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CHAPTER 1

Introduction

Math is the basic language that we use in economics. In order to understand the way people, prices,

�rms and more operate we need to use basic and advanced math. The purpose of this course and book

is to give M.A. students in economics the basic tools to deal with economically relevant problems. The

knowledge of mathematics is not a privilege for economists but a duty. An economist without good

understanding of the mathematical tools will not be able to correctly model the problem he wishes to

approach at the �rst place, without even going into the process of solving it. Thus, every good economist

should have a good understanding of mathematics.

This book is divided into 4 parts. The �rst part discusses one-variable calculus, which you probably

learned in your �rst year of your undergraduate degree. The second part is Linear Algebra, that

(again) most of you already know. Although both parts are relatively simple, we try and give as many

economically relevant examples as we can, so they will still be interesting. The third parts concerns

mulch-variables calculus. This part is a bit more advanced and requires a good knowledge of basic

calculus. The last part discusses probability and statistics, and although it might not seem related to

the other chapters, one can still �nd a few good connections.

Clearly there are more subjects that we will not go over in this book, such as di�erential equations. This

does not mean these �elds are not important. For additional information, one can use the two main

book used for this course, which are:

(1) �Mathematics for Economists� by Carl P. Simon and Lawrence Blume.

(2) �Must Have Tools for Graduate Study in Economics� by William Neilson.
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Part 1

Basic Calculus



CHAPTER 2

One-variable calculus

2.1. Functions in R1

2.1.1. Sets and intervals.

We start with a few of the basic elements in math - numbers and functions. The numbers are usually

categorized into the following sets:

• R is the set of all real numbers and it contains all numbers that are not complex. That is{
1, 2, π, e,

√
2
}
( R.

• Z is the set of all integers, i.e., Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
• N is the set of all natural numbers (which are non-negative integers) {0, 1, 2, 3, . . . }.
• Q is the set o� all rational numbers, that is numbers that can be represented as a fraction of

two integers when the denominator does not equal zero. For example, 1 ∈ Q, 1
3 ∈ Q and so

on.

Most students usually have di�culty with distinguishing between real numbers and rational numbers.

First, note that the set of rational numbers is a subset of the real numbers. Moreover, all the previously

de�ned sets are subsets of R. However, the latter is not a subset of the other sets. For example,
√

2 is

a real number but it is not a rational number and it is not an integer. We will prove this later on. In

addition, the relations between the sets are

N ( Z ( Q ( R.

There are other types of numbers and sets, but we will not require them in this course.

One speci�c type of commonly used sets are sets with with a continuum of numbers, referred to as

intervals. Let a, b ∈ R be two real numbers such that a < b. The set of all real numbers between a and

b is called an interval. Any interval can be �nite or in�nite, and can contain the end points or not, for

example:

[a, b] = {x ∈ R : a ≤ x ≤ b} ,

(a, b) = {x ∈ R : a < x < b} ,

(a, b] = {x ∈ R : a < x ≤ b} ,

[a, b) = {x ∈ R : a ≤ x < b} ,

(−∞, a] = {x ∈ R : x ≤ a} ,

(b,∞) = {x ∈ R : b < x} ,

and there are many other examples.

2.1.2. Basic and advanced functions. After establishing the required sets of numbers, we move

on to functions. Functions are mathematical objects that transform elements from one set to elements in

another set. This is a rather vague description, therefore we limit our scope only to real-valued functions.

A real-valued function f : R → R basically takes a number x ∈ R from the domain and transforms it

into a number f (x) ∈ R in the co-domain. All the values f (x) de�ne the image of f , i.e., the image of

f is given by {f (x) ∈ R : x ∈ R}.1 The input variable x is an independent variable, and in economic

applications is also called an exogenous variable, and the output variable f (x) is called the dependent

1The term range refers to either the co-domain, or the image. To avoid confusion, we will generally avoid this term.
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2.1. FUNCTIONS IN R1 8

variable (an endogenous variable). As you are probably well aware of the concept of functions, we can

go over a few classes of commonly-used functions.

(1) Polynomials. A polynomial p (x) is a function of the form

p (x) = a0x
0 + a1x

1 + · · ·+ anx
n

when {ai : i = 0, 1, . . . , n} ⊂ R and all indices 0 through n are natural numbers. When an 6= 0,

the function p (x) we described is also called a polynomial function of degree n. Note that the

degree relates to highest index i whose weight ai is not equal to 0. The polynomials are a

wildly used class of functions. For example, every constant function f (x) = c (when c ∈ R is

a constant) is a polynomial. Every linear function f (x) = ax+ b when a 6= 0 is a polynomial

of degree one. A function of the form ax2 + bx + c when a 6= 0 is called a parabolic function

and so on.

(2) Rational functions. A rational function R (x) = p(x)
q(x) is a function given by a ratio of two

polynomials. For example,

R (x) =
1− x3

1 + x2
, R (x) =

x+ x2

7− x2
, R (x) =

9x5 − 2

x
.

(3) Trigonometric functions. The basic trigonometric functions are sin (x) , cos (x) and tan (x).

The trigonometric functions are de�ned through ratios between di�erent edges of a right tri-

angle (a rectangle triangle) as described in Figure 2.1.1

Figure 2.1.1. De�nition of the sin (x)function and cos (x)function.

The de�nition of tan (x) is tan (x) = sin(x)
cos(x) . These functions are usually de�ned on the unit

circle and thus have many special properties such as periodicity, for example.

(4) Exponential functions. For every a > 0, let f (x) = ax be an exponential function with base

a. Usually we assume that a 6= 1, since the function becomes a constant function, meaning a

polynomial of degree 0.

(5) Inverse function. In many cases, given a function f (x), one can de�ne the inverse function

of f , denoted by f−1 (x). The inverse function does the opposite to what f does by taking

f (x)and transforming it to x. The inverse function is not always well-de�ned, as the original

function needs to be a one-to-one mapping. That is, every value f (x) that the function can

reach, must have a unique x that generates it. For example, consider the function f : D → R
where D = {1, 2, 3} such that

f (1) = 6,

f (2) = π,

f (3) = 6.
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Such function does not have an inverse as it is not a one-to-one mapping from D to R. Namely,

the inverse could states that π translates to 2, but we have a problem with the value 6, as f

sends both 1 and 3 to 6.

(6) Logarithmic functions. A good example of an inverse function is the loga (x). This function

is the inverse function to ax. It is de�ned through the exponential function such that, if ax = y,

then loga (y) = x. The logarithmic function has many properties that you should know, such

as:

(a) loga (xy) = loga (x) + loga (y).

(b) loga

(
x
y

)
= loga (x)− loga (y).

(c) loga (xy) = y loga (x).

(d) aloga(x) = x.

(e) logb (x) = loga(x)
loga(b) .

Remark 2.1. There is one important distinction that should be made clear. The notation we use

(x, f (x)) are general and are sometimes confused with the (x, y) notation as the value of the function

is denoted by y. The origin of this notation is in the way graphs of functions are drawn. One variable

functions are drawn on the (x, y) plain, R2, and most of the times the axes are denoted by x and y.

Thus, sometimes there is a confusion between the notation of the value of the function in a speci�c point

and the notation of the axes.

2.1.3. Useful economic functions. There are several functions that are commonly used in eco-

nomics.

• The demand function D (x) sets the price p = D (x) charged for each unit when x units are

sold.

• The supply function S (x) sets the price p = S (x) for which producers will supply x units.

• The cost function C (x) determines the cost of producing x units.

• The revenue function R (x) de�nes the revenue from selling x units, and given by R (x) =

xD (x) .

• The pro�t function P (x) de�nes the net pro�t for selling x units. Given by

P (x) = R (x)− C (x) = xD (x)− C (x) .

Exercise 2.1. The total cost of producing x units is given by C (x) = x3 − 2x2 + 6
x .

(1) Find the domain of C.

(2) What is the marginal cost for producing the 3rd unit?

Solution.

(1) The domain is {1, 2, 3, . . . }.
(2) The cost for producing 2 units is C (2) = 8 − 8 + 3 = 3. The cost for producing 3 units is

C (3) = 27− 18 + 2 = 11. Thus, the 3rd unit's marginal cost is C (3)− C (2) = 11− 3 = 8.

Exercise 2.2. The total cost of producing x units is given by C (x) = 2x − x2. On every workday

x (t) = 3t− 1 units are manufactured in the �rst t hours.

(1) How much will be spent on production by the end of the third hour?

(2) What is the minimal number of hours such that the manufacturing cost exceeds $1000?

Solution.

(1) We need to observe the composition of C and x as a function of t. Speci�cally, we get

C (x (t)) = 2x(t) − (x (t))
2

= 23t−1 − (3t− 1)
2
.
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Figure 2.2.1. The limit of a function f when x→ x0.

Thus,

C (x (3)) = 29−1 − (9− 1)
2

= 256− 64 = 192.

(2) We need to �nd the minimal t such that 23t−1 − (3t− 1)
2
> 1000. Since this inequality is

di�cult to solve accurately, we can simply check the production cost in the following hours.

C (x (4)) = 212−1 − (12− 1)
2

= 2048− 121 = 1927,

and the answer is t = 4 hours.

2.2. Limits & continuous functions

2.2.1. Limits of one-variable functions.

The �rst property we consider is whether a function is continuous or not. Though this property is quite

intuitive and clear, the de�nition is a bit more complex. We start with the de�nition of a �nite limit at

a �nite point.

Definition 2.1. Let f : R → R be a one-variable function and let x0, L ∈ R be real numbers (we

sometimes denote the domain of f by D and the co-domain by f (D)). L is the limit of f in the point

x0 if for every ε > 0 there exists a δ > 0 such that for every |x− x0| < δ, it follows that

|f (x)− L| < ε.

We denote this limit by limx→x0 f (x) = L.

In simple words, L is the limit of the function f when x tends to x0 if f can get su�ciently close to L

(with an in�nitely small deviation of no more than ε, for any ε > 0) when x is close to x0. See Figure

2.2.1.

Remark 2.2. one can write the term |x− x0| < δ, in the following manner x ∈ (x0 − δ, x0 + δ), which

tends to be more convenient to students.

De�nition 2.1 only relates to �nite values of x0 and L. There are many cases that are not included in

this de�nition, speci�cally, when L and\or x0 are in�nite. We will give three more de�nitions for some

of the additional cases.

Definition 2.2. Let f : R → R be a one-variable function and let x0, L ∈ R∪{−∞,+∞} be real

numbers (including in�nity and minus in�nity).
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• Case I - x0 =∞ and L =∞. We say that L is the limit of f when x→ x0 if for every M > 0

there exists a K > 0 such that for every x > K, it follows that f (x) > M .

• Case II - x0 is �nite and L = ∞. We say that L is the limit of f when x → x0 if for every

M > 0 there exists a δ > 0 such that for every |x− x0| < δ, it follows that f (x) > M .

• Case III - x0 = ∞ and L is �nite. We say that L is the limit of f when x → x0 if for every

ε > 0 there exists a K > 0 such that for every x > K, it follows that |f (x)− L| < ε.

The idea behind an in�nite limit is as follows. The limit of a function is in�nite if its values are becoming

larger and larger and unbounded as you approach a �nite x0 or as x→∞. These cases do not include

all possible cases as we only considered positive values and did not relate to negative ones. You could

�nd additional de�nitions in most academic math books. For example, the limit of f (x) = x2 − 3 is ∞
when x → ∞ and when x → −∞. In addition, although the function f (x) = 1/x is not de�ned when

x = 0, its limits when x → 0 is ∞. This is another important aspect. The limit is independent of the

value of the function in x0, hence the function is not necessarily de�ned in x0, yet the limit exists.

Figure 2.2.2. The function f (x) = 1
x and its one-sided limits when x→ 0±.

Remark 2.3. A limit does not always exist. There are cases when the de�nition fails and then we say

that the limit does not exist. A good, but a bit more complicated example of a limit that does not exist

the limit of the function sin
(

1
x

)
when x→ 0. See Figure 2.2.2 and Figure 2.2.3.

2.2.2. Limits properties.

The arithmetic limit laws are the following: Assume that both limits converge, limx→x0
f (x) = a,

limx→x0
g (x) = b (including the case where x0 is possibly ±∞), then

• limx→x0 (f (x)± g (x)) = a± b;
• limx→x0 (f (x) · g (x)) = a · b;
• limx→x0

f(x)
g(x) = a

b , assuming that g (x) , b 6= 0.

Exercise 2.3. The number of produced units per month as a function of t (in months) is P (t) = 6t2+5t
(t+1)2

.

Determine what we will the the long run production level (i.e., when t→∞).
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Figure 2.2.3. The limit of sin
(

1
x

)
when x→ 0.

Solution. We need to compute the limit

lim
t→∞

6t2 + 5t

(t+ 1)
2 = lim

t→∞

6t2 + 5t

t2 + 2t+ 1

= lim
t→∞

t2

t2
·

6 + 5
t

1 + 2
t + 1

t2

=
6 + 0

1 + 0 + 0
= 6.

Exercise 2.4. The organizers of Rio-2016 estimated that if the event is announced x days in advance,

the revenue will be R(x) = 400 + 120x − x2. The cost of advertising for x days is C(x) = 2x2 + 300.

What happens to the pro�t has x→∞? x→ 10?

Solution. We start with the pro�t function given by

P (x) = R (x)− C (x)

= 400 + 120x− x2 − 2x2 − 300

= 100 + 120x− 3x2.

This function is a parabolic function with a global maximum point.

lim
x→∞

100 + 120x− 3x2 = lim
x→∞

x2

(
100

x2
+

120

x
− 3

)
”∞·(−3)”

= −∞.

lim
x→10

100 + 120x− 3x2 = 100 + 1200− 3 · 100 = 1000.

Exercise 2.5. Compute the following limits.

(1) limx→2 x
3.

(2) limx→5 x
2 − 3x+ 1.

(3) limx→1
2x2−3x+1

x−1 .

(4) limx→2

√
4x−4−x
x2−4 .

Solution.

(1) By the arithmetic limit laws we get, limx→2 x
3 = limx→2 x · x · x = 2 · 2 · 2 = 8.

(2) By the arithmetic limit laws we get, limx→5 x
2 − 3x+ 1 = 25− 15 + 1 = 11.
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(3) Note that the numerator and denominator converge to 0. Hence,

lim
x→1

2x2 − 3x+ 1

x− 1
= lim

x→1

(2x− 1) (x− 1)

x− 1

= lim
x→1

(2x− 1) = 1.

(4) We will need some algebra in this case. Speci�cally, we need to multiply and divide by the

conjugate of the numerator and get

lim
x→2

√
4x− 4− x
x2 − 4

= lim
x→2

√
4x− 4− x
x2 − 4

·
√

4x− 4 + x√
4x− 4 + x

= lim
x→2

4x− 4− x2

(x2 − 4)
(√

4x− 4 + x
)

= lim
x→2

− (x− 2)
2

(x+ 2) (x− 2)
(√

4x− 4 + x
)

= lim
x→2

− (x− 2)

(x+ 2)
(√

4x− 4 + x
) =

0

4
(√

4 + 2
) = 0.

Exercise 2.6. Compute the following limits.

(1) limx→0
|x|
x .

(2) limx→0+
17−x
x .

(3) limx→0+
x−1
x .

Solution.

(1) This limit does not exist. To prove this, we compute the limit when x→ 0+ and x→ 0−.

lim
x→0+

|x|
x

= lim
x→0+

x

x
= lim
x→0+

1 = 1;

lim
x→0−

|x|
x

= lim
x→0−

−x
x

= lim
x→0−

−1 = −1.

