω̄i and ωi+1 are not

transitively connected and thus belong to different connected components. Nevertheless, as

specified in condition (iii), every two such states are indistinguishable to the mediator: they

lie within the same cell of the mediator’s partition. This represents a situation in which the

mediator is less informed than the players: it cannot distinguish between states that all players

can. For instance, the example given in the introduction depicts a situation where the mediator

cannot distinguish between states ω1 and ω3, both in different CKCs, and between states ω2

and ω4, although the two players commonly distinguish between these states. This forms an

F -loop of ((ω1, ω2), (ω4, ω3)).

The concept of a loop plays a pivotal role in Lagziel et al. (2025a,b) to provide condi-

tions such that one mediator dominates another, in an extension of Blackwell’s work on the

comparison of experiments (see Blackwell, 1951, 1953).

Similar to the notion of an F -cycle and the internal consistency property, we employ the

loop to define external consistency as follows.

Definition 4. Let
(
(ωi, ω̄i)

)n
i=1

be an F-loop. Then, External consistency [EXC] holds if

n∏
i=1

φ(ωi, ω̄i) = 1. (10)

The [EXC] property has substantive content only in situations where the mediator lacks

knowledge of the players’ common knowledge. Equivalently, if for every ω we have F (ω) ⊆ C(ω),

then no F -loops arise, and [EXC] becomes vacuous. An extreme example of this is an all-

knowing mediator, who knows the exact identity of the realized state, i.e., F (ω) = {ω} for

every ω ∈ Ω. In this case, [INC] reduces to simple cycles, as in Rodrigues-Neto (2009) and

Hellman and Samet (2012).

17



Before presenting our first main result and characterization, we revisit the introductory

example to illustrate the role of [EXC] in our setting. Suppose the mediator aims to induce a

JB in which player 1’s belief is (1
3
, 2

3
, 0, 0) and player 2’s belief is (0, 0, 3

4
, 1

4
). The corresponding

posterior likelihood ratios are φ(ω1, ω2) = 1
2
and φ(ω4, ω3) = 1

3
. The product of ratios along

the loop is therefore φ(ω1, ω2)φ(ω4, ω3) = 1
6
̸= 1, and as previously stated, this JB is indeed

infeasible.

Our first main result, stated in Theorem 1, establishes that internal and external consistency,

w.r.t. a given PL function φ, are necessary and sufficient conditions for the existence of an F -

measurable function that reproduces the likelihood ratios encoded by φ. (The proof is relegated

to the appendix; see Section A.2.)

Theorem 1. Fix φ. There exists an F -measurable and strictly positive function f defined on

V such that, for every (ω, ω′) ∈ E,

φ(ω, ω′) =
f(ω)

f(ω′)
, (11)

if and only if [INC] and [EXC] hold for the extension provided by Lemma 1.

Once Theorem 1 establishes a characterization of a given PL function, we can employ it in

Section 5 to show how one can take a JB, translate it into a PL function, and then replicate

this JB for a given mediator.

As stated in Remark 1, when φ satisfies [INC] it induces a distribution µφ(· | C) on any

connected components C. The next section is devoted to implementation. In particular, it

shows, based on Theorem 1, that when φ satisfies also [EXC], a mediator may generate by a

proper signal, say s, the combination

µφ =
∑
C

µ(C | s)µφ(· | C), (12)

where the summation is over all connected components of G, and

µ(C | s) =
∑

ω∈C τ(s | ω)µ(ω)∑
ω∈Ω τ(s | ω)µ(ω)

.

In simple terms, µφ is the posterior distribution over Ω generated after observing the message

s, sent by the mediator.
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5 Application to Bayesian Updating

In this section, we apply Theorem 1 to the context of Bayesian updating. Suppose all players

share a common prior µ, and let JB denote a joint belief, as defined in Definition 1. Can this

joint posterior be induced by a signaling function τ of the mediator and a signal s?

We employ Theorem 1 to answer this question. To see this, let us focus first on the subset

Ω+ ⊆ Ω of states ω for which10 JB(ω, i)(ω) > 0 for some player i. Consider the graph G+ =

(Ω+, E+) , which is the restriction of the original graph G = (Ω, E) to the subset Ω+. Using

Eq. (4), define a new PL function φJB on the edge set E+ as follows:

φJB(ω, ω
′) =

JB(ω, i)(ω)

JB(ω′, i)(ω′)
· µ(ω

′)

µ(ω)
, ∀ (ω, ω′) ∈ E+. (13)

Since both µ and JB(ω, i)(ω) are strictly positive on Ω+, φJB is strictly positive as well, and

a well-defined PL function. Given that [INC] holds, we can extend φJB to every pair (ω, ω′)

in a given CKC as done in Lemma 1. So, whenever [INC] holds, we henceforth consider the

extended PL function.