(2) A direct computation shows that

lim
x→0+

17− x
x

” 17

0+
”

= ∞.

(3) A direct computation shows that

lim
x→0+

x− 1

x

”−1

0+
”

= −∞.

Remark 2.4. The value of e is de�ned through the following limit

lim
x→∞

(
1 +

k

x

)x
= ek.

Exercise 2.7. Prove or disprove the following statements.

(1) If limx→∞
f(x)
g(x) = 1, then limx→∞ (f (x)− g (x)) = 0.

(2) If limx→∞ (f (x)− g (x)) = 0, then limx→∞
f(x)
g(x) = 1.

Solution.

(1) This statement is false. For instance, take f (x) = x+ 1 and g (x) = x. Then,

lim
x→∞

f (x)

g (x)
= lim

x→∞

x+ 1

x
= lim
x→∞

1 +
1

x
= 1;

lim
x→∞

(f (x)− g (x)) = lim
x→∞

(x+ 1− x) = lim
x→∞

1 = 1.
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(2) This statement is also false. For example, take f (x) = 1
x and g (x) = 1

x2 . Then,

lim
x→∞

(f (x)− g (x)) = lim
x→∞

(
1

x
− 1

x2

)
= 0 + 0 = 0;

lim
x→∞

f (x)

g (x)
= lim

x→∞

1
x
1
x2

= lim
x→∞

x =∞.

2.2.3. Continuous functions.

The de�nition of a continuous function is based on the limit of that function and the value of that

function in a speci�c point.

Definition 2.3. A function f is continuous in x0 if the limit limx→x0 f (x) exists, f (x0) is de�ned, and

both values are equal, limx→x0 f (x) = f (x0).

In contrary to the limit's de�nition, a continuous function in x0 must be de�ned in x0 and the continuity

depends greatly on the value f (x0).

A function does not have to be continuous. Consider for example the function

f (x) =

1, x ≥ 0,

−1, x < 0.

This function is continuous in every x0 6= 0, and it is also de�ned in x0 = 0, however it is not continuous

in x0 = 0. See Figure 2.2.4 for more examples of discontinuous functions.

Figure 2.2.4. Non continuous parabolic and linear functions.

Remark 2.5. one way of proving that a function is not continuous is by computing the limit when

x → x+
0 and the limit when x → x−0 . If the limits are not the same, then the limit when x → x0 does

not exist, and the function is not continuous.

Exercise 2.8. Find the values of A and B such that the function is continuous:

f (x) =


x2−x
x−1 +A, x < 1,

3, x = 1,

B · ln
(
x2 + 2

)
− 2, x > 1.

Solution. For every x 6= 1, the function is continuous, as it is either a polynomial or a logarithmic

function, which are continuous. So we need to focus on x = 1. First, we need to make sure that the
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limit exists at x = 1.

lim
x→1+

[
B · ln

(
x2 + 2

)
− 2
]

=
[
B · ln

(
12 + 2

)
− 2
]

= B ln (3)− 2,

lim
x→1−

[
x2 − x
x− 1

+A

]
= lim
x→1−

[x+A] = 1 +A.

Thus, for the limit to exist, we require that A + 1 = B ln (3) − 2. In addition, for the function to be

continuous, f (1) = 3 must equal the limit. To conclude,

A+ 1 = B ln (3)− 2 = 3 ⇒ A = 2, B =
5

ln (3)
.

Exercise 2.9. Find the values of A,B, and C such that the function

f (x) =


x2 − 2Ax+ 5C · cos (x) , x < 0,

B, x = 0,

tan(2x)
x , x > 0,

is continuous.

Solution. For every x 6= 0, the function is continuous, as it is either a polynomial or tan(2x)
x , that are

continuous. So we need to focus on x = 0. First, we need to make sure that the limit exists in x = 0.

lim
x→0+

tan (2x)

x
= lim

x→0+

2

cos (2x)
· sin (2x)

2x
= 2 · 1 = 2,

when we used the known limit limx→0
sin(x)
x = 1.

lim
x→0−

x2 − 2Ax+ 5C · cos (x) = 0− 0 + 5C = 5C.

Thus, for the limit to exist, we require that 5C = 2 ⇒ C = 2
5 . In addition, for the function to be

continuous, f (0) = B must equal the limit, which is 2. To conclude,

B = 2, C =
2

5
, A ∈ R.

Exercise 2.10. Discuss the continuity of the function

f (x) =

x2 − 3x, if x < 2,

4 + 2x, if x ≥ 2,

on the open interval (0, 2) and on the closed interval [0, 2].

Solution. Since x2 − 3x is a continuous function and f (x) = x2 − 3x in (0, 2), we get the f is

continuous in the open interval. However, in the closed interval, the function is not continuous in x = 2,

since f (2) = 4 + 2 · 2 = 8 and limx→2− x
2 − 3x = 4− 6 = −2.

Theorem 2.1. (the Mean Value Theorem) If a function f is continuous on the closed interval [a, b],

where a < b, and assume that there exists some value d between f (a) and f (b), then there exists a point

c ∈ (a, b) such that

f(c) = d.

Exercise 2.11. The price p of a product is contained in the interval [0, 1]. The demand function D (p)

is given by D (p) = 1 − p2. The supply function S (p) is S (p) = 0.5 + 2p − p1/3. Determine whether

there exists an equilibrium price pe where the supply meets the demand.
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Solution. We need to �nd whether there exists an equilibrium price pe such that the supply function

equals the demand function. Speci�cally,

D (p) = S (p)

D (p)− S (p) = 0

1− p2 − 0.5− 2p+ p1/3 = 0

0.5− p2 − 2p+ p1/3 = 0

We can see that we got a continuous function, therefore we can use the Mean-Value theorem.

(1) When p = 0, the right hand side of the previous equation equals 0.5.

(2) When p = 1, the right hand side of the previous equation equals 0.5− 1− 2 + 1 = −1.5.

By the Mean-Value Theorem, we know that a price pe ∈ (0, 1) exists such that the right hand side equals

0, and the result follows. See �gure 2.2.5 for a sketch of the two functions.

Figure 2.2.5. Supply meets demand from Exercise 2.11

Exercise 2.12. Prove that for every 0 < a < 1, n ∈ N, the equation

2x = a+ (2x)
n

has a solution x0 ∈ (0, 1).

Solution. Fix 0 < a < 1, n ∈ N, and de�ne f (x) = 2x−a−(2x)
n
. Note that f is a continuous function.

In addition, f (0) = 1 − a > 0 and f (1) = 2 − a − 2n ≤ −a + 0 < 0. By the Mean Value Theorem on

(0, 1), there exists a point c ∈ (0, 1) such that f (c) = 0. Hence,

2c − a− (2c)
n

= 0

2c = a+ (2c)
n
,

as needed.

2.3. Derivatives

Similarly to the concept of continuity, the idea behind the derivative of a function is intuitively simple,

but the de�nition tends to be complex. The basic idea behind the derivative of a function is to measure

the change in the values of that function. Speci�cally, the derivative is a function that states how fast
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or slow a function increases or decreases. Nevertheless, the main problem of measuring the derivative

at a certain point is not that simple.

Figure 2.3.1. The derivative of a function f at a point x0.

The derivative f ′ (x0) of the function f (x) in x0 is de�ned through the inclination\slope of the function

in that point. To de�ne this value correctly, we consider the value of the function in two di�erent points

x0 and x0. We draw a straight line between f (x) and f (x0) and calculate the angle of that line w.r.t.

the x axis. Then, we take xs that are closer and closer to x0 and recalculate that value. by taking the

limit, we get f ′ (x0). Formally,

f ′ (x0) = lim
x→x0

f (x)− f (x0)

x− x0

h=x−x0= lim
h→0

f (x+ h)− f (x0)

h
.

We can try to �nd the derivative in every point and by doing so, we get a new function f ′ (x), which

represents the slope of f at any point x (as long as the limit above exists). It terms of notations, we

sometime use d
dxf (x) to denote the derivative of the function f (x).

Remark 2.6. If a function is di�erentiable on an interval, it is also continuous on that interval.

Exercise 2.13. Find the derivative of the functionf(x) = 16x2 using only the de�nition.

Solution. Using the derivative's de�nition yields

lim
h→0

16 (x+ h)
2 − 16x2

h
= lim

h→0

16
(
x2 + 2xh+ h2

)
− 16x2

h

= lim
h→0

32xh+ 16h2

h
= lim

h→0
32x+ 16h = 32x.
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Exercise 2.14. Prove that f (x) = |x− 13| is di�erentiable anywhere but x0 = 13.

Solution. We compute the derivative using the basic de�nition when x0 > 13, x0 < 13, and when

x0 = 13.

• If x0 > 13, then

f ′ (x0) = lim
h→0

|x0 + h− 13| − |x0 − 13|
h

= lim
h→0

x0 + h− 13− x0 + 13

h

= lim
h→0

h

h
= 1.

• If x0 < 13, then

f ′ (x0) = lim
h→0

|x0 + h− 13| − |x0 − 13|
h

= lim
h→0

− (x0 + h− 13) + (x0 + 13)

h

= lim
h→0

−h
h

= −1.

• If x0 = 13, then

f ′ (x0) = lim
h→0

|13 + h− 13| − |13− 13|
h

= lim
h→0

|h|
h

=

+1, h→ 0+,

−1, h→ 0−,

and the limit does not exist, hence the derivative does not exist.

2.3.1. Standard economic uses for derivatives.

• Finding extreme points (speci�ed later on).

• Increasing or decreasing functions. The derivatives speci�es whether a function is increas-

ing or decreasing. For example, if the marginal cost is positive, we know that an increase in

production will result in an increase in cost.

• Marginals estimations. In economics we usually look at the marginal cost or marginal

revenue, which means the change in cost or the change in revenue when a small change in the

production is made. Consider, for example, the cost function C (x) which de�nes the cost for

producing x units. The marginal cost (per unit) for producing two more units is

C (x+ 2)− C (x)

2
.

Now we can take a smaller and smaller increase and get the marginal cost as the limit

lim
h→0

C (x+ h)− C (x)

h
.

2.3.2. Derivatives of basic functions.

Since we would not want to make the same computation for every function and for every x ∈ R, we
can formulate the derivatives of certain basic functions. The following list contains the derivatives of

functions we use regularly (any other derivative could be computed directly according to the original

de�nition):
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The function The derivative The function The derivative

f (x) f ′ (x) f (x) f ′ (x)

c 0 ax ax ln (a)

xn , n 6= 0 nxn−1 loga (x) 1
x ln(a)

sin (x) cos (x) arcsin (x) 1√
1−x2

cos (x) − sin (x) arccos (x) − 1√
1−x2

tan (x) 1
cos2(x) arctan (x) 1

1+x2

2.3.3. Rules of di�erentiation.

There are a few elementary rules of di�erentiation. Let f, g be two di�erentiable functions, then:

(1) (f (x)± g (x))
′

= f ′ (x)± g′ (x) .

(2) (f (x) · g (x))
′

= f ′ (x) g (x) + f (x) g′ (x) .

(3)
(
f(x)
g(x)

)′
= f ′(x)g(x)−f(x)g′(x)

g2(x) , when g (x) 6= 0.

(4) An inverse function f−1 (x) is di�erentiable if and only if f ′
(
f−1 (x)

)
exists and does not equal

0. The derivative is given by

df−1 (x)

dx
=

1

f ′ (f−1 (x))
.

(5) Another important rule of di�erentiation is the chain rule. De�ne h (x) = f (g (x)) and assume

that g (x) is di�erentiable in x and f is di�erentiable in g (x), then h (x) is also di�erentiable

in x and h′ (x) = f ′ (g (x)) g′ (x).

These rules are very helpful when trying to compute the derivative of non-basic functions. For example,

f (x) =
√
x, g (x) = x2 + 1 ⇒ h (x) = f

(
x2 + 1

)
=
√
x2 + 1

h′ (x) =
1

2
√
x2 + 1

· 2x.

Exercise 2.15. The manager of an appliance manufacturing �rm determines that when blenders are

priced at p dollars apiece, the number sold each month can be modeled by D(p) = 8000
p . The manager

estimates that t months from now, the unit price of the blenders will be p(t) = 0.06t1.5 + 22.5 dollars.

At what rate will the monthly demand for blenders D(p) be changing 25 months from now? Will it be

increasing or decreasing at this time?

Solution. We want to �nd how the demand D changes as a function of the time. Using the chain rule,

d

dt
[D (p (t))] =

dD (p)

dp
· dp(t)
dt

= −8000

p2
· 6

100
· 3

2
t0.5.

Thus, when t = 25, we get p (25) = 0.06 · (25)
1.5

+ 22.5 = 30, and

d

dt
[D (p (t))]t=25 = − 720

(30)
2 · 250.5 = −4.

That is, the demand for blenders will be decreasing at a rate of 4 units per month.

2.4. Extreme points

In many economic model we try to maximize or minimize the payo�, utility, or some kind of a production

function. In order to do so, we need to thoroughly understand the methods of optimizing any given

function. For that purpose, we study extreme points of functions. We start with the basic de�nitions.

Definition 2.4. Let f : D → R be a one-variable function with domain D ⊆ R. The point x0 ∈ D is a

global maximum (minimum) if f (x0) ≥ f (x) (f (x0) ≤ f (x)) for every x ∈ D.
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In other words, a global maximum (or, a global minimum), is a point x0 that maximizes (minimizes)

the value of f with respect to all the other point in D.

Definition 2.5. Let f : D → R be a one-variable function with domain D ⊆ R. The point x0 ∈ D is

a local maximum (minimum) if there exists an open interval I containing x0 such that f (x0) ≥ f (x)

(f (x0) ≤ f (x)) for every x ∈ I.

In general, �nding the extreme points of a function is not easy. Therefore, we have a few theorems

that assist with this problem. The �rst theorem is the Bolzano�Weierstrass theorem that gives a basic

condition for extreme points to exist.

Theorem 2.2. (Bolzano�Weierstrass) Let f : [a, b] → R be a continuous function on [a, b]. Then f

must attain a maximum and a minimum, each at least once.

That is, there exist numbers c, d ∈ [a, b] such that f(c) ≥ f(x) ≥ f(d) for all x ∈ [a, b]. The theorem is

based solely on continuity of f . The next theorem, Fermat's Theorem, relates to cases where an inner

extreme point of a di�erentiable function has a very unique property such that the derivative is zero.

Theorem 2.3. (Fermat) Let f : (a, b)→ R be a function and suppose that x0 ∈ (a, b) is a local extreme

point of f . If f is di�erentiable at x0, then f
′(x0) = 0.

Note that the theorem does not mean that every point where the derivative equals zero is an extreme

point. This is not true in general. The theorem states that in cases that f is di�erentiable, the

derivative in the extreme points is zero. Thus, in order to �nd extreme point, one need to solve the

equation f ′ (x) = 0 and all the points that solve this equation are suspected to be extreme points.

Theorem 2.3 and Theorem 2.2 make the problem of �nding extreme point easier, using the following

stages:

(1) Find all the point where f ′ (x) = 0 or f ′ (x) is not de�ned. These points are called critical

points and are suspected to be extreme points.

(2) Compute the values f (x) for each critical point.

(3) Compare the values and determine the properties of each point.

Exercise 2.16. A company produces a product at a cost of 5$ each. The company assumes that if the

price for each product is x, then 15 − x products will be sold. What is the company's pro�t function?

What should it charge in order to maximize its pro�t?