Recall that µτ,s (see Eq. (2) above) denotes the joint posterior associated with τ and s. As

an implication of Theorem 1, the following theorem states that internal and external consistency

(w.r.t. φJB) are necessary and sufficient conditions for the existence of an F -measurable signaling

function τ and a signal s, such that µτ,s = JB. (The proof is relegated to the appendix; see

Section A.3.)

Theorem 2. Fix a joint belief JB. Then there exists an F -measurable signaling function τ and

a signal s, such that µτ,s = JB if and only if

(i) Ω+ is measurable w.r.t. F ; and

(ii) φJB satisfies conditions [INC] and [EXC] in G+.
11

The economic implication of Theorem 2 is as follows. Suppose a function φ is given. By

Remark 1, φ induces a probability distribution over each connected component, and thus de-

termines the posterior beliefs of all players. Theorem 2 identifies conditions under which there

exists a signaling mechanism, implemented by the mediator, that induces these posterior beliefs,

as described in Eq. (1).

10Recall that JB(ω, i) is a distribution while JB(ω, i)(ω) is a probability.
11[EXC] is satisfied using the extension provided by Lemma 1, ensured by [INC].
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6 A Mediator as a Blackwell-Experiments Generator

In the previous sections we provided necessary and sufficient conditions for a JB to be generated

by a single F -measurable signaling function and a single signal. Now suppose we are given

several beliefs, JB1, . . . , JBn. As in Eq. (13), each JBi induces a PL function φJBi
. Assume

that each φJBi
satisfies the [INC] and [EXC] conditions, thereby enabling the application of

Theorem 2. This means that for each i, there exist a signaling function τi and a signal si such

that the posterior they induce coincides with µi = µJBi
, as in Eq. (12). Thus, each posterior is

individually generated by a distinct signaling function and signal. Our question here is whether

there exists a single signaling function τ that generates all of these posteriors with positive

probability, and no others.

To formally introduce this question, denote

µτ (ω | s) = µ(ω)τ(s | ω)∑
ω′∈Ω µ(ω′)τ(s | ω′)

, (14)

which is the posterior probability of ω given that the signal s has been generated by τ . The

corresponding posterior distribution over Ω will be denoted by µτ (· | s). Note that the signaling
function and the signal are constructed so as to retain all posterior probabilities consistent with

the respective JBs and subject to the mediator’s informational constraint. Once constructed,

they induce a distribution over the state space obtained through standard Bayesian updating.

We then ask: under what conditions does there exist a signaling function τ , measurable

with respect to F , such that the signals it produces with positive probability are s1, . . . , sn and

{
µτ (· | s1), . . . , µτ (· | sn)

}
=

{
µ1 , . . . , µn

}
? (15)

If the answer is affirmative, the mediator effectively serves as a generator of Blackwell

experiments and, in particular, can generate the corresponding posteriors. To investigate this

question, we begin with the following definition. A nonzero function u : Ω → R is called an

option (or a state-contingent claim), as it specifies a monetary payoff for each possible state.

Definition 5. (i) We say that the family of distributions ν1, . . . , νk preserves positivity (PP)

w.r.t. µ if, for every option u such that Eνi [u] ≥ 0 for every i, it follows that Eµ[u] ≥ 0.

(ii) We say that the family of distributions ν1, . . . , νk strictly preserves positivity (SPP) w.r.t. µ

if, for every option u such that Eµ(u) = 0 and Eνi(u) ≥ 0 for every i, it follows that Eνi(u) = 0

for every i.

To better understand the notion of positivity preservation, suppose that µ is the prior belief
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a decision maker holds about the state space Ω, and let µ1, . . . , µn be the posteriors induced

by observed signals. If the posteriors µ1, . . . , µn do not preserve positivity w.r.t. µ, then there

exists a utility function assigning payoffs to states such that the expected utility under the prior

µ is strictly lower than the expected utility under each posterior µi. This represents a case of

time inconsistency: ex ante (i.e., under the prior), the option yields a negative expected reward,

while ex post (i.e., conditional on any posterior), the same option yields a positive expected

reward, regardless of the specific signal realized.

Strict positivity preservation w.r.t. µmeans that the distributions µ1, . . . , µk are fully aligned

with µ in the following sense: there is no option whose expected value is nonnegative under all

µi, zero under µ, and strictly positive under at least one µi. Formally, if a function u has zero

mean under µ, that is, µ regards it as “fair”, and each µi weakly favors it (i.e., Eµi
[u] ≥ 0 for

all i), then it must be that Eµi
[u] = 0 for all i. In other words, for any option that is µ-neutral,

if it is weakly favorable for all µi, then it is strictly favorable for none.

Observation 1. To show that SPP w.r.t. µ implies PP w.r.t. µ, assume the former. Consider

an option u such that Eµi
[u] ≥ 0 for every i and assume, contrary to PP, that Eµ[u] < 0. Define

the option v = u−Eµ[u]. Then, Eµi
[v] = Eµi

[u]−Eµ[u] ≥ 0 and Eµ[v] = Eµ[u]−Eµ[u] = 0. By

SPP, Eµi
[v] = 0 and thus Eµi

[u] = Eµ[u] < 0 for every i, which contradict the assumption.

We can now discuss the following Theorem 3 that extends previous results to a set of joint

posteriors. Fix a family of PL functions φJB1 , . . . , φJBn (induced by the aforementioned JBs)

that satisfy [INC] and [EXC], and recall Eq. (12) which prescribes a distribution for every such

PL function. In particular, φi corresponds to the posterior µi. The first part if the following

Theorem 3 states that PP is a necessary and sufficient condition for the existence of a strategy

τ whose signals generate posterior distributions, all of which are contained in {µ1, . . . , µn}. The
second part of the theorem uses SPP to characterize when there is a signaling function whose

set of posterior coincides with {µ1, . . . , µn}. (The proof is given in Section A.4 in the appendix.)

Theorem 3. Let µ be a common prior, and let φJB1 , . . . , φJBn be PL functions that satisfy

[INC] and [EXC]. For every JBi, assume that Ωi
+, defined as in in Theorem 2, is measurable

w.r.t. F . Then, there exists an F -measurable signaling function τ such that:

(i) for every signal s generated by τ with positive probability, the posterior it induces belongs to

the family {µ1, . . . , µn} if and only if this family PP w.r.t. µ;

(ii) the set of posteriors it generates with positive probability coincides with {µ1, . . . , µn} if and

only if this family SPP w.r.t. µ.

One should note the construction underlying Theorem 3. First, a common prior and a set of

JBs are fixed to satisfy the conditions of Theorem 2. Next, the implied strategies are employed
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to construct a set of posteriors over Ω that abstract from the players’ private information. The

necessary and sufficient conditions stated in Theorem 3 are then imposed on these posteriors,

relative to the prior, to guarantee the existence of an F -measurable unified strategy. Once this

strategy is applied, together with the common prior and the players’ private information, it

induces the desired JBs.

7 Extensions, Comments and Discussion

7.1 From Public to Private Signals: Differential information to dif-

ferent groups

The preceding discussion has focused on the case of public signals, where all players observe

the same realization from the information structure. In this section, we turn to a more general

setting in which different groups of players receive different signals. Such a structure allows for

asymmetric information across groups, introducing a richer set of strategic considerations.

Formally, let I ⊆ N be a subset of players. A larger group of players generally induces a

coarser partition of the state space into CKCs. That is, the set of CKCs for I is finer than the

set of CKCs generated by the full set of players N . In other words, every CKC of the players

in I is a subset of some CKC of the players in N .

This reduction in the group of players can alter both the internal and external properties

that depend on the structure of CKCs. To illustrate, consider the model presented in Example 1,

where the full set of players is N = {1, 2}. Now, take the subset I = {1}, consisting only of

player 1. In this case, a CKC corresponds to an information set of player 1, and the collection

of CKCs is simply the partition P1, player 1’s information. That is, with only player 1 in the

group, common knowledge coincides with individual knowledge.

Denote by GN the graph induced by the entire group and by GI its restriction that corre-

sponds to the information structure induced by I. That is, the set of vertices of GI is the set

of states, and (ω, ω′) is an edge if there is a player i ∈ I such that ω′ ∈ Pi(ω). In this case, and

for a given joint posterior JB, the PL function φJB(ω, ω
′) is the same in the two graphs.

Let I-[INC] and I-[EXC] denote the internal and external consistency conditions corre-

sponding to group I in the subgraph GI . Given a joint posterior profile for group I, one may

ask, analogously to the earlier case, whether this profile can be generated by a public signal

emitted by a mediator and received by all members of group I. Theorem 1 addresses this

question by providing necessary and sufficient conditions for such a representation, expressed

in terms of I-[INC] and I-[EXC].
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It is evident that if a signaling function induces the joint posteriors of the entire group N ,

then it also induces the joint posteriors of any subgroup I ⊆ N . Consequently, Theorem 1

implies that if the corresponding PL function φJB satisfies N -[INC] and N -[EXC], it must

also satisfy I-[INC] and I-[EXC]. In the following Proposition 1, we demonstrate that this

implication can be established directly, without appealing to Theorem 1. (For the proof, see

Section A.5 in the appendix.)