Solution. In this exercise x is the market price, which is a choice variable for the �rm. The pro�t

function of the �rm is

P (x) = x(15− x)− 5(15− x)

= (15− x) (x− 5)

= −x2 + 20x− 75.

This function is concave, and its �rst derivative is P ′ (x) = −2x+ 20. The function reaches its maximal

value at x = 10.

Exercise 2.17. A company produces a product at a cost of 5$ each. The current price is 10$ apiece

and 10 products are sold each day. The company realizes that each dollar decrease in the price, will

increase the amount of products sold by 1 product a day. Write the demand and pro�t functions and

�nd the price that maximizes the pro�t.

Solution. From the information given, the demand function D (p) (as a function of the price) must be

computed. The function is linear, and the slope is −1. It goes through the point (10, 10), so the function
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must be

D (p) = −p+ b

D (10) = −10 + b = 10

⇒ b = 20,

D (p) = −p+ 20.

Then the pro�t function (as a function of price) must be π (p) = (p− 5) (20− p). A direct computation

shows that π′ (p) = 25− 2p, so the pro�t is maximized at p = 12.5.

Exercise 2.18. To produce x units of a particular commodity, a monopolist has a total cost of

C (x) = 2x2 + 3x+ 5,

and total revenue of R(x) = xp(x), where p(x) = 5 − 2x is the price at which the x units will be sold.

Find the pro�t function P (x). For what level of production is pro�t maximized?

Solution. The pro�t function is

P (x) = R (x)− C (x)

= xp (x)− 2x2 − 3x− 5

= 5x− 2x2 − 2x2 − 3x− 5

= −4x2 + 2x− 5.

Taking the �rst-order condition yields

P ′ (x) = −8x+ 2 = 0

⇒ x = 0.25.

Thus, the pro�t is maximized when producing just a single unit.

Exercise 2.19. When interest rates are low, many homeowners take the opportunity to re�nance their

mortgages. As rates start to rise, there is often a �urry of activity as latecomers rush in to re�nance

while they still can do so pro�tably. Eventually, however, rates reach a level where re�nancing begins

to wane. Suppose in a certain community, there will be M(r) thousand re�nanced mortgages when the

30-year �xed mortgage rate is r%, where

M (r) =
1 + 0.05r

1 + 0.004r2
, for 1 ≤ r ≤ 8.

(1) For what values of r is M(r) increasing?

(2) For what interest rate r is the number of re�nanced mortgages maximized? What is this

maximum number?

Solution.

(1) Note that we have a continuous function in a closed interval, thus a maxima and a minima

exist. Taking the �rst-order condition, we get

M ′ (r) =
0.05

(
1 + 0.004r2

)
− 0.008r (1 + 0.05r)

(1 + 0.004r2)
2

=
0.05 + 0.0002r2 − 0.008r − 0.0004r2

(1 + 0.004r2)
2

=
−2r2 − 80r + 500

10000 · (1 + 0.004r2)
2 .
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Thus, we see that M increases according to the sign of −2r2− 80r+ 500. Finding the solution

for the equation −2r2 − 80r + 500 = 0,

r1,2 =
80±

√
6400 + 4000

−4

= −20±
√

650

= −20± 25.5

r1 = 5.5

r2 = −45.5.

Since the function we are analyzing is a parabolic function with a global maxima, we know

that M (r)is increasing when 1 ≤ r ≤ 5.5.

(2) The function is maximized at the very end point it stops increasing. In other words, when

r = 1 we have a minima (M (1) = 1.05
1.004 ≈ 1.05), whereas r = 5.5 is a maxima, therefore M is

maximized when r = 5.5. The maximum value is M (5.5) = 1+0.05·5.5
1+0.004·5.52 ≈ 1.14. Note that the

value at the other end point r = 8 is M (8) ≈ 1.1.

Exercise 2.20. Give an economic interpretation of the derivatives of the following functions:

(1) F (q) is the revenue from producing q units of output;

(2) G (x) is the cost of purchasing x unit of some commodity.

(3) H (p) is the amount of commodity consumed when its price is p.

(4) C (Y ) is the total consumption when national income is Y .

(5) S (Y ) is the total savings when national income is Y .

Solution.

(1) The derivative is the marginal revenue, that is, the rate at which revenue increases with

output.

(2) The derivative is the marginal cost, that is, the rate at which the cost of purchasing x units

increases with x.

(3) The derivative is the rate at which demand increases with price.

(4) The derivative is the marginal propensity to consume, that is, the rate at which aggregate

consumption increases with national income.

(5) The derivative is the marginal propensity to save, that is, the rate at which aggregate

savings increases with national income.

Exercise 2.21. A manufacturer estimates that when x units of a particular commodity are produced,

the total cost will be C(x) = 1
8x

2 + 3x+ 98 dollars, and furthermore, that all x units will be sold when

the price is p(x) = 1
3 (75− x) dollars per unit.

(1) Use marginal cost to estimate the cost of producing the ninth unit. What is the actual cost of

producing the ninth unit?

(2) Find the marginal pro�t.

(3) Use marginal revenue to estimate the revenue derived from the sale of the ninth unit. What is

the actual revenue derived from the sale of the ninth unit?

Solution.

(1) The marginal cost is C ′(x) = 1
4x + 3. The cost of producing the ninth unit is the change in

cost as x increases from 8 to 9 and can be estimated by the marginal cost

C ′(8) =
1

4
· 8 + 3 = $5.

The actual cost of producing the ninth unit is

C (9)− C (8) = $5.13.
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(2) The revenue is given by R (x) = xp (x) = 25x− 1
3x

2. The pro�t is

P (x) = R (x)− C (x)

= 25x− 1

3
x2 − 1

8
x2 − 3x− 98

= 22x− 98− 11

24
x2,

P ′ (x) = 22− 11

12
x.

(3) The revenue obtained from the sale of the ninth unit is approximated by the marginal revenue

R′ (8) = 25− 2

3
· 8 = $19.67.

The actual revenue obtained from the sale of the ninth unit is

R (9)−R (8) = $19.33.

Exercise 2.22. Answer the following questions:

(1) Is the function f (x) = 2x3 − 12x2 increasing or decreasing in x = 3?

(2) Is the function f (x) = ln (x) increasing or decreasing in x = 13?

(3) Is the function f (x) = e−xx1.5 increasing or decreasing in x = 4?

(4) Is the function f (x) = 4x−1
x+2 increasing or decreasing in x = 2?

(5) Is the function f (x) = 3x−2
4x+x2 increasing or decreasing in x = −1?

(6) Is the function f (x) = 1
ln(x) increasing or decreasing in x = e?

(7) Is the function f (x) = 5x2 + 16x− 12 increasing or decreasing in x = −6?

Solution.

(1) The derivative is f ′ (x) = 6x2 − 24x. Thus, f ′ (3) = 54 − 72 = −18 < 0 and the function is

decreasing.

(2) The derivative is f ′ (13) = 1
13 > 0, and the function is increasing.

(3) The derivative is f ′ (4) = −5e−4 < 0, and the function is decreasing.

(4) The derivative is f ′ (2) = 9
16 > 0, and the function is increasing.

(5) The derivative is f ′ (−1) = 1
9 > 0, and the function is increasing.

(6) The derivative is f ′ (e) = − 1
e < 0, and the function is decreasing.

(7) The derivative is f ′ (−6) = −44 < 0, and the function is decreasing.

Exercise 2.23. A �rm can use its manufacturing facility to make either tables or chairs. Both require

labor only. The production function for tables is

A = 20L0.5,

and the production function for chairs is

B = 30L.

The wage rate is $11 per unit of time, and the prices of tables and chairs are $9 and $3 per unit,

respectively. The manufacturing facility can accommodate 60 workers and no more. How much of each

product should the �rm produce per unit of time?

Solution. Assume that the �rm devotes L units of labor for tables production and 60 − L to chairs

production. The pro�t function is

π (L) = 9 · 20L0.5 + 3 · 30 (60− L)− 11 · 60

= 180L0.5 − 90L+ 79 · 60.

The FOC is π′ (L) = 90 1√
L
− 90 = 0, which means that L = 1. Thus, the �rm produces 20 tables and

1770 chairs.
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2.4.1. Derivatives of second and higher order.

In the same manner that a function could be di�erentiable, its derivative (which is also a function)

could be di�erentiable as well. In this case, we say that f is twice di�erentiable and f ′′ is the second

derivative of f . The same is also true for the second derivative and so on. When a function is k

times di�erentiable and the kth derivative is continuous, we say that the original function is k times

continuously di�erentiable and denote this set of functions by Ck. The k derivative of f is denoted by

f (k) (x) .

2.5. Convex & concave functions

Convexity and concavity are important properties of functions, speci�cally in Economics. These at-

tributes help us with determining the number of extreme points (or equilibrium) and their nature. But

�rst, let us de�ne the two properties.

Definition 2.6. (Convex and Concave functions) A function f is called convex on an interval I if

and only if f ((1− t) a+ tb) ≤ (1− t) f (a) + tf (b) for every a, b ∈ I and all t ∈ [0, 1].

A function f is called concave on an interval I if and only if f ((1− t) a+ tb) ≥ (1− t) f (a) + tf (b) for

every a, b ∈ I and all t ∈ [0, 1].

For example, f (x) = x2 and f (x) = 1/x are convex functions, whereas f (x) =
√
x and f (x) = ln (x)

are concave functions. When function change from concavity to convexity, or otherwise, that point is

called an in�ection point. As previously stated, convexity or concavity are very helpful properties when

trying to determine whether an extreme point is either a unique maximum, or a unique minimum.

Proposition 2.1. Let f be a function with an extreme point x0. If f is concave (convex), then x0 is

the unique maxima (minima, resp.) of f .

One way to characterize functions by these properties is through the Second-Order Condition (SOC),

relating to the second-order derivative.

Proposition 2.2. When a function is twice di�erentiable, the second derivative determines whether

the function is convex or concave. Speci�cally, if f ′′ (x) ≥ 0 (f ′′ (x) ≤ 0), then the function is convex

(concave).

Exercise 2.24. Optimize the following functions and tell whether the optimum is a local maximum or

a local minimum

(1) f (x) = −4x2 + 10x.

(2) f (x) = 120x0.7 − 6x.

(3) f (x) = 4x− 3 ln (x).

Solution.

(1) The FOC is f ′ (x) = −8x + 10 = 0. So, x∗ = 5
4 . The SOC is f ′′

(
5
4

)
= −8 < 0, and this is a

local maximum.

(2) The FOC is f ′ (x) = 84
x0.3 − 6 = 0. So, x∗ = 141/0.3. The SOC is f ′′

(
141/0.3

)
< 0, and this is a

local maximum.

(3) The FOC is f ′ (x) = 4 − 3
x = 0. So, x∗ = 3

4 . The SOC is f ′′
(

3
4

)
> 0, and this is a local

minimum.

Exercise 2.25. During a recession, Congress decides to stimulate the economy by providing funds to

hire unemployed workers for government projects. Suppose that t years after the stimulus program

begins, there are N(t) thousand people unemployed, where

N (t) =
1

3
t3 − 3t2 + 37 where 0 ≤ t ≤ 10.
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(1) What is the maximum number of unemployed workers? When does the maximum level of

unemployment occur?

(2) In order to avoid overstimulating the economy (and inducing in�ation), a decision is made to

terminate the stimulus program as soon as the decrease in the unemployment rate begins to

weaken. When does this occur? At this time, how many people are unemployed?

Solution. To solve this problem we need to �nd the �rst and second derivatives of N .

N ′ (t) = t2 − 6t,

N ′′ (t) = 2t− 6.

(1) Note that N (t)→∞ as t→∞, and the function is continuous. Thus, there is a global maxima

and a global minima. We need to identify critical point �rst. We have two simple solutions:

t1 = 0 and t2 = 6. In addition, we can see that the function is decreasing when 0 ≤ t ≤ 6, and

increasing otherwise. Hence,

f (0) = 37,

f (6) = 72− 108 + 37 = 1,

f (10) = 333
1

3
− 300 + 37 = 70

1

3
.

Thus, the maximal level of unemployment occurs when t = 10, and it is 70.33%.

(2) Now, we need to analyze the change in the unemployment rate. We sew that there is a decrease

in unemployment when 0 ≤ t ≤ 6. But we are asked when the decrease starts to weaken, that

is when N ′ (t) starts to increase. By analyzing the second derivative we see that t = 3 is an

in�ection point of N and the derivative of N starts to increase. At that stage, unemployment

is N (3) = 9− 27 + 37 = 19%.

Exercise 2.26. Determine when the following functions are convex or concave.

(1)

f (x) = x2 + 4x− 17.

(2)

f (x) = ln (x) .

(3)

f (x) =
1

x
.

(4)

f (x) =


x+ 2, x < −1,

1
4x+ 5

4 , x ∈ [−1, 1] ,

7
2 − 2x x > 1.

Solution.

(1) We know this is a parabolic function. It is di�erentiable in�nitely many times. Thus

f ′ (x) = 2x+ 4,

f ′′ (x) = 2 > 0

and the function is convex.

(2) The function is de�ned for every x > 0. It is di�erentiable, thus

f ′ (x) =
1

x
,

f ′′ (x) = − 1

x2
< 0,

and the function is concave for every x > 0.
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(3) The function is de�ned for every x 6= 0. It is di�erentiable, thus

f ′ (x) = − 1

x2
,

f ′′ (x) =
2

x3
.

This means that it is convex for every x > 0 and the function is concave for every x < 0.

(4) Note that the function is de�ned by three linear functions. Although the derivatives do not

exist when x = −1, 1, we can use the basic de�nition of concave and convex functions and see

that this function is concave. Note that a linear function is both concave and convex, so when

x is restricted to a speci�c linear function (x < 1, or x ∈ [−1, 1], or x > 1 ), then the function

is both convex and concave.

2.6. Derivatives Theorems

There are several major theorems concerning derivatives. In many cases, we use them, even without

knowing, because they are so intuitive.

Theorem 2.4. (Rolle) If a real-valued function f is continuous on a closed interval [a, b], di�erentiable

on the open interval (a, b), and f(a) = f(b), then there exists at least one c in the open interval (a, b)

such that f ′(c) = 0.

In simple terms, Rolle's Theorem states that when a function is di�erentiable and when it reaches the

same value at twice, say in x = a and in x = b, then there exists a point c ∈ (a, b) such that the derivative

f ′ (c) is 0.

Theorem 2.5. (Lagrange) If a function f is continuous on the closed interval [a, b], where a < b, and

di�erentiable on the open interval (a, b), then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Lagrange's Theorem was generalized by Cauchy in the following manner.

Theorem 2.6. (Cauchy's Theorem) If functions f and g are both continuous on the closed interval

[a, b], and di�erentiable on the open interval (a, b), then there exists some c ∈ (a, b), such that

(f(b)− f(a))g ′(c) = (g(b)− g(a))f ′(c).

Of course, if g(a) 6= g(b) and if g′(c) 6= 0, this is equivalent to

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
·

Exercise 2.27. An airline company estimates that when a round-trip ticket between Los Angeles and

San Francisco costs x dollars, the daily supply for tickets would be S (x) = x5. In addition, the daily

demand for tickets as a function of the price is D (x) = n − mx where m > 0. Prove there exists a

unique equilibrium price.