Proposition 1. Fix a JB. If the PL function φJB satisfies conditions N-[INC] and N-[EXC],

then it also satisfies I-[INC] and I-[EXC] for any subgroup I ⊆ N .

7.2 An Additive Interpretation and Implications to Potential Games

The concepts, structure, and results derived from the graph of information extend well beyond

Bayesian updating and apply to a variety of other frameworks, one of which is that of potential

games, as described below. In particular, this section employs an additive version of the internal

consistency property to derive a characterization of potential games.

To this end, consider a PL function φ and a function f such that φ(ω, ω′) = f(ω)
f(ω′)

. Define

g := log(f) and take the logarithmic transformation of the previous equality. The resulting

quantity

ρ(ω, ω′) := log(φ(ω, ω′)) = g(ω)− g(ω′),

can be interpreted as capturing the difference (or “gap”) between connected vertices, where g

represents a form of “height” or potential assigned to each vertex.

Formally, let (V,E) denote a finite, directed, and connected graph, and let ρ : E → R be

a real-valued function defined on its edges. A discrete analogue of the [INC] constraint arises

when F is discrete. Specifically, assume that F is discrete, meaning that every atom of F

consists of a single state. In this setting, a basic cycle is a sequence of edges
(
(ωi, ωi+1)

)n
i=1

such that (ωi, ωi+1) ∈ E for all i = 1, . . . , n, and ωn+1 = ω1. An additive analogue of the [INC]

condition, abstracting from any mediator or probabilistic interpretation, can then be stated as

follows:

Definition 6. Let (ωi, ωi+1)
n
i=1 be a basic cycle where ωn+1 = ω1. Then, Additive Internal

Consistency [INC-ADD] holds if

n∑
i=1

ρ(ωi, ωi+1) = 0. (16)

This condition reflects additive path-independence and echoes a multiplicative version, for
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example, as in Rodrigues-Neto (2009) and Hellman and Samet (2012).

We now connect this idea to an immediate implication of Theorem 1. The following corollary

states that [INC-ADD] is a necessary and sufficient condition for the existence of a function

g, whose differences match the values of ρ.

Corollary 1. Let (V,E) be a finite, directed, connected graph, and let ρ : E → R be a real-valued

function. Then there exists a function g : V → R such that

g(ω)− g(ω′) = ρ(ω, ω′) for every (ω, ω′) ∈ E,

if and only if ρ satisfies [INC-ADD].

This observation naturally leads us to the notion of potential games. A potential game is a

strategic game Γ = (N, (Ai)i∈N , (ui)i∈N), where N is the set of players, with |N | = n; Ai is the

finite set of actions available to player i; and ui : A → R is the payoff function of player i, with

A := ×i∈NAi being the set of action profiles.

We say that Γ is a potential game (see, Monderer and Shapley, 1996) if there exists a

function g : A → R such that for every player i ∈ N , every action profile a = (a1, . . . , an) ∈ A,

and every action a′i ∈ Ai, it holds that

g(a)− g(a1, . . . , a
′
i, . . . , an) = ui(a)− ui(a1, . . . , a

′
i, . . . , an).

To apply Corollary 1, define a graph associated with the game Γ, denoted Graph(Γ). Its

vertex set is A, and its edge set consists of all pairs of the form

((a1, . . . , an), (a1, . . . , a
′
i, . . . , an))

for some i ∈ N and a′i ∈ Ai. We then define a function ρΓ : E → R on this edge set by:

ρΓ ((a1, . . . , an), (a1, . . . , a
′
i, . . . , an)) := ui(a)− ui(a1, . . . , a

′
i, . . . , an).

Thus, an immediate consequence of Corollary 1 is the following characterization:

Corollary 2. Let Γ be a strategic game. Then Γ is a potential game if and only if ρΓ satisfies

[INC-ADD] over Graph(Γ).

Corollary 2 resembles Proposition 2.8 in Monderer and Shapley (1996) that provides a

necessary and sufficient condition for a finite game to be an exact potential game in terms of

the cross-differences of players’ payoffs.
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A related, though somewhat tangential, question concerns the class of ordinal potential

games. We say that a game is an ordinal potential game if there exists a function g : A → R
such that for every player i ∈ N , every action profile a = (a1, . . . , an) ∈ A, and every deviation

a′i ∈ Ai, it holds that

g(a)− g((a1, . . . , a
′
i, . . . , an)) ≥ 0 ⇔ ui(a)− ui((a1, . . . , a

′
i, . . . , an)) ≥ 0.

In other words, the direction of improvement in each player’s utility is perfectly aligned with that

of the potential function. An intriguing question, which remains beyond the current analysis,

is what characterizes ordinal potential games in terms of underlying structural or consistency

properties. We leave this question for future exploration.
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A Proofs

A.1 Proof of Lemma 1

For every pair (ω1, ωn+1) such that ω1 ↠ ωn+1, define

φ(ω1, ωn+1) :=
n∏

i=1

φ(ωi, ωi+1),

provided that the sequence
(
(ωi, ωi+1)

)n
i=1

lies in E. To show that this is well defined, suppose

there are two sequences connecting ω1 and ωn+1:

(
(ωi, ωi+1)

)n
i=1

and
(
(ξj, ξj+1)

)m
j=1

,

with ξ1 = ω1 and ξm+1 = ωn+1. Concatenating the two sequences, with the first in its original

order and the second reversed, produces an F-cycle.

By [INC] and Eq. (5), we have

n∏
i=1

φ(ωi, ωi+1) ·
m∏
j=1

φ(ξj+1, ξj) =
n∏

i=1

φ(ωi, ωi+1) ·
m∏
j=1

1

φ(ξj, ξj+1)
= 1.
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Therefore,
n∏

i=1

φ(ωi, ωi+1) =
m∏
j=1

φ(ξj, ξj+1),

shows that the definition of φ(ω1, ωn+1) does not depend on the particular sequence and is

therefore well defined.

A.2 The proof of Theorem 1.

Part 1: Necessity. Suppose that there is an F -measurable positive function f that satisfies

Eq. (11). To show [INC], let
(
(ωi, ωi+1)

)n
i=1

be an F -cycle. Then,

n∏
i=1

φ(ωi, ωi+1) =
n∏

i=1

f(ωi)

f(ωi+1)
=

f(ω1)

f(ωn+1)
= 1.

The first equality is due to Eq. 11, and the last follows from the assumption that f is F -

measurable and that ωn+1 ∈ F (ω1).

To show [EXC], let
(
(ωi, ω̄i)

)n
i=1

be an F -loop. By Eq. (8) and Eq. (11), we have

n∏
i=1

φ(ωi, ω̄i) =
n∏

i=1

f(ωi)

f(ω̄i)
=

f(ω1)

f(ω̄n)
= 1.

The first equality follows from Eq. (11), the second equality follows from the fact that f is

F -measurable and the second property of F -loops, and the third equality follows from the same

property, since ω̄n ∈ F (ω1).

Part 2: Sufficiency. Assume [INC] and [EXC] with the extension provided by Lemma 1.

We claim first that for every connected set of V , say C, there is an F -measurable positive

function fC , defined over C, that satisfies Eq. (11). Let ω0 be an arbitrary state in C. Set

f(ω0) = 1. Now, by induction on the distance12 to ω0.

Suppose that f has been defined on all states in a connected component C whose distance

from the state ω0 is k. Let ω′ be a state in C at distance k + 1 from ω0. Then, there exists a

state ω′′ at distance k such that (ω′′, ω′) ∈ E. Define

fC(ω
′) := fC(ω

′′) · φ(ω′, ω′′).

Using [INC] and the same argument as in Lemma 1, one can show that f is well defined.

12The distance between two states in C is defined as the minimal number of edges in a path connecting them.
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To show that fC is F -measurable, consider ω ∈ F (ω′) ∩ C. Then, there is an F-cycle ω1 =

ω, ..., ωn+1 = ω′. By [INC] and by the definition of fC ,

1 =
n∏

i=1

φ(ωi, ωi+1) =
n∏

i=1

fC(ωi)

fC(ωi+1)
=

fC(ω1)

fC(ωn+1)
=

fC(ω)

fC(ω′)
.

Thus, the values that fC takes on ω and ω′ coincide. So far, we have constructed fC for each

connected component C of V . We now show that there exists a single F -measurable function

f satisfying Eq. (11).

To this end, we define a new graph, Ḡ = (V̄ , Ē) as follows. The set of vertices, V̄ , consists

of the connected components of V . Two components C,C ′ ∈ Ē are connected by an edge if

there exist states ω ∈ C and ω′ ∈ C ′ such that ω ∈ F (ω′). That is, the edge set, Ē, consists

of all pairs (C,C ′) for which there exist ω ∈ C and ω′ ∈ C ′ such that ω and ω′ belong to the

same information set of F .