Proof. An equilibrium is reached whenever supply meets demand. Thus, x5 = n − mx. De�ne

f (x) = x5 +mx− n. Note that

lim
x→∞

x5 +mx− n = lim
x→∞

x5
(

1 +
m

x4
− n

x5

)
=∞;

lim
x→−∞

x5 +mx− n = lim
x→−∞

x5
(

1 +
m

x4
− n

x5

)
= −∞,

and by the fact that every polynomial is a continuous function it follows from the Mean Value Theorem,

Theorem 2.1, that there exists a point d such that f (d) = 0. Now we can prove, by contradiction, that

this value is unique. Assume, to the contrary, there exists d1 6= d such that f (d1) = 0. By Rolle's
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Theorem, Theorem 2.4, we know that there exists c between d and d1 such that f ′ (c) = 0. Note that

f ′ (x) = 5x4 +m. Since m > 0, it follows that f ′ (x) > 0 for every x ∈ R. Contradiction. �

Exercise 2.28. An airline company estimates that when a round-trip ticket between Los Angeles and

San Francisco costs x dollars, the daily supply for tickets would be S (x) = x10 + 2x2. In addition, the

daily demand for tickets as a function of the price is D (x) = 18 − x4. Prove there exists exactly two

equilibrium prices.

Proof. An equilibrium is reached whenever supply meets demand. Thus, x10 + 2x2 = 18 − x4.

De�ne f (x) = x10 + x4 + 2x2 − 18. Note that

lim
x→∞

x10 + x4 + 2x2 − 18 = lim
x→∞

x10

(
1 +

1

x6
+

2

x8
− 18

x10

)
=∞;

lim
x→−∞

x10 + x4 + 2x2 − 18 = lim
x→−∞

x10

(
1 +

1

x6
+

2

x8
− 18

x10

)
=∞,

and note that f (0) = −18. This means that there is at least two points d1 < 0 < d2 such that

f (d1) = f (d2) = 0. Now, assume, to the contrary, that there are at least three di�erent solution.

Denote them by d1, d2, and d3. Without loss of generality, assume that d1 < d2 < d3. By Rolle's

Theorem, Theorem 2.4, it follows that there exists c1, c2 such that d1 < c1 < d2 < c2 < d3 and

f ′ (c1) = f ′ (c2) = 0. Let us compute f ′ (x) explicitly. f ′ (x) = 10x9 + 4x3 + 4x and we can use Theorem

2.4 again and get that there exists a point c3 such that c1 < c3 < c2 and f ′′ (c3) = 0. However,

f ′′ (x) = 90x8 + 12x2 + 4 > 0 for every x ∈ R. Contradiction. �

2.6.1. L'Hôpital's rule.

There are limits that are complicated to compute. Usually, limits of fractions when both the denominator

and the numerator converge to 0 or ±∞. In these case, we can use L'Hôpital's rule:

Theorem 2.7. (L'Hôpital's rule) Consider two functions f and g which are di�erentiable on an open

interval I except possibly at a point c contained in I. If

lim
x→c

f(x) = lim
x→c

g(x) = 0 or ±∞,

and limx→c
f ′(x)
g′(x) exists, and g′(x) 6= 0 for all x in I with x 6= c, then

lim
x→c

f(x)

g(x)
= lim
x→c

f ′(x)

g′(x)
.

The theorem also holds when c = ±∞ and I = R.

Exercise 2.29. Compute the following limits:

(1) limx→∞ (x− sin (x)).

(2) limx→∞
2x

3x+2x .

(3) limx→0
sin(x)
x .

(4) limx→0
sin(x3)

x .

(5) limx→0
1−cos(x)

x2 .

(6) limx→0
ln(1+x)

x .

(7) limx→0
ax−1
x .

(8) limx→0 x
x.

(9) limx→∞ x1/x.

Solution.

(1) We can use the fact that sin (x) is bounded and get

lim
x→∞

(x− sin (x)) = lim
x→∞

x

(
1− sin (x)

x

)
= ”∞ · 1” =∞.
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(2) Dividing the numerator and the denominator by 3x yields

lim
x→∞

2x

3x + 2x
= lim
x→∞

(
2
3

)x
1 +

(
2
3

)x =
0

0 + 1
= 0.

(3) Using L'Hôpital's rule yields

lim
x→0

sin (x)

x

” 0
0 ”
=
L

lim
x→0

cos (x)

1
= 1.

(4) Using the previous limits, we get

lim
x→0

sin
(
x3
)

x
= lim
x→0

x2 sin
(
x3
)

x3
= 0 · 1 = 0.

(5) Using L'Hôpital's rule and a previous limit,

lim
x→0

1− cos (x)

x2

” 0
0 ”
=
L

lim
x→0

sin (x)

2x
=

1

2
.

(6) By L'Hôpital's rule, we see that

lim
x→0

ln (1 + x)

x

” 0
0 ”
=
L

lim
x→0

1
1+x

1
= 1.

(7) By L'Hôpital's rule, we see that

lim
x→0

ax − 1

x

” 0
0 ”
=
L

lim
x→0

ax ln (a)

1
= ln (a) .

(8) Using the laws of exponential and logarithmic functions

lim
x→0+

xx = lim
x→0+

eln(xx)

= lim
x→0+

ex ln(x).

Now we can compute directly the limit limx→0 x ln (x) and then use the continuity of ex.

lim
x→0+

x ln (x) = lim
x→0+

ln (x)
1
x

” 0
0 ”
=
L

lim
x→0+

1
z

− 1
x2

= lim
x→0+

−x = 0,

and by continuity we get that limx→0+ xx = limx→0+ ex ln(x) = e0 = 1.

(9) Similarly to the previous exercise,

lim
x→∞

x
1
x = lim

x→∞
eln(x1/x)

= lim
x→∞

e
ln(x)
x .

Now we can compute directly the limit limx→∞
ln(x)
x and then use the continuity of ex.

lim
x→∞

ln (x)

x

”∞∞ ”
=
L

lim
x→∞

1
x

1
= 0,

and by continuity we get that limx→∞ x
1
x = e0 = 1.

Exercise 2.30. Compute the following limits:

• . limx→0

(
1
x −

1
sin(x)

)
=?

• . limx→0
e2x−1
x =?

• . limx→0
ex−e−x
sin(x) =?

• . limx→∞
2x

x =?

• . limx→0
ex

2
−1−x2

x4 =?

• . limx→0
ln(1−x)+x+ 1

2x
2+ 1

3x
3

sin4(x)
=?
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Solution.

lim
x→0

(
1

x
− 1

sin (x)

)
= lim

x→0

(
sin (x)− x
x sin (x)

)
” 0

0 ”
=

= lim
x→0

(
cos (x)− 1

sin (x) + x cos (x)

)
” 0

0 ”
=

= lim
x→0

(
− sin (x)

cos (x) + cos (x)− x sin (x)

)
=

=
−0

1 + 1− 0
= 0

. lim
x→0

e2x − 1

x

” 0
0 ”
= lim

x→0

2e2x

1
= 2

. lim
x→0

ex − e−x

sin (x)

” 0
0 ”
= lim

x→0

ex + e−x

cos (x)
=

1 + 1

1
= 2

. lim
x→∞

2x

x

”∞∞ ”
= lim

x→∞

2x ln (2)

1
=∞

lim
x→0

ex
2 − 1− x2

x4

” 0
0 ”
= lim

x→0

2x
(
ex

2 − 1
)

4x3
=

= lim
x→0

ex
2 − 1

2x2

” 0
0 ”
=

=
t=x2

1
2 lim

t→0

et − 1

t
=

=
1

2
ln (e) =

1

2

lim
x→0

ln (1− x) + x+ 1
2x

2 + 1
3x

3

sin4 (x)
= lim

x→0

ln (1− x) + x+ 1
2x

2 + 1
3x

3

x4
· x4

sin4 (x)

We know how to compute the limit of the second term, therefore we now focus on the �rst term.

lim
x→0

ln (1− x) + x+ 1
2x

2 + 1
3x

3

x4

” 0
0 ”
= lim

x→0

− 1
1−x + 1 + x+ x2

4x3

” 0
0 ”
=

= lim
x→0

− 1
(1−x)2

+ 1 + 2x

12x2

” 0
0 ”
=

= lim
x→0

− 2
(1−x)3

+ 2

24x

” 0
0 ”
=

= lim
x→0

− 6
(1−x)3

24
= −1

4
.

Hence,

lim
x→0

ln (1− x) + x+ 1
2x

2 + 1
3x

3

sin4 (x)
= lim

x→0

ln (1− x) + x+ 1
2x

2 + 1
3x

3

x4
· x4

sin4 (x)
=

= −1

4
· 1 = −1

4

Exercise 2.31. Suppose that in a certain community, there will be M(r) thousand new houses built

when the 30-year �xed mortgage rate is r%, where

M (r) =

1− er, r ≤ 0,

r + r2, r > 0.

Find the interest rate rmin such that the number of new houses built is minimized. Is the function

di�erentiable in rmin?
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Solution. One can see that the function is strictly positive whenever r 6= 0. When r > 0, the function is

an increasing function, sinceM ′(r) = 2r+1, and when r < 0 the function is a decreasing asM ′(r) = −er.
Thus, the minimum should be in rmin = 0. We can see that M(0) = 0, which implies it is minimal. The

function is continuous in rmin = 0 as

lim
r→0+

1− er = 1− 1 = 0;

lim
r→0−

r + r2 = 0.

Using the de�nition for di�erentiation we get

lim
r→0

M(r)−M(0)

r
= lim
r→0

M(r)

r
=?

Taking the two sides separately,

lim
r→0+

M(r)

r
= lim

r→0+

r + r2

r
= lim
r→0+

1 + r = 1;

lim
r→0−

M(r)

r
= lim

r→0+

1− er

r

1

0+= ∞;

therefore, the derivative does not exist.

Exercise 2.32. Determine whether the following function is di�erentiable at x0 = 0,

f (x) =

1 + sin (x) , x ≥ 0,

x− x2, x < 0.

Solution. One can see that the function is not continuous in x0 = 0 as

lim
x→0+

1 + sin (x) = 1;

lim
x→0−

x− x2 = 0,

and the limit does not exists. Therefore, the function cannot be di�erentiable.

Exercise 2.33. Determine whether the following function is di�erentiable at x0 = 0,

f (x) =

1 + sin (x) , x ≥ 0,

1 + x− x2, x < 0.

Solution. In contrast to the previous exercise, this function is continuous everywhere. Let us compute

it derivative through the basic de�nition. Note that f (0) = 1 + sin (0) = 1, thus

lim
x→0+

f (x)− f (0)

x− 0
= lim

x→0+

1 + sin (x)− 1

x− 0

= lim
x→0+

sin (x)

x
= 1;

lim
x→0−

f (x)− f (0)

x− 0
= lim

x→0−

1 + x− x2 − 1

x− 0

= lim
x→0−

x− x2

x

= lim
x→0−

1− x = 1,

and the function is di�erentiable everywhere with a derivative of f ′ (0) = 1.

Exercise 2.34. Consider the function f (x) = 1
2x

2 ln (x)− 1
4x

2.

(1) Prove that f ′ (x) > 0 for every x > 1.

(2) Assume that f (x)is revertible when x > 1. compute x0 = f−1 (0).

(3) Compute
(
f−1

)′
(0).

Solution.
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(1) A direct computation shows that

f ′ (x) = x ln (x) +
1

2
x2 · 1

x
− 1

2
x

= x ln (x) > 0,

as x > 1.

(2) We wish to �nd x0 such that f (x0) = 0.

1

2
x2 ln (x)− 1

4
x2 = 0

2x2 ln (x)− x2 = 0

x2 (2 ln (x)− 1) = 0

x1 = 0

2 ln (x2) = 1

x2 = e1/2.

Clearly, the function f (x) is not de�ned when x = 0, thus the answer is x0 = e1/2.

(3) Using the formula for the derivative of an inverse function yields(
f−1

)′
(0) =

1

f ′ (f−1 (0))

=
1

f ′
(
e1/2

) =

=
1

e0.5 ln (e0.5)
=

2√
e
.

2.7. Graphs of functions

In many cases, we can better understand the way a function acts by drawing its graph. Speci�cally, for

every point x ∈ R, we draw the value of the function f (x) on a two-dimensional space R2, when the

axes are x and y. Note that the graph is only a graphic representation of the function. Figure 2.7.1

present a few graphs of the previously-mentioned functions.

Figure 2.7.1. Graphs of commonly-used functions.
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2.7.1. Asymptotes.

In order to sketch a graph of a function correctly, we �rst need to know how to identify asymptotes.

There are two types of asymptotes: vertical and non-vertical. A vertical asymptote exists in x0 if and

only if limx→x+
0
f (x) = ±∞ or limx→x−0

f (x) = ±∞. A non-vertical asymptote is of the form y = ax+b,

and it exists if limx→∞ (f (x)− (ax+ b)) = 0. Since �nding a vertical asymptotes is relatively easy, we

focus on the non-vertical ones.

(1) De�ne a = limx→∞
f(x)
x , and b = limx→∞ (f (x)− ax).

(2) If both limits exists and �nite then y = ax+ b is the non-vertical asymptote.

(3) Otherwise, there is no non-vertical asymptote.

(4) The same computation should be made when x→ −∞.

2.7.2. The stages of sketching the graph of a function.

The �nal product of all the analysis so far is the graph of a function. Given all the properties we

discussed, one should be able to get a good understanding of the graph of a function f . The stages of

sketching a graph of a function f are as follows:

(1) Domain D of f .

(2) Intersections with the axis.

(3) Asymptotes.

(4) Extreme points and intervals on which the function is increasing or decreasing.

(5) Convexity and concavity.

Exercise 2.35. A business manager determines that tmonths after production begins on a new product,

the number of units produced will be P (t) = t
(t+1)2

million per month. Sketch the graph of P and see

what happens to production in the long run (as t→∞).

Solution.

(1) The function is de�ned for all real t 6= −1.

(2) The only intersection point is when t = 0, and we get the point (0, 0).

(3) The function is continuous everywhere except t = −1, thus we need to check for an asymptote

in t = −1.

lim
t→−1+

t

(t+ 1)
2 = −∞;

lim
t→−1−

t

(t+ 1)
2 = −∞.

For non-vertical asymptotes, we compute

a+ = lim
t→∞

P (t)

t
= lim
t→∞

1

(t+ 1)
2 = 0,

a− = lim
t→−∞

P (t)

t
= lim
t→−∞

1

(t+ 1)
2 = 0.

And

b± = lim
t→±∞

P (t)− 0 = lim
t→±∞

t

(t+ 1)
2

L
= lim
t→±∞

1

2 (t+ 1)
= 0.

Thus, t = −1 and y = 0 are the two asymptotes.
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Figure 2.7.2. The graph of the function in Exercise 2.35

(4) We need to �nd the �rst and second derivatives of the function.

P ′ (t) =
(t+ 1)

2 − 2t (t+ 1)

(1 + t)
4

=
(t+ 1)− 2t

(1 + t)
3

=
1− t

(1 + t)
3 ;

P ′′ (t) =
− (1 + t)

3 − 3 (1− t) (1 + t)
2

(1 + t)
6

=
− (1 + t)− 3 (1− t)

(1 + t)
4

=
2t− 4

(1 + t)
4 .

The critical point are given by P ′ (t) = 0, hence

1− t
(1 + t)

3 = 0 ⇒ t = 1.

The value of the function at t = 1 is P (1) = 1
4 . So, we have an extreme point

(
1, 1

4

)
. Note

that the function is increasing for every

1− t ≥ 0 and t+ 1 > 0,

hence when t ∈ (−1, 1). Otherwise, Either the denominator is negative or the numerator is

positive, or the other way around, such that, overall, the derivative is negative and the function

is decreasing.

(5) The second derivative is given by P ′′ (t) = 2t−4
(1+t)4

. This means that the function is concave

when 2t− 4 < 0, or equivalently t < 2. That is, the function is convex when t > 2, and
(
1, 1

4

)
is a maximum point. There is an in�ection pint in

(
2, 2

9

)
.