Fix a vertex C0, and set f := fC0 on C0. We proceed by induction on the distance of a

vertex C from C0. Suppose that an F -measurable function f > 0, satisfying Eq. (11), has been

defined on all vertices whose distance from C0 is less than or equal to k. Let C be a vertex at

distance k + 1 from C0. Then there exists a path of edges in Ē,

(C0, C1), (C1, C2), . . . , (Ck, C),

and in particular, there exist ω̄k ∈ Ck and ω ∈ C such that ωk and ω belong to the same

information set of F. Define

f := fC · f(ω̄k)

fC(ω)
(17)

on C. Clearly, if f is well defined in C, then it satisfies Eq. (11), since it differs from fC by a

multiplicative factor of a positive constant. Moreover, f(ω) = f(ω̄k).

We first verify that f is well defined and then show that it is F -measurable. To establish

that f is well defined, suppose that there exists another path

(C0, C
′
1), (C

′
1, C

′
2), . . . , (C

′
ℓ, C),

connecting C0 and C, with ω′
ℓ ∈ C ′

ℓ and ω′ ∈ C such that ω′
ℓ and ω′ belong to the same
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information set of F.13 We have to show that

f(ω̄k)

fC(ω)
=

f(ω′
ℓ)

fC(ω′)
. (18)

Note that the path

(C0, C1), (C1, C2), . . . , (Ck, C), (C,C ′
ℓ), . . . , (C

′
2, C

′
1), (C

′
1, C0)

is a cycle in the graph Ḡ, that corresponds to an F-loop:

(ω0, ω̄0), (ω1, ω̄1), . . . , (ωk−1, ω̄k−1), (ωk, ω̄k), (ω, ω
′), (ω′

ℓ, ω̄
′
ℓ), . . . , (ω

′
2, ω̄

′
2), (ω

′
1, ω̄

′
1).

That is, any two states in a pair belong to the same vertex in Ḡ, e.g., ω0 and ω̄0 belong to C0,

ω1 and ω̄1 belong to C1; ω and ω′ belong to C, and ω′
j, ω̄

′
j belong to C ′

j. Also, in two adjacent

pairs, the second coordinate of the left pair belongs to the same information set of F as the

first coordinate of the right pair. For instance, ω̄i ∈ F (ωi+1), ω̄k ∈ F (ω), ω′ ∈ F (ω′
ℓ) and

ω′
j+1 ∈ F (ω̄′

j). Finally, ω̄
′
1 ∈ F (ω0).

By [EXC], and specifically by Eq. (10), the corresponding product equals 1. That is,[
k∏

i=0

φ(ωi, ω̄i)

]
· φ(ω, ω′) ·

[
1∏

j=ℓ

φ(ω′
j, ω̄

′
j)

]
= 1. (19)

Due to F-measurability and to Eq. (11), we get
∏k

i=0 φ(ωi, ω̄i) = f(ω0)
f(ω̄k)

, φ(ω, ω′) = fC(ω)
fC(ω′)

,

and
∏1

j=ℓ φ(ω
′
j, ω̄

′
j) =

f(ω′
k)

f(ω̄′
1)
. Thus, by Eq. (19) we obtain the following:

f(ω0)

f(ω̄k)
· fC(ω)
fC(ω′)

· f(ω
′
ℓ)

f(ω̄′
1)

= 1.

Due to F-measurability f(ω0) = f(ω̄′
1) and we conclude that

f(ω′
ℓ)

f(ω̄k)
· fC(ω)
fC(ω′)

= 1.

which confirms Eq. (18).

The final step in the proof is to show that f is F -measurable. We consider two cases:

13The asymmetry in the notation between ω̄k (with a bar) and ω′
ℓ (without) will become clear immediately.
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Case I. Let ω ∈ C and ω′ ∈ C ′, where the distance from C ′ to C0 is less than or equal to k,

and suppose that ω ∈ F (ω′). We need to show that f(ω) = f(ω′). By assumption, (C,C ′) ∈ Ē

and (C,Ck) ∈ Ē. Moreover, C ′ and Ck are connected by paths of length at most k. This forms

a cycle in the graph Ḡ, which in turn corresponds to an F -loop. Applying the same technique

used earlier, we conclude that f(ω) = f(ω′).

Case II. Let ω ∈ C and ω′ ∈ C ′, where the distance from C ′ to C0 is exactly k + 1, so

that both C and C ′ are introduced in the induction process at the same step, and assume that

ω ∈ F (ω′). Then (C,C ′) ∈ Ē, and both C and C ′ are connected to C0 by paths of length k+1.

This forms a cycle in Ḡ passing through C and C ′, which corresponds to an F -loop. Using

[EXC], we conclude that f(ω) = f(ω′), verifying that f is F -measurable.