Exercise 2.36. The total cost of producing x units of a particular commodity is C (x) =
∣∣∣ e−x−e1−x

∣∣∣
thousand dollars. Sketch the graph of C (x). (No need to analyze the second derivative).

Solution.

(1) The function is de�ned for all real x 6= 1.
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(2) One intersection point is when e−x = e, meaning x = −1, and we get the point (−1, 0).

Another intersection point is when x = 0, and we get (0, e− 1). Note that the function is

always positive, so we can represent it as follows C (x) =
∣∣∣ e−e−xx−1

∣∣∣
C (x) =

 e−e−x
1−x , −1 ≤ x ≤ 1,

e−x−e
1−x , otherwise.

(3) The function is continuous everywhere except x = 1, thus we need to check for an asymptote

in x = 1.

lim
x→1±

∣∣∣∣e−x − e1− x

∣∣∣∣ ”

∣∣∣∣ 1
e
−e
0

∣∣∣∣”
= ∞.

For non-vertical asymptotes, we compute

a+ = lim
x→∞

C (x)

x
= lim
x→∞

∣∣∣ e−x−e1−x

∣∣∣
x

” 0
∞ ”
= 0,

a− = lim
x→−∞

C (x)

x
= lim
x→−∞

∣∣∣ e−x−e1−x

∣∣∣
x

= lim
x→−∞

e−x−e
1−x
x

= lim
x→−∞

e−x − e
x− x2

= lim
t→∞

et − e
−t− t2

L
= lim
t→∞

et

−1− 2t

L
= lim
t→∞

et

−2
=∞.

And

b+ = lim
x→∞

C (x)− 0 = lim
x→∞

e−x − e
1− x

L
= lim
x→∞

−e−x

−1
= 0.

Thus, x = 1 and y = 0 (when x→∞) are the only two asymptotes.

(4) We need to �nd the �rst derivative of the function. We cannot use simple di�erentiation in

x = ±1, but we can di�erentiate separately each interval.

C ′ (x) =


e−x(1−x)+e−e−x

(1−x)2
, −1 < x < 1,

−e−x(1−x)+e−x−e
(1−x)2

, x > 1 or x < −1,

=


e−xe−x
(1−x)2

, −1 < x < 1,

xe−x−e
(1−x)2

, x > 1 or x < −1.

The critical point are given by C ′ (x) = 0, hence

xe−x − e = 0⇔ x

ex
− e = 0.

When x < 0, the right-hand side is negative as well. When x > 1, x
ex < 1 < e, and the RHS

is still negative. When x ∈ (0, 1), then x − ex+1 < 0 and the RHS is still negative. Thus, the

function xe−x − e is always negative. This implies that

C ′ (x) =

> 0 −1 < x < 1,

< 0, x > 1 or x < −1,

and the function is increasing if and only if x ∈ (−1, 1). Note that the function is not di�eren-

tiable in x = −1, as the derivative from the right is negative whereas the derivative from the

left is positive.

Exercise 2.37. Sketch the graph of the function f (x) = 1
4x

4 − 3
2x

3 + 3.

Solution.

(1) Since this a polynomial the domain is every x ∈ R.
(2) We need to solve the equation

1

4
x4 − 3

2
x3 + 3 = 0.
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Figure 2.7.3. The graph of the function in Exercise 2.36

Since this is a problematic equation, we will get to that later. However, we do know that

f (0) = 3, which means that there is an intersection in , (0, 3).

(3) Taking the FOC

f ′ (x) = x3 − 9

2
x2 = 0

x1 = 0,

x2 =
9

2
.

We can plug in x1 and x2 in f and get the exact coordinates of the extreme points. When

x < 9
2 , the derivative is negative and the function is decreasing. When x > 9

2 , the function is

increasing. The second derivative is

f ′′ (x) = 3x2 − 9x.

Thus, x = 0 is neither a maximum nor a minimum, and x = 9
2 is a local minimum.

(4) When x < 0, f ′′ (x) > 0 which means that the function is convex and the same holds for x > 3.

Otherwise, the function is concave.

(5) As this is a polynomial, there are no vertical asymptotes. We can see that there are no non-

vertical asymptotes as well, because limx→∞
f(x)
x =∞.

Exercise 2.38. Sketch the graph of the function f (x) = x2+1
2x .

Solution.

(1) The function is de�ned for every real-valued x 6= 0.

(2) We need to solve the equation
x2 + 1

2x
= 0.

We can see that x2 + 1 > 0 for every x, and this means that the equation does not have a

solution.
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Figure 2.7.4. The graph of the function in Exercise 2.37

(3) Taking the FOC

f ′ (x) =
4x2 − 2x2 − 2

4x2

=
2x2 − x2 − 1

2x2

=
x2 − 1

2x2

=
1

2
− 1

2x2
= 0.

x1 = 1,

x2 = −1.

We can plug in x1 and x2 in f and get the exact coordinates of the extreme points. When

x ∈ (−1, 1), the derivative is negative and the function is decreasing. When x > 1 or x < −1,

the function is increasing. The second derivative is

f ′′ (x) = x−3.

Thus, x = 1 is a local minimum, and x = −1 is a local maximum.

(4) When x < 0, f ′′ (x) < 0 which means that the function is concave. Otherwise, the function is

convex.

(5) We know that we have a vertical asymptote in x = 0 because

lim
x→0

f (x) = lim
x→0

x

2
+

1

2x
=∞.

In addition, there is a non-vertical asymptote as

a = lim
x→∞

f (x)

x
= lim
x→∞

1

2
+

1

2x2
=

1

2

, b = lim
x→∞

(f (x)− ax) = lim
x→∞

(
x

2
+

1

2x
− 1

2
x

)
= 0

and

a = lim
x→−∞

f (x)

x
= lim
x→−∞

1

2
+

1

2x2
=

1

2

.b = lim
x→−∞

(f (x)− ax) = lim
x→−∞

(
x

2
+

1

2x
− 1

2
x

)
= 0.

This implies that y = 1
2x is an asymptote.
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Figure 2.7.5. The graph of the function in Exercise 2.38

Exercise 2.39. Sketch the graph of the function

.f (x) =
√
x2 + 1− 1√

2
x.

Solution.

Note that x2 + 1 > 0 for every x hence the function is de�ned for every x ∈ R. The function has a single

intersection with the y axis and it is (0, 1), There are no other intersections with the axis. Computing

the derivatives of the function yields ,

f ′ (x) =

[√
x2 + 1− 1√

2
x

]′
=

x√
x2 + 1

− 1√
2

.f ′′ (x) =

[
x√

x2 + 1
− 1√

2

]′
=

1√
x2 + 1

− x2

(x2 + 1)
3
2

=
1

(x2 + 1)
3
2

Let us compare the �rst derivative to0 in order to �nd extreme points,

f ′ (x) =
x√

x2 + 1
− 1√

2
= 0

√
2x =

√
x2 + 1

2x2 = x2 + 1

x2 = 1

.x1,2 = ± 1

We got 2 critical points where the derivative is zero. After plugging in the values we can see that the

derivative is only 0 when x = 1. When x < 1 the derivative is negative and the function is decreasing.

Otherwise the function is increasing. Let's sum this up in a table.

decreasing local minimum increasing

f ′ (x) - 0 +

x x < 1 x = 1 x > 1

We now try to �nd whether the function is convex or concave using the second derivative. We can see

that - f ′′ (x) > 0 always and the function is convex.
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We do not have any vertical asymptotes since the function is continuous. Computing the limits for

non-vertical asymptotes yields

lim
x→∞

f (x) = lim
x→∞

√
2x2 + 2− x√

2
= lim
x→∞

x2 + 2√
2
(√

2x2 + 2 + x
) =

= lim
x→∞

1 + 2
x2

√
2
(√

2x2+2
x2 + 1

x

) =∞

lim
x→−∞

f (x) = lim
x→−∞

√
2x2 + 2− x√

2
=∞

a = lim
x→∞

√
2x2+2−x√

2

x
= lim
x→∞

√
2 + 2

x2 − 1
√

2
= 1− 1√

2

, b = lim
x→∞

(f (x)− ax) = lim
x→∞

(√
2x2 + 2− x√

2
−
(

1− 1√
2

)
x

)
=

= lim
x→∞

(√
2x2 + 2−

√
2x√

2

)
= lim
x→∞

(
2x2 + 2− 2x2

√
2

· 1√
2x2 + 2 +

√
2x

)
=

= lim
x→∞

(
2√

2
(√

2x2 + 2 +
√

2x
)) = 0

We found that y =
(

1− 1√
2

)
x is a non-vertical asymptote of the function. Computing the same limit

when x→ −∞ gives out the answer

a = lim
x→−∞

√
2x2+2−x√

2

x
= lim
x→−∞

−
√

2 + 2
x2 − 1

√
2

= −1− 1√
2

, b = lim
x→−∞

(f (x)− ax) = lim
x→−∞

(√
2x2 + 2− x√

2
−
(
−1− 1√

2

)
x

)
=

= lim
x→−∞

(√
2x2 + 2 +

√
2x√

2

)
= lim
x→−∞

(
2x2 + 2− 2x2

√
2

· 1√
2x2 + 2−

√
2x

)
=

= lim
x→−∞

(
2√

2
(√

2x2 + 2 +
√

2x
)) = 0

and y =
(
−1− 1√

2

)
x is another non-vertical asymptote. We can now sketch the graph of the function.

Figure 2.7.6. The graph of the function from Exercise 2.39
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2.8. Integrals

There are two types of integrals: inde�nite integral and de�nite integral. Although they share a similar

name, there de�nitions are very di�erent. We start with the simpler notion of inde�nite integral.

2.8.1. The inde�nite integral.

The inde�nite integral is basically the inverse of di�erentiation. That is, if f (x) = F ′ (x), then´
f (x) dx =F(x)+c, when c is some constant number. F (x) is sometimes called the anti-derivative of f .

2 There are a few helpful rules when considering inde�nite integration. Assume that F (x) =
´
f (x) dx

and G (x) =
´
g (x) dx, then:

• Linearity implies that
´

(f (x)± g (x)) dx = F (x)±G (x), and
´
cf (x) dx = c

´
f (x) dx.

• Integration by parts states that
´
f (x)G (x) dx = F (x)G (x)−

´
F (x) g (x) dx.

• Exchanging the integrating variable x to h (y) such that
´
f (x) dx =

´
f (h (y))h′ (y) dy. As-

sume that x = h (y), Then, taking the derivative with respect to y yields dx
dy = h′ (y). Thus,

dx = h′ (y) dy, and we get the previously stated formula. (Don't forget to return to the original

variable x after you �nish the computation involving y!)

• Integration and di�erentiation cancel out each other: d
dx

[´
f (x) dx

]
= f (x), and

´
d
dx [F (x)] dx =

F (x).

Remark 2.7. Using Substitution of variables. In some cases, it is better the change the variables before

integrating to simplify the computation. Assume you wish compute
´
f (x) dx. For simplicity, you can

use a di�erent variable x = h (y) such that f (x) dx = f (h (y))u′ (y) dy. Note that we used the three

following steps: (i) Choose a substitution x = h(y) that transforms the term f(x)dx into something

simpler; (ii) express the entire integral in terms of y and dy. This means that all terms involving x

and dx must be transformed to terms involving y and dy; and, (iii) compute the new integral and then

return to the original variable x. It is important to return to the original variable, since we are looking

for a function whose derivative w.r.t. x, is f , and not with respect to a di�erent variable.

Exercise 2.40. Compute the following integrals:

(1)
´
x2+2x+1

x dx.

(2)
´
xe−x

2

dx.

(3)
´
xexdx.

(4)
´

ln (x+ 1) dx.

(5)
´

1
a2+x2 dx.

(6)
´

tan (x) dx.

(7)
´ √

1− x2dx.

(8)
´

1
x2−4x+8dx.

(9)
´ (ln(x))2

x dx.

(10)
´

1
1+e−x dx.

Solution. We compute these integrals using the previously-mentioned rules and theorems.

(1)
ˆ
x2 + 2x+ 1

x
dx =

ˆ
x+ 2 +

1

x
dx =

=
x2

2
+ 2x+ ln (x) + C.

2Every inde�nite integral is determined up to a constant, thus we need to add c after integrating a function.
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(2) ˆ
xe−x

2

dx =
y=x2, dy=2xdx

ˆ
1

2
e−ydy =

= −1

2
e−y + C =

= −1

2
e−x

2

+ C.

(3) ˆ
xexdx = xex −

ˆ
exdx =

= xex − ex + C.

(4) ˆ
ln (x+ 1) dx =

ˆ
1 · ln (x+ 1) dx =

= x ln (x+ 1)−
ˆ

x

x+ 1
dx =

= x ln (x+ 1)−
ˆ

1− 1

x+ 1
dx =

= x ln (x+ 1)− x+ ln (x+ 1) + C.

(5) ˆ
1

a2 + x2
dx =

ˆ
1

a2
· 1

1 +
(
x
a

)2 dx =

=
x=ay, dx=ady

1

a2

ˆ
1

1 +
(
ay
a

)2 ady =

=
a

a2

ˆ
1

1 + y2
dy =

=
1

a
arctan (y) + C =

=
1

a
arctan

(x
a

)
+ C.

(6) ˆ
tan (x) dx =

ˆ
sin (x)

cos (x)
dx =

=
cos(x)=y, dy=− sin(x)dx

ˆ
sin (x)

y
·
(
− dy

sin (x)

)
=

= −
ˆ
dy

y
=

= − ln |y|+ C =

= − ln |cos (x)|+ C.
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(7) ˆ √
1− x2dx =

x = sin (t)

dx = cos (t) dt

ˆ √
1− sin (t)

2
cos (t) dt =

=

ˆ
cos2 (t) dt =

=
1

2

ˆ
(cos (2t) + 1) dt =

=
1

2
t+

1

2

ˆ
cos (2t) dt =

=
1

2
t+

1

4
sin (2t) + C =

=
1

2
arcsin (x) +

1

4
· 2 sin (t) cos (t) + C =

=
1

2
arcsin (x) +

1

2
x
√

1− x2 + C.

(8) ˆ
1

x2 − 4x+ 8
dx =

ˆ
1

x2 − 4x+ 4 + 4
dx =

=

ˆ
1

(x− 2)
2

+ 4
dx =

=
1

4

ˆ
1(

x−2
2

)2
+ 1

dx =

=
y= x−2

2 , dx=2dy

1

2

ˆ
1

y2 + 1
dy =

=
1

2
arctan (y) + C =

=
1

2
arctan

(
x− 2

2

)
+ C.

(9)

ˆ
(ln (x))

2

x
dx =

u=ln(x), dudx= 1
x ,

1
xdx=du

ˆ
u2du

=
1

3
u3 + C

=
1

3
(ln (x))

3
+ C.

(10) ˆ
1

1 + e−x
dx =

ˆ
ex

ex + 1
dx

u=ex, exdx=du
=

ˆ
1

u+ 1
du

= ln |u+ 1|+ C

= ln |ex + 1|+ C.

2.8.2. The de�nite integral. The de�nite integral is a way of calculating the area between a

curve and the x axis. The formal method is based on dividing an interval to many small intervals and

computing the area between each interval and the function. The idea behind this formula is simple, yet

applying it might be complicated.