A.3 The proof of Theorem 2

Proof. Assume that τ is a signaling function and that s is a signal generated by τ with positive

probability such that µτ,s = JB. Then, clearly, the set of states ω such that τ(s | ω) > 0

is measurable w.r.t. the mediator’s partition F , and matches the set Ω+, previously defined

according to JB.

Similarly to Eq. (4), the equality µτ,s = JB implies that τ(s|ω)µ(ω)
τ(s|ω′)µ(ω′)

= JB(ω,i)(ω)
JB(ω′,i)(ω′)

. Applying

Eq. (13), we get

φJB(ω, ω
′) =

JB(ω, i)(ω)

JB(ω′, i)(ω′)
· µ(ω

′)

µ(ω)
=

τ(s|ω)
τ(s|ω′)

,

and Theorem 1 guarantees that φJB satisfies conditions [INC] and [EXC] in G+. This proves

the necessary direction.

For the sufficiency direction, assume that JB satisfies conditions (i) and (ii). Since Ω+ is

measurable w.r.t. F , we can define τ(s | ω) = 0 for every ω /∈ Ω+, and otherwise, τ(s | ω) is

positive.

On Ω+, since φJB satisfies [INC] and [EXC] in G+, Theorem 1 ensures the existence of a

function f > 0 satisfying Eq. (11) and we get

JB(ω, i)(ω)

JB(ω′, i)(ω′)
· µ(ω

′)

µ(ω)
=

f(ω)

f(ω′)
,

By multiplying f by a constant if needed, we may assume without loss of generality that

supω f(ω) < 1. We then define τ(s | ω) = f(ω) for all ω ∈ Ω+, so that the previous equation

can be written as
τ(s | ω)µ(ω)
τ(s | ω′)µ(ω′)

=
JB(ω, i)(ω)

JB(ω′, i)(ω′)
,
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which matches Eq. (4). This guarantees that τ(s | ·) implements JB, as needed. To ensure that

τ is a well-defined kernel, we can extend it using an arbitrary signal s0, so that τ(s0|ω) = 1−f(ω)

for every ω ∈ Ω+.

A.4 The proof of Theorem 3

Proof. Part (i) We start by proving sufficiency. Suppose there exists an F -measurable

signaling function τ as described in the theorem. The induced posteriors thus form a martingale.

That is, if the posterior µi is realized with probability qi, where
∑

i qi = 1, then

∑
i

qiµi = µ.

Let u be an option. So,

Eµ(u) =
∑
i

qiEµi
(u).

If each Eµi
(u) ≥ 0, then Eµ(u) ≥ 0 as well. Therefore, the family {µ1, . . . , µn} PP w.r.t. µ.

Moving on to prove necessity, suppose that no F -measurable signaling function τ exists

such that all the posteriors it generates are in {µ1, . . . , µn}. Note however that every µi can be

generated through a specific F -measurable strategy and appropriate signal, and also note that

convex combinations of F -measurable kernels are F -measurable as well. Thus, by standard

results on Blackwell experiments, if µ ∈ conv{ν1, . . . , νk}, namely if µ can be expressed as

a convex combination of the νi’s, then there is an experiment that produces signals whose

posteriors are precisely {ν1, . . . , νk}.
Our assumption implies that µ /∈ conv{µ1, . . . , µn}. Since this convex hull is closed, the

separating hyperplane theorem guarantees the existence of a nonzero vector u ∈ RΩ and a

constant c, such that

Eµi
(u) = ⟨µi, u⟩ > c for all i,

while

Eµ(u) = ⟨µ, u⟩ < c.

By subtracting c in the two inequalities above and replacing u with u− (c, . . . , c), noting that

the separation theorem is applied here to probability distributions, we conclude that the family

{µ1, . . . , µn} does not PP w.r.t. µ. This is a contradiction.

Part (ii) We prove sufficiency first. Suppose there exists an F -measurable signaling function

τ as described in Part (ii) of the theorem. Let u be an option such that Eµ(u) = 0 and Eµi
(u) ≥ 0
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for every i. We show that Eµi
(u) = 0 for every i. As before, if the posterior µi is realized with

probability qi > 0, where
∑

i qi = 1, then

∑
i

qiµi = µ.

Let u be an option. So,

Eµ(u) =
k∑

i=1

qiEµi
(u).

If each Eµi
(u) ≥ 0 and Eµ(u) = 0, then Eµi

(u) = 0 for every i . Therefore, the family

{µ1, . . . , µn} SPP w.r.t. µ.

To establish necessity and similarly to the proof of Part (i), we show that µ can be expressed

as a convex combination of µ1, . . . , µn, each with a positive weight. For this purpose, we prove

the two following lemmas.