The basic areas we know how to compute are rectangles. We can always take the product of the height

with the base to get the area. Consider a function f and assume we wish to evaluate the area below
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Figure 2.8.1. The approximation of the area under a curve using rectangles.

this function bounded by the interval [a, b]. That is, when x ∈ [a, b]. Since the function might be a

complicated one, we can divide the interval into small sub intervals and compute the area of a rectangle

bounded by the lowest value of the function in that sub interval and the height of the highest value.

Denote the number of interval by n, where each is of the uniform length h = b−a
n , and denote the highest

and lowest values by Mi and mi respectively, considering the sub interval i = 1, . . . , n.

We can now produce two sums

, Sn =

n−1∑
i=0

mi · h =

n−1∑
i=0

mi ·
(
b− a
n

)
, .Sn =

n−1∑
i=0

Mi · h =

n−1∑
i=0

Mi ·
(
b− a
n

)
such that the true value of the area S is bounded by Sn ≤ S ≤ Sn for every natural n. Thus, in case

limn→∞ Sn = limn→∞ Sn, we say that the de�nite integral exists and the required area equals the limit.

Nevertheless, this method tends to be very complicated and therefore, we commonly use the Newton-

Leibniz formula which combines between inde�nite integration and the de�nite one. This formula is also

called the fundamental theorem of calculus:

Theorem 2.8. (The Newton-Leibniz formula) Let f be a continuous integrable function over the

interval [a, b] and assume that F is an anti-derivative of the function f, then:

ˆ b

a

f(x) dx = F (b)− F (a).

The de�nite integral also has a few assisting rules. Let f (x) , g (x) be two integrable function on the

interval [a, b].

(1) Linearity -
´ b
a

(f (x)± g (x)) dx =
´ b
a
f (x) dx±

´ b
a
g (x) dx.

(2) For every k ∈ R, it holds that
´ b
a
kf (x) dx = k

´ b
a
f (x) dx

(3) For every c ∈ [a, b] it follows that
´ b
a
f (x) dx =

´ c
a
f (x) dx+

´ b
c
f (x) dx.

(4) If f (x) ≤ g (x), then
´ b
a
f (x) dx ≤

´ b
a
g (x) dx.

(5) if f (x) ≤ 0 in [a, b],then
´ b
a
f (x) dx = −S.

(6)
∣∣∣´ ba f (x) dx

∣∣∣ ≤ ´ ba |f (x)| dx.

(7)
´ a
b
f (x) dx = −

´ b
a
f (x) dx.

Exercise 2.41. A manufacturer has found that marginal cost is 3x2 − 60x+ 400 dollars per unit when

x units have been produced. The total cost of producing the �rst two units is $900. What is the total

cost of producing the �rst 5 units?

Solution. Recall that the marginal cost is the derivative of the total cost function C(x). Thus,

dC

dx
= 3x2 − 60x+ 400,
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and

C (x) =

ˆ
3x2 − 60x+ 400 = x3 − 30x2 + 400x+K.

Trying to estimate K, we get C (2) = 900 = 23 − 30 · 22 + 400 · 2 +K, therefore K = 212. Now, we can

use the formula to get

C (5) = 53 − 30 · 52 + 400 · 5 + 212 = $1587.

Similarly to the previous mean value theorem we discussed, there is a mean value theorem for integrals.

Theorem 2.9. (The Mean Value Theorem for integrals) Let f be a continuous function on [a, b].

Then there exists a point c ∈ (a, b) such that

f (c) =
1

b− a

bˆ

a

f (x) dx.

Exercise 2.42. Suppose that t years from now, one investment will be generating pro�t at the rate of

P ′1(t) = 50 + t2 hundred dollars per year, while a second investment will be generating pro�t at the rate

of P ′2(t) = 200 + 5t hundred dollars per year.

(1) For how many years does the rate of pro�tability of the second investment exceed that of the

�rst?

(2) Compute the net excess pro�t for the time period determined in the previous question.

Solution.

(1) The rate of pro�tability of the second investment exceeds that of the �rst until

P ′1 (t) = P ′2 (t)

50 + t2 = 200 + 5t

t2 − 5t− 150 = 0

(t− 15) (t+ 10) = 0

t1 = −10 , t2 = 15.

So the answer is t = 15 years.

(2) We need to compute the net excess pro�t of one investment over the other.

15ˆ

0

P ′2 (t) dt−
15ˆ

0

P ′1 (t) dt =

15ˆ

0

[P ′2 (t)− P ′1 (t)] dt

=

15ˆ

0

[
150 + 5t− t2

]
dt

=

[
150t+

5

2
t2 − 1

3
t3
]15

0

= 1687.5.

Thus, the net excess pro�t is $168, 750.

Exercise 2.43. Compute the following integrals:

(1) −1

´ 1
x arctan (x) dx.

(2) −π/6
´ π/6

cos (x) ln (sin (x) + 1) dx.
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Solution. Using the Newton-Leibniz formula, Theorem 2.8, we solve every integral separately.

1.

1ˆ

−1

x arctan (x) dx =

[
x2

2
arctan (x)

]1

−1

−
1ˆ

−1

x2

2
· 1

1 + x2
dx =

=
1

2
arctan (1)− 1

2
arctan (−1)− 1

2

1ˆ

−1

x2 + 1− 1

1 + x2
dx =

=
1

2
· π

4
− 1

2
· −π

4
− 1

2

1ˆ

−1

x2 + 1

1 + x2
dx+

1

2

1ˆ

−1

1

1 + x2
dx =

=
π

4
− 1

2

1ˆ

−1

1 · dx+
1

2
arctan (x) |1−1 =

=
π

4
− 1

2
x|1−1 +

1

2
(arctan (1)− arctan (−1)) =

=
π

4
− 1

2
(1− (−1)) +

1

2

(
π

4
− −π

4

)
=

=
π

2
− 1.

2.

π
6ˆ

−π6

cos (x) ln (sin (x) + 1) dx =
t = sin (x) + 1

dt = cos (x) dx

x =
π

6
⇒ t =

3

2

x = −π
6
⇒ t =

1

2

3
2ˆ

1
2

ln (t) dt =

=

3
2ˆ

1
2

1 · ln (t) dt =

= [t · ln (|t|)]1.50.5 −

3
2ˆ

1
2

t · 1

t
dt =

= 1.5 ln (1.5)− 0.5 ln (0.5)− t|1.50.5 =

= 1.5 ln (1.5)− 0.5 ln (0.5)− 1.5 + 0.5 =

=
3

2
ln

(
3

2

)
− 1

2
ln

(
1

2

)
− 1

Exercise 2.44. Prove that

1 ≤0

ˆ 1

esin(ln(x2+1))dx ≤ 3.

Proof. We will use the Main Value Theorem, Theorem 2.9, in this proof. Note that for every

0 ≤ x ≤ 1,

, 1 ≤ esin(ln(x2+1)) ≤ e < 3

as x2 + 1 is a monotone increasing function, 0 ≤ ln
(
x2 + 1

)
≤ 0.7 is also monotonically increasing when

0 ≤ x ≤ 1 and so 0 ≤ sin
(
ln
(
x2 + 1

))
≤ 0.65 is monotonically increasing when 0 ≤ x ≤ 1. From the

mean value theorem for integrals there exists 0 ≤ c ≤ 1 such that

, esin(ln(c2+1)) =
1

1− 0

1ˆ

0

esin(ln(x2+1))dx
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Figure 2.8.2. The area between y = x3 − 4x and the x axis is highlighted in red.

Thus1 ≤ esin(ln(c2+1)) ≤ e and the result follows. �

Exercise 2.45. Compute the area between the curves y = x3 − 4x, y = 0, x = 0, and x = 2.

Solution. First we sketch the graphs of the functions and the points where they intersect, see Figure

2.8.2.

It is easy to see that for every x ∈ [0, 2] the function f (x) = x3 − 4x is negative and so

.S =

2ˆ

0

(
0− x3 + 4x

)
dx =

[
−x

4

4
+

4x2

2

]2

0

= 4

Exercise 2.46. Compute the following improper integrals:

(1) 2

´∞ 1
x ln(x)dx.

(2) 2

´∞ 1
x ln2(x)

dx.

(3)
´∞

1
1

(x−1)
1
3
dx.

(4)
´ 1

0
ex

(ex−1)
1
2
dx.

Solution. We will solve every integral separately and then use limits to compute the improper integrals.

1.

∞̂

2

1

x ln (x)
dx = lim

b→∞

bˆ

2

1

x ln (x)
dx

bˆ

2

1

x ln (x)
dx =

t=ln(x),dt= 1
xdx

ln(b)ˆ

ln(2)

1

t
dt =

= ln (ln (b))− ln (ln (2)) .

And so we get that

∞̂

2

1

x ln (x)
dx = lim

b→∞

bˆ

2

1

x ln (x)
dx

= lim
b→∞

[ln (ln (b))− ln (ln (2))] =∞,
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which means that the integral diverges.

2.

∞̂

2

1

x ln2 (x)
dx = lim

b→∞

bˆ

2

1

x ln2 (x)
dx

bˆ

2

1

x ln (x)
dx =

t=ln(x),dt= 1
xdx

ln(b)ˆ

ln(2)

1

t2
dt =

=

[
−1

t

]ln(b)

ln(2)

=

=

[
− 1

ln (b)
+

1

ln (2)

]
,

so, we see that

∞̂

2

1

x ln2 (x)
dx = lim

b→∞

bˆ

2

1

x ln2 (x)
dx

= lim
b→∞

[
− 1

ln (b)
+

1

ln (2)

]
=

=
1

ln (2)
,

and the integral converges.

Concerning the third exercise, we �rst compute the following integral

3.

2ˆ

1

1

(x− 1)
1
3

dx = lim
a→1+

2ˆ

a

1

(x− 1)
1
3

dx =

= lim
a→1+

[
3

2
(x− 1)

2
3

]2

a

=

=
3

2
lim
a→1+

[
(2− 1)

2
3 − (a− 1)

2
3

]
=

=
3

2
lim
a→1+

[
1− (a− 1)

2
3

]
=

3

2
.

Now, we get

∞̂

1

1

(x− 1)
1
3

dx =

2ˆ

1

1

(x− 1)
1
3

dx+

∞̂

2

1

(x− 1)
1
3

dx =

=
3

2
+ lim
b→∞

bˆ

2

1

(x− 1)
1
3

dx =

=
3

2
+ lim
b→∞

[
3

2
(x− 1)

2
3

]b
2

=

=
3

2
+

3

2
lim
b→∞

[
(b− 1)

2
3 − (2− 1)

2
3

]
=

=
3

2
+

3

2
lim
b→∞

[
(b− 1)

2
3

]
− 3

2
=

=
3

2
lim
b→∞

[
(b− 1)

2
3

]
=∞
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4.

1ˆ

0

ex

(ex − 1)
1
2

dx = lim
a→0+

1ˆ

a

ex

(ex − 1)
1
2

dx =

= lim
a→0+

[
2 (ex − 1)

1
2

]1
a

=

= 2 lim
a→0+

[(
e1 − 1

) 1
2 − (ea − 1)

1
2

]
=

= 2
(
e1 − 1

) 1
2 − 2 lim

a→0+

[
(ea − 1)

1
2

]
=

= 2 (e− 1)
1
2

2.8.3. Lorentz curves and the Gini index.

Area also plays an important role in the study of Lorentz curves, a device used by both economists

and sociologists to measure the percentage of a society's wealth that is possessed by a given percentage

of its people. To be more speci�c, the Lorentz curve for a particular society's economy is the graph of

the function L(x), which denotes the fraction of total annual national income earned by the lowest-paid

100x% of the wage-earners in the society, for 0 ≤ x ≤ 1. For instance, if the lowest-paid 30% of all

wage-earners receive 23% of the society's total income, then L(0.3) = 0.23.

The Curve has the basic property where 0 ≤ L (x) ≤ 1 because L(x) is a percentage and L (1) = 1 while

L (0) = 0. Another important property is L (x) ≤ x because the lowest-paid 100x% of wage-earners

cannot receive more than 100x% of total income. When L (x) = x, we have total equality (wage-earners

with the lowest 100x% of income receive 100x% of the society's wealth).

The Lorentz curve de�nes a very important economic index called the Gini index . Formally, take the

area between y = x and L (x) (this area measures how far a society is from perfect equality), and divide

it by the area below the line y = x. The ratio is called the Gini index. That is,

GI =

´ 1

0
(x− L (x)) dx

1
2

= 2

1ˆ

0

(x− L (x)) dx.

The smaller the index is, the higher the equality in the society it represents.

Exercise 2.47. A governmental agency determines that the Lorentz curves for the distribution of income

for dentists and contractors in a certain state are given by the functions L1(x) = x1.7 and L2(x) =

0.8x2 + 0.2x respectively. For which profession is the distribution of income more fairly distributed?

Solution. The respective Gini indices are

G1 = 2

1ˆ

0

(x− L1 (x)) dx = 2

1ˆ

0

(
x− x1.7

)
dx = 2

(
x2

2
− x2.7

2.7

)1

0

= 0.2593,

G2 = 2

1ˆ

0

(x− L2 (x)) dx = 2

1ˆ

0

(
x− 0.8x2 − 0.2x

)
dx = 2

(
0.8

x2

2
− 0.8

x3

3

)1

0

= 0.2667.

Since the Gini index for dentists is smaller, it follows that in this state, the incomes of dentists are more

evenly distributed than those of contractors.

2.9. Taylor series

Need another example to understand why derivatives are so important? one example is the use of the

�rst derivative to approximate the function in a small interval.

Let f be a di�erentiable function and �x a value x0 such that f (x0) = y0. We want to know y = f (x)

when x is close to x0. Denote dx = ∆x = x− x0 and dy = ∆y = y− y0. When dx� 1 is small enough,

we can use the following approximation:

dy ≈ f ′ (x0) dx.
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dy is referred to as the di�erential of f at x0. In other words,

y = f (x) ≈ f (x0) + f ′ (x0) (x− x0) .

This approximation is called - �rst-order approximation. The name comes from the fact that we use

only the �rst-order derivative to approximate f in x0.

Exercise 2.48. Approximate (65)
1/3

using �rst-order derivative approximation.

Solution. De�ne f (x) = x1/3.Note that f (64) = 4, and f ′ (x) = 1
3x2/3 . Thus, f

′ (64) = 1
3·42 = 1

48 , and

651/3 ≈ 4 +
1

48
= 4.020833,

when 651/3 = 4.020726.

Example 2.1. Consider a production function F (x) = 1
2

√
x. Suppose that the �rm is currently using

100 units of labor input x, so that its output is F (100) = 5. Now, assume we want to know how

much additional output can be achieved by adding one more unit of labor, i.e., we want to compute the

marginal product of labor. One way is by computing F (101)−F (100) = 0.02494..., which is a bit more

complicated to compute. But, there is another way, with the derivative of F in x = 100.

F ′ (x) =
1

4
√
x
⇒ F ′ (100) =

1

40
= 0.025 ≈ 0.02494.

We got a good approximation of the marginal contribution of one more unit of labor.

Exercise 2.49. Consider a �rm with a demand function D (x) = 1
2

√
x. Estimate the change in output

when the �rm cuts its labor force from 900 to 896 using �rst-order derivative approximation.

Solution. Let us begin by using the notations we previously established. x0 = 900, y0 = D (900) = 15,

x = 896 , and y = D (896). Denote ∆x = x− x0 and ∆y = y − y0. Thus,

∆y ≈ D′ (x0) ∆x

=
1

4
√
x0
· (−4)

= − 1

30
,

y ≈ 15− 1

30
= 14.96667,

while y = 14.96663.

Exercise 2.50. Consider the cost function C (x) = 2x2 + 6x + 12 for manufacturing x units. Use

�rst-order approximation to approximate the cost of producing the 21st unit. Compare this with the

actual cost.

Solution. Note x0 = 20, C (x0) = 932, x = 21. Clearly, C ′ (x) = 4x+ 6, thus

∆C = C (x)− C (x0)

≈ C ′ (x0) ∆x

= 4 · 20 + 6 = 86,

while C (21)− C (20) = 1020− 932 = 88.

Exercise 2.51. Consider the cost function C (x) = x3−x2 + 300x+ 100. Use �rst-order approximation

to approximate the e�ect on the total cost when increasing the production level from 6 to 6.1.

Solution. Denote x0 = 6, C (x0) = 2080, x = 6.1. Clearly, C ′ (x) = 3x2 − 2x+ 300, thus

∆C ≈ C ′ (x0) ∆x

= (396) · 0.1 = 39.6.
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Exercise 2.52. In t years, the population of Gotham will be F (t) = 40− 8
t+2 . Use �rst-order approxi-

mation to approximate the increase during the next 6 months.

Solution. A direct computation shows that F ′ (t) = 8
(t+2)2

when we need to remember that t is taken

in years. Hence, F ′ (0) = 2 and the population increases in the next half a year by approximately

F ′ (0) · 0.5 = 1.

2.9.1. Taylor approximation. A Taylor expansion of a function f is a method of taking a complex

function and approximating its value in a certain set through its derivatives. Let f : [a, b] → R be an

in�nitely di�erentiable function at x0 ∈ [a, b]. Its Taylor series Tf (x) in x0 is de�ned by

Tf (x) =

∞∑
n=0

f (n) (x0)

n!
(x− x0)

n
.

The next element we de�ne is the Taylor polynomial TN of degree N of the function f by

TN (x) =

N∑
n=0

f (n) (x0)

n!
(x− x0)

n
.

The polynomial TN (x) is similar to the Taylor series of f when the sum goes to N instead of ∞. De�ne

the Taylor reminder of degree N by RN (x) = f (x)−TN (x). So, if we could bound RN (x) is some way,

we could calculate f (x) through TN (x), which is a polynomial and therefore, easily computed. For that

purpose, we have the Lagrange Reminder Theorem.

Theorem 2.10. Fix an interval I = [a, b] such that x0 ∈ I. Let f : R→ R be N + 1 times di�erentiable

on the open interval (a, b) with f (N)(x) continuous on the closed interval. Then

RN (x) =
f (N+1)(c)

(N + 1)!
(x− x0)N+1

for some real number c ∈ (a, b).

2.9.2. Taylor series of basic functions.

There are a few basic functions whose Taylor series around x0 = 0 are usually-used and therefore, are

worth remembering.

1. ex =

∞∑
n=0

xn

n!
∀x ∈ R

2. sin (x) =

∞∑
n=0

(−1)
n

(2n+ 1)!
x2n+1 ∀x ∈ R

3. cos (x) =

∞∑
n=0

(−1)
n

(2n)!
x2n ∀x ∈ R

4. ln (x+ 1) =

∞∑
n=1

(−1)
n+1 x

n

n
∀x ∈ (−1, 1]

5. arctan (x) =

∞∑
n=0

(−1)
n

2n+ 1
x2n+1 ∀x ∈ [−1, 1]

6.
1

1− x
=

∞∑
n=0

xn ∀x ∈ (−1, 1).
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2.9.3. A few more words about Taylor series. The �rst thing you should remember about

Taylor series is the de�nition of the Taylor series, The Taylor polynomial, and the Taylor reminder:

Tf (x) =

∞∑
n=0

f (n) (x0)

n!
(x− x0)

n
,

TN (x) =

N∑
n=0

f (n) (x0)

n!
(x− x0)

n
,

RN (x) = f (x)− TN (x) .

These are the de�nitions. Note that none of them are the same as the function f (x) itself!!! That is, the

Taylor series Tf (x) is an in�nite sum that depends on the variable x, and in some cases when we plug in

speci�c values of x we get the same value as f (x). This does not mean that its the same representation.

In cases that f (x) =
∑∞
n=0

f(n)(x0)
n! (x− x0)

n
, it means that the value of the function f (x) in x, equals

the value we get when we plug the same x in Tf (x), which is an in�nite sum. You can think of the

Taylor series as a di�erent way to represent the function, that hold for any x in (x0 −R, x0 +R).

We de�ned the Taylor polynomial and the Reminder because we cannot actually compute the in�nite

sum. What we can do is approximate it by using a �nite sum. This is the Taylor polynomial TN (x).

How good is the approximation? Well, for that we have the reminder RN (x). The reminder gives us

the error in our assessment. The theorem we saw states that

RN (x) =
f (N+1)(c)

(N + 1)!
(x− x0)N+1.

In words, the reminder depends on the N + 1 derivative f (N+1)(c) taken at a point c ∈ [a, b] where the

interval [a, b] contains x, x0.

2.9.4. Exercises.

Exercise 2.53. Find the Taylor expansion of f (x) = x2 around x0 = 0. Prove that the function equals

the Taylor expansion in every x ∈ R.

Solution. In order to �nd the Taylor series of f (x) = x2 we need to compute its derivatives.

f (0) (x) = x2 ⇒ f (0) (x0) = f (0) (0) = 0.

f (1) (x) = 2x ⇒ f (1) (x0) = f (1) (0) = 0.

f (2) (x) = 2 ⇒ f (2) (x0) = f (2) (0) = 2.

f (3) (x) = 0 ⇒ f (3) (x0) = f (3) (0) = 0.

...

f (n) (x) = 0 ⇒ f (n) (x0) = f (n) (0) = 0.

Thus, the Taylor series is

Tf (x) =

∞∑
n=0

f (n) (x0)

n!
(x− x0)

n

=

∞∑
n=0

f (n) (0)

n!
(x− 0)

n

= 0 + 0 +
f (2) (0)

2!
x2 + 0 + . . .

=
2

2!
x2 = x2.
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We can see that sum is �nite and always well-de�ned and the reminder is zero as

RN (x) =
f (N+1)(c)

(N + 1)!
(x− 0)N+1

=
0

(N + 1)!
· (x− 0)N+1 = 0,

when N + 1 ≥ 3. Thus,

f (x) = x2 = Tf (x) .

Exercise 2.54. Find the Taylor expansion of f (x) = x2 around x0 = 1. Prove that the function equals

the Taylor expansion in every x ∈ R.

Solution. In order to �nd the Taylor series of f (x) = x2 we need to compute its derivatives.

f (0) (x) = x2 ⇒ f (0) (x0) = f (0) (1) = 1.

f (1) (x) = 2x ⇒ f (1) (x0) = f (1) (1) = 2.

f (2) (x) = 2 ⇒ f (2) (x0) = f (2) (1) = 2.

f (3) (x) = 0 ⇒ f (3) (x0) = f (3) (1) = 0.

...

f (n) (x) = 0 ⇒ f (n) (x0) = f (n) (1) = 0.

Thus, the Taylor series is

Tf (x) =

∞∑
n=0

f (n) (x0)

n!
(x− x0)

n

=

∞∑
n=0

f (n) (1)

n!
(x− 1)

n

=
f (0) (1)

0!
(x− 1)

0
+
f (1) (1)

1!
(x− 1)

1
+
f (2) (1)

2!
(x− 1)

2
+ 0 + . . .

=
1

0!
(x− 1)

0
+

2

1!
(x− 1)

1
+

2

2!
(x− 1)

2

= 1 + 2 (x− 1) + (x− 1)
2

We can see that sum is �nite and always well-de�ned and the reminder is zero as

RN (x) =
f (N+1)(c)

(N + 1)!
(x− 0)N+1

=
0

(N + 1)!
· (x− 0)N+1 = 0,

when N + 1 ≥ 3. Thus,

f (x) = x2 = 1 + 2 (x− 1) + (x− 1)
2

= Tf (x) .

Exercise 2.55. Find the Taylor expansion of f (x) = ex around x0 = 0. Prove that the function equals

the Taylor expansion in every x ∈ R.

Solution. In order to �nd the Taylor series of f (x) = ex we need to compute its derivatives.

f (0) (x) = ex ⇒ f (0) (x0) = f (0) (0) = 1.

f (1) (x) = ex ⇒ f (1) (x0) = f (1) (0) = 1.

...

f (n) (x) = ex ⇒ f (n) (x0) = f (n) (0) = 1

...
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Thus, the Taylor series is

Tf (x) =

∞∑
n=0

f (n) (0)

n!
(x− x0)

n

=

∞∑
n=0

1

n!
(x− 0)

n

=

∞∑
n=0

1

n!
xn

We can see that sum well-de�ned for every x, because an = 1
n! and

L = lim
x→∞

∣∣∣∣an+1

an

∣∣∣∣
= lim

x→∞

∣∣∣∣∣
1

(n+1)!

1
n!

∣∣∣∣∣
= lim

x→∞

n!

(n+ 1)!

= lim
x→∞

1

(n+ 1)
= 0,

Thus, R =∞. The reminder is zero since

RN (x) =
f (N+1)(c)

(N + 1)!
(x− 0)N+1

=
ecxN+1

(N + 1)!
→ 0 as N →∞.

Thus,

f (x) = ex =

∞∑
n=0

1

n!
xn = Tf (x) .

Exercise 2.56. Compute
√
e with an error of no more than 10−5.

Solution. De�ne f (x) = ex. We use the Taylor approximation around x0 = 0. Consider the interval

I = [0, 1] when x = 0.5 ∈ I. The Taylor reminder is RN
(

1
2

)
= f(N+1)(c)

(N+1)! ( 1
2 − 0)N+1 when c ∈ (0, 1).

Therefore,

RN

(
1

2

)
=

ec

(N + 1)!

(
1

2

)N+1

<
3

(N + 1)!2N+1
.

We require that RN
(

1
2

)
< 10−5, which occurs when N ≥ 6 . Thus we can take N = 6 and get

√
e ≈

6∑
n=0

1

n!

(
1

2

)n
.

Exercise 2.57. Compute the Taylor polynomial T3 (x) for the function f (x) = x1/3 around x0 = 27.

Compute 27.11/3 using the polynomial and give an upper bound on the Taylor reminder.

Solution. We need to compute the derivatives of the function, up to the forth order.

f (0) (x) = x1/3 ⇒ f (0) (27) = 3;

f (1) (x) =
1

3x2/3
⇒ f (1) (27) =

1

27
;

f (2) (x) =
−2

32x5/3
⇒ f (2) (27) = − 2

37
;

f (3) (x) =
10

33x8/3
⇒ f (3) (27) =

10

311
;

f (4) (x) = − 80

34x11/3
⇒ f (4) (27) = − 80

315
.
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Therefore,

T3 (x) =

3∑
n=0

f (n) (0)

n!
(x− 27)

n
=

=
3

0!
(x− 27)

0
+

1

27
(x− 27)

1 − 1

37
(x− 27)

2
+

5

312
(x− 27)

3
=

= 3 +
1

27
(x− 27)− 1

37
(x− 27)

2
+

5

312
(x− 27)

3
.

And,

T3 (27.1) = 3 +
1

27
(0.1)− 1

37
(0.1)

2
+

5

312
(0.1)

3
=

= 3 +
1

270
− 1

37 · 100
+

1

312 · 200
,

with a reminder of

|R3 (27.1)| =

∣∣∣∣f (4) (c)

4!
(27.1− 27)

4

∣∣∣∣ =

=
80

81 · 4!c
11
3

· 1

10000
≤

≤ 1

24 · 311 · 10000
w 2.35 · 10−11,

when c ∈ [27, 27.1].

2.9.5. Convergence of power series.

Clearly, f (x) = Tf (x) if and only if limN→∞RN (x) = 0. However, we should point out that Tf (x)

does not always converge, meaning that Tf (x) may not even be well-de�ned in certain parts of R. Thus,
we have a few methods of assuring of knowing when Tf (x)converges.

Consider s Taylor series
∑∞
n=0

f(n)(x0)
n! (x− x0)

n
. Let R be a non-negative real number, such that

for every x ∈ (x0 −R, x0 +R) the series converges. In order to compute R, known as the radius of

convergence, we can use the two following methods:

(1) The root formula that states that R = 1
L and L = limn→∞ |an|

1
n , where an = f(n)(x0)

n! .

(2) The ratio formula that states thatR = 1
L and L = limn→∞

∣∣∣an+1

an

∣∣∣, where an = f(n)(x0)
n! .

Exercise 2.58. Compute the Taylor series of f (x) = 1
2x+3 around x0 = 1. Find its radius of conver-

gence.

Solution. Note that
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f (x) =
1

2x+ 3

=
1

2x− 2 + 2 + 3
=

=
1

2 (x− 1) + 5
=

=
1

5
· 1

1 + 2
5 (x− 1)

=

t=− 2
5 (x−1)
=

1

5
· 1

1− t

=
1

5

∞∑
n=0

tn =

=
1

5

∞∑
n=0

(−2)
n

5n
(x− 1)

n

=

∞∑
n=0

(−1)
n

2n

5n+1
(x− 1)

n
.

when we used the formula of the geometric series. We know that the geometric series
∑∞
n=0 t

n converges

in every t ∈ (−1, 1), thus

−1 < t < 1

−1 < − 2(x−1)
5 < 1

−5

2
< x− 1 <

5

2

−3

2
< x <

7

2
,

that is x0 −R = − 3
2 and x0 +R = 7

2 . Thus, the radius of convergence is R = 5
2 .

Remark 2.8. The di�erentiation and integration of a Taylor series is done just as any other polyno-

mial of a �nite degree. That is, we di�erentiate and integrate point-wise, such that[an (x− x0)
n
]
′

=

nan (x− x0)
n−1

for every term of the series.

Exercise 2.59. Prove using Taylor series that limx→0
sin(x)
x = 1.

Solution. Plug-in the Taylor series and compute the limit term-by-term to get

lim
x→0

∑∞
n=0

(−1)n

(2n+1)!x
2n+1

x
= lim

x→0

∞∑
n=0

(−1)
n

(2n+ 1)!
x2n

= lim
x→0

[
(−1)

0

(0 + 1)!
x0 +

(−1)
1

(2 + 1)!
x2 +

(−1)
2

(4 + 1)!
x4 + · · ·

]
= lim

x→0
[1 + 0 + 0 + · · · ]

= 1.

Exercise 2.60. Expand each of the following functions as a Taylor series around x0 and �nd its interval

of convergence.

(1) f (x) = 1
4+3x , x0 = 0;

(2) f (x) = 1
16+2x3 , x0 = 0;

(3) f (x) = x−2
1−x , x0 = 2;

(4) f (x) = 2x
(x2+1)2

, x0 = 0.

Solution.
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(1) We wish to use the Taylor series of 1
1−x , so

f (x) =
1

4
· 1

1 + 3
4x

t=− 3
4x=

1

4
· 1

1− t
=

1

4

∞∑
t=0

tn =

∞∑
t=0

(−3)
n

4n+1
xn.

We know that the geometric series
∑∞
n=0 t

n converges in every t ∈ (−1, 1), thus

−1 < t < 1

−1 < − 3
4x < 1

−4

3
< x <

4

3
,

and the interval of convergence is
[
− 4

3 ,
4
3

]
.

(2) Again, doing the same transitions as in the previous exercise

f (x) =
1

16
· 1

1 +
(
x
2

)3 t=−( x2 )
3

= =
1

16

∞∑
t=0

[
−
(x

2

)3
]n

=

∞∑
t=0

(−1)
n

23n+4
x3n.