Lemma 2. SPP implies that for every j there is a convex combination µ =
∑

i qiµi, where

qj > 0.

Proof. Fix an index j. Suppose, to the contrary, that there is no convex combination µ =∑
i qiµi with qj > 0. This implies that the set

D :=
{
qjµj +

∑
i ̸=j

qiµi ; qj > 0, qi ≥ 0 for i ̸= j, and qj +
∑
i ̸=j

qi = 1
}

does not contain µ. Note that D is convex and has a nonempty interior relative to the simplex

of all distributions over Ω; in particular, the point 1
n

∑
i µi is an interior point of D.

Consider now the closure of D, denoted D̄. This set is also convex and contains all the µi’s

(including µj). The point µ may lie outside D̄ or on its boundary. In either case, there exists

a nonzero hyperplane u (referred to here as an option) such that Eµ(u) = 0 and Eν(u) ≥ 0 for

every ν ∈ D̄.14 In particular, this implies that Eµi
(u) ≥ 0 for every i.

We now apply SPP to the option u, which yields Eµi
[u] = 0 for all i. Consider, however,

the interior point ν = 1
n

∑
i µi, which belongs to D̄. Being an interior point, we have on the

one hand Eν [u] > 0 (see Theorem 11.3 in Rockafellar, 1970), while on the other hand,

Eν [u] = E 1
n

∑
i µi

[u] =
1

n

∑
i

Eµi
[u] = 0.

14Note that every option u derived from the separating hyperplane theorem can be adjusted with a positive
constant to ensure the stated conditions.
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This is a contradiction. Hence, there must exist a convex combination µ =
∑

i qiµi with qj > 0,

as required.

Given Lemma 2, we now turn to the next lemma, which shows that µ can be expressed as

a convex combination of µ1, . . . , µn, each with a positive weight.

Lemma 3. If for every j there is a convex combination of µ1, . . . , µn such that µ =
∑

i qiµi,

where qj > 0, then there exists a combination where all qi are strictly positive.

Proof. Fix j and suppose that µ =
∑

i q
j
iµi is a convex combination, where qjj > 0. Take

µ = 1
n

∑n
j=1

∑
i q

j
iµi, and note that in this combination, the weight of every µi is positive.

Combining the two lemmas, we derive from SPP that µ is a convex combination (with

strictly positive weights) of µ1, . . . , µn, as needed.

A.5 The proof of Proposition 1

Proof. To verify that N -[INC] implies I-[INC], observe that any cycle in GI is also a cycle

in GN , since every connected component of GI is contained within a connected component of

GN . Therefore, Eq. (7) holds in GI due to N -[INC].

To verify I-[EXC], let the sequence of pairs
(
(ωi, ω̄i)

)n
i=1

be an F-loop in GI . Since the

partition into CKCs in GI is finer than that in GN , we can group the pairs in this sequence

according to their membership in the CKCs of GN . Specifically, suppose there are k CKCs in

GN , denoted C1, . . . , Ck, such that for each ℓ = 1, . . . , k, we have

(ωj, ω̄j) ∈ Cℓ for j = iℓ, . . . , iℓ+1 − 1.

By Lemma 1, the expression φJB(ωiℓ , ω̄iℓ+1−1) is well defined, because they belong to the

same CKC of GN . Moreover, since for each i, the states ω̄i and ωi+1 belong to the same

information set of the mediator, we have for every ℓ = 1, ..., k:

iℓ+1−1∏
j=iℓ

φJB(ωj, ω̄j) = φJB(ωiℓ , ω̄iℓ+1−1). (20)

It follows that:
n∏

i=1

φJB(ωi, ω̄i) =
k∏

ℓ=1

φJB(ωiℓ , ω̄iℓ+1−1).

Now consider two cases:

Case 1: k ≥ 2. In this case, the sequence (ωiℓ , ω̄iℓ+1−1) for ℓ = 1, . . . , k forms a loop in GN .
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By condition N -[EXC], it follows that:

k∏
ℓ=1

φJB(ωiℓ , ω̄iℓ+1−1) = 1,

and hence
∏n

i=1 φJB(ωi, ω̄i) = 1.

Case 2: k = 1. Then, by Eq. (20),
∏n

i=1 φJB(ωi, ω̄i) = φJB(ω1, ω̄n), which equals 1. The reason

is that, due to Eqs. (4) and (13), we have φJB(ω, ω
′) = 1 whenever ω and ω′ lie in the same

information set of the mediator. By the assumption that the sequence forms a loop, we deduce

that ω1 and ω̄n belong to the same information set of F .

Thus, in both cases, we conclude that φJB satisfies I-[EXC].
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