We know that the geometric series
∑∞
n=0 t

n converges in every t ∈ (−1, 1), thus

−1 < t < 1

−1 < −
(
x
2

)3
< 1

−2 < x < 2,

and the interval of convergence is [−2, 2].

(3) We wish to use the same formula as before, however now we need to make sure that t = x− 2,

such that we get the correct value for x0. In other words, we want to reach a term that includes
1

1±(x−2)

1

1− x
=

1

1− (x− 2 + 2)
=

1

−1− (x− 2)
= − 1

1 + (x− 2)

t=−(x−2)
= − 1

1− t
= −

∞∑
t=0

(−1)
n

(x− 2)
n

=

∞∑
t=0

(−1)
n+1

(x− 2)
n
.

We know that the geometric series
∑∞
n=0 t

n converges in every t ∈ (−1, 1), thus

−1 < t < 1

−1 < −x+ 2 < 1

1 < x < 3,

and the interval of convergence is [1, 3].

(4) First, we have

1

1 + x2

t=−x2

=

∞∑
t=0

tn =

∞∑
t=0

(−1)
n
x2n.

The interval of convergence is [−1, 1]. Now we can di�erentiate and get[
1

1 + x2

]′
= − 2x

(1 + x2)
2 =

∞∑
t=1

2n (−1)
n
x2n−1,

and f (x) =
∑∞
t=1

[
(−1)

n+1
2n · x2n−1

]
.
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Linear algebra



CHAPTER 3

Linear models and matrix algebra

3.1. Examples of linear models in economics

3.1.1. Tax bene�ts for charitable contributions.

We start with a basic example of a linear model in economics, which exemplify the need to know linear

algebra.1

Example 3.1. Assume the a company with a before-tax annual pro�ts of $100, 000 decides to contribute

10% of its after-tax pro�ts to the Red Cross. It must pay 5% state tax (after the donation), and a federal

tax of 40% (after the state tax and donation).

Exercise 3.1. How much does the company pay in state taxes, federal taxes, and the Red-Cross

donation?

Solution. First de�ne the variables C, S, and F as the charity contribution, the state tax, and the federal

tax, respectively. We need to write down all the relevant relations between the di�erent variables. The

after-tax pro�ts are 100, 000− S − F , so

C = 0.1 (100, 000− S − F )

C + 0.1S + 0.1F = 10, 000.

The fact that the state tax is 5% taken from the net pro�t (without the donation) means that

S = 0.05 (100, 000− C)

S + 0.05C = 5, 000.

The federal tax is 40% for the pro�t, without the donation and state tax. Hence,

F = 0.4 (100, 000− C − S)

F + 0.4C + 0.4S = 40, 000.

We can see that we got a system of three equations

C + 0.1S + 0.1F = 10, 000

0.05C + S + 0 · F = 5, 000

0.4C + 0.4S + F = 40, 000,

that we can solve plunging-in one relation into the others. The results are C = 5, 956, S = 4, 702, and

F = 35, 737.

Exercise 3.2. Assuming that the company decided not to make any contribution to the Red-Cross.

Find the net cost of its $5, 956 contribution.

Solution. We need to write down the equations again, when now the value of C is zero. Therefore,

S = 5, 000

0.4S + F = 40, 000,

1These examples are taken from the book Mathematics for Economists by Carl P. Simon and Lawrence Blume.

57
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hence , S = 5, 000 and F = 40, 000− 0.4 · 5, 000 = 38, 000. The net pro�t is 100, 000− 38, 000− 5000 =

57, 000 instead of 100, 000− 5, 956− 4, 702− 35, 737 = 53, 605, and the contribution of $5, 956 cost was

$57, 000− $53, 605 = $3, 395.

This means that 57% of the contribution came from the company and 43% came from the state \ other

tax-payers.

Exercise 3.3. In New-York federal income taxes are deducted from the state taxes (meaning, you do

not pay a state tax on the federal taxes). Solve the previous example in case the company is based in

New-York.

Solution. Using the previously-de�ned notations C,F , and S, the new system of linear equations is

updated according to the new equation S = 0.05 (100, 000− C − F ), which implies

C + 0.1S + 0.1F = 10, 000

0.05C + S + 0.05F = 5, 000

0.4C + 0.4S + F = 40, 000.

The solution for this system is C = 6, 070, S = 2, 875, and F = 36, 422.

3.1.2. The Leontief model.

There are many other economic models that yield systems of linear equations, sometimes more com-

plicated to analyze than the previous example. In such cases, �nding an easy way to solve systems

of linear equations becomes necessary, and this is another reason for us to study Linear Algebra. We

continue with another economic example, which is the Lenotief linear-production model. The Leontief

model, named after Wassily Leontief who won the Nobel prize in economics in 1973, is a model for the

economics of a whole country or region. The model has two variations, one for closed economies and

one for open economies. We deal with each separately.

• The closed Leontief model. Consider an economy with n sectors. Each sector i produces

xi units of a single homogeneous good. Assume that the jth sector, in order to produce 1 unit,

must use aij units from sector i. Furthermore, assume that each sector sells some of its output

to other sectors. Then we might write

xi = ai1x1 + ai2x2 + . . .+ ainxn,

and the same equations could be written for each good i. In simple terms, if an economy needs

to produce xj units of good j, it will need aijxj units of good i. Now we have a system a

linear equations, and its solution dictates the amount that every sector needs to produce in

equilibrium, such that the supply will equal the demand.

• The open Leontief model. In addition to the closed model, assume that each sector sells

some of its output to other sectors (intermediate output) and some of its output to consumers

(�nal output, or �nal demand). Call �nal demand in the ith sector di. Then we might write

xi = ai1x1 + ai2x2 + . . .+ ainxn + di,

or total output equals intermediate output plus �nal output. Again we can write the same

equation for every good i, and the solution will dictate the amount of goods each sector needs

to produce such that the market balances.

Exercise 3.4. The economy of a country produces only grapes and wine. The production of 1 kg of

grapes requires 0.5 kg of grapes, 1 worker, and no wine. The production of 1 liter of wine requires 0.5

kg grapes, 1 worker, and 0.25 liter of wine. The country has 10 workers that demand 1 kg of grapes and

3 liters of wine, overall. Write the relevant input-output system and solve it.
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Solution. We need to write down the relevant equations. Let x1 and x2 be the produced amounts of

grapes and wine, respectively. Since we do not produce workers, we need to verify, eventually, that there

are enough worker to produce the required amounts. The system of equations is

x1 = 0.5x1 + 0.5x2 + 1,

x2 = 0x1 + 0.25x2 + 3.

You can see the demand on the right-hand side (RHS) and the supply on the left-hand side (LHS).

Hence,

x1 = 6, x2 = 4.

We can see that the numbers of workers needed is exactly 10.

Exercise 3.5. Suppose now that the production of grapes requires 7/8 liter of wine. Write down the

updated system and solve it.

Solution. The new system of equations is

x1 = 0.5x1 + 0.5x2 + 1,

x2 = 0.875x1 + 0.25x2 + 3.

And the solution is

x1 = x2 + 2

6x2 = 7x1 + 24

⇓

x1 = x2 + 2

6x2 = 7 (x2 + 2) + 24

⇓

x2 = −38, x1 = −36,

which is clearly infeasible.

In general we want to know how many solutions are there (if any)? and we wish to �nd them. The basic

ways to solve these systems, that we already know from high school, are substitution and elimination

of variables. In other words, we use algebraic manipulation to �nd the value of each variable, one by

one, and by doing so, we solve the equation. Consider for example the following three-good economy

summarized in the following table:a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 0 0.4 0.3

0.2 0.12 0.14

0.5 0.2 0.05


Remember that, for example, a21 = 0.2 is the amount of units of good 2, it takes to produce one unit

of good 1 (along with a11 = 0 units of good 1 and a31 = 0.5 units of good 3). Now assume that there is

an exogenous demand for 130 units of good 1 (that is, d1 = 130), 74 units of good 2 (that is,d2 = 74),

and 95 units of good 3 (d3 = 95). We can write down the system of linear equations as follows:

x1 = 0x1 + 0.4x2 + 0.3x3 + 130

x2 = 0.2x1 + 0.12x2 + 0.14x3 + 74

x3 = 0.5x1 + 0.2x2 + 0.05x3 + 95
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and this is equivalent to

x1 − 0.4x2 − 0.3x3 = 130

−0.2x1 + 0.88x2 − 0.14x3 = 74

−0.5x1 − 0.2x2 + 0.95x3 = 95.

We now try to solve these equations by using a few basic operations:

• multiplying both side of an equation with a non-zero, real number;

• add a multiple of one equation to another equation;

• interchanging the order of equations.

These three operations are called elementary equation operations and they are all reversible. Therefore,

we can use them to solve the system above. First thing we can do is to add 0.2 times of the �rst

equation to the second, such that x1 is eliminated from the second equation, and add 0.5 times of the

�rst equation to the third equation. Then we get

x1 − 0.4x2 − 0.3x3 = 130

0.8x2 − 0.2x3 = 100

−0.4x2 + 0.8x3 = 160.

Now we can add 0.5 times the second equation to the third and get

x1 − 0.4x2 − 0.3x3 = 130

0.8x2 − 0.2x3 = 100

0.7x3 = 210.

We can see that x3 = 300, which means that x2 = 200 and x1 = 300. Note that we wasted some time

on rewriting the name of the variables and the signs over and over again and therefore a more e�cient

method is needed. In addition, though these techniques are simple, they might not be su�cient when

the number of variables is high. For these reasons, we have the matrix methods.

3.1.3. Matrix methods.

Let us consider the following system of linear equations that is quite similar to a system describing an

open Leontief model,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2(3.1.1)

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm.

The system given in 3.1.1 could be abbreviated using the following table
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

... · · ·
...

...

am1 am2 · · · amn bm

 ,

when we omit the plus signs, the names of the variables, and the equality signs. We can preform the

same elementary operations on this table, and reach a similar result as we did before. That is, assume

that the table is  1 −0.4 −0.3 130

−0.2 0.88 −0.14 74

−0.5 −0.2 0.95 95

 ,
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just as we had with the previous input-output model. We can use the three elementary operations we

discussed and reach the same result as we did before. This table is called the augmented matrix, and

a similar table without the bi column is called the coe�cient matrix. The term matrix relates to every

such table that includes numbers. The process of eliminating variables from equations (transforming

coe�cients to zero) is called The Gauss-Jordan elimination process. Its optimal �nal result is a matrix

of the form 1 0 0 c1

0 1 0 c2

0 0 1 c3

 ,

which gives us the solution for the system of linear equations. It is done by the three basic operation of:

(1) Multiplying a row with a non-zero, real number;

(2) Add a multiple of one row to another row;

(3) Interchanging the order of rows.

Our main goal is to reach a row echelon form, de�ned as follows.

Definition 3.1. A row of a matrix is said to have k leading zeros if the �rst k elements of the row are

all zeros and the k + 1 element of the row is not zero. A matrix is in row echelon form if each row has

more leading zeros than the previous row.

Example 3.2. Let us solve the following system by the Gauss-Jordan elimination process.

w + x+ 3y − 2z = 0

2w + 3x+ 7y − 2z = 9

3w + 5x+ 13y − 9z = 1

−2w + x− z = 0

Solution. We begin by writing down the augmented matrix and explaining every operation we make

when row i is denoted by Li.
1 1 3 −2 0

2 3 7 −2 9

3 5 13 −9 1

−2 1 0 −1 0

 L2 − 2L1 → L2−−−−−−−−−−−→


1 1 3 −2 0

0 1 1 2 9

3 5 13 −9 1

−2 1 0 −1 0

 L3 − 3L1 → L3−−−−−−−−−−−→


1 1 3 −2 0

0 1 1 2 9

0 2 4 −3 1

−2 1 0 −1 0

 L4 + 2L1 → L4−−−−−−−−−−−→


1 1 3 −2 0

0 1 1 2 9

0 2 4 −3 1

0 3 6 −5 0

 L1 − L2 → L1−−−−−−−−−−→


1 0 2 −4 −9

0 1 1 2 9

0 2 4 −3 1

0 3 6 −5 0

 L3 − 2L2 → L3−−−−−−−−−−−→


1 1 3 −2 0

0 1 1 2 9

0 0 2 −7 −17

0 3 6 −5 0

 L4 − 3L2 → L4−−−−−−−−−−−→


1 1 3 −2 0

0 1 1 2 9

0 0 2 −7 −17

0 0 3 −11 −27

 1
2L3 → L3
−−−−−−−→


1 1 3 −2 0

0 1 1 2 9

0 0 1 − 7
2 − 17

2

0 0 3 −11 −27

 L4 − 3L3 → L4−−−−−−−−−−−→
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1 1 3 −2 0

0 1 1 2 9

0 0 1 − 7
2 − 17

2

0 0 0 − 1
2 − 3

2

 −2L4 → L4−−−−−−−−→


1 1 3 −2 0

0 1 1 2 9

0 0 1 − 7
2 − 17

2

0 0 0 1 3

 L1 + 2L4 → L1−−−−−−−−−−−→


1 1 3 0 6

0 1 1 2 9

0 0 1 − 7
2 − 17

2

0 0 0 1 3

 L2 − 2L4 → L2−−−−−−−−−−−→


1 1 3 0 6

0 1 1 0 3

0 0 1 − 7
2 − 17

2

0 0 0 1 3

 L3 +
7

2
L4 → L3

−−−−−−−−−−−→


1 1 3 0 6

0 1 1 0 3

0 0 1 0 2

0 0 0 1 3

 L1 − 3L3 → L1−−−−−−−−−−−→


1 1 0 0 0

0 1 1 0 3

0 0 1 0 2

0 0 0 1 3

 L2 − L3 → L2−−−−−−−−−−→


1 1 0 0 0

0 1 0 0 1

0 0 1 0 2

0 0 0 1 3

 L1 − L2 → L1−−−−−−−−−−→


1 0 0 0 −1

0 1 0 0 1

0 0 1 0 2

0 0 0 1 3

 .

And the solution is w = −1, x = 2, y = 2, z = 3.

Exercise 3.6. Write the augmented matrices and solve the systems with elementary rows operations

for the following systems:

(1)

x1 − x2 + 2x3 = 1

2x1 + 2x3 = 1

x1 − 3x2 + 4x3 = 2

(2)

x1 − x2 + 2x3 = 1

2x1 − 4x2 + 6x3 = 3

x1 − 3x2 + 4x3 = 2

(3)

x1 − x2 + 2x3 = 1

2x1 − 4x2 + 6x3 = 2

x1 − 3x2 + 4x3 = 2

Solution.

(1) The augmented matrix is 1 −1 2 1

2 0 2 1

1 −3 4 2

 .
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Its solution is1 −1 2 1

2 0 2 1

1 −3 4 2

 L2 − 2L1 → L2−−−−−−−−−−−→

1 −1 2 1

0 2 −2 −1

1 −3 4 2

 L3 − L1 → L3−−−−−−−−−−→

1 −1 2 1

0 2 −2 −1

0 −2 2 1

 1
2L2 → L2
−−−−−−−→

1 −1 2 1

0 1 −1 − 1
2

0 −2 2 1

 L3 + 2L2 → L3−−−−−−−−−−−→

1 −1 2 1

0 1 −1 − 1
2

0 0 0 0

 L1 + L2 → L1−−−−−−−−−−→

1 0 1 1
2

0 1 −1 − 1
2

0 0 0 0

 .

This means that x1 = 1
2 − x3 and x2 = − 1

2 + x3, where x3 ∈ R.
(2) In the following answer we present only the augmented matrix and �nal solution.

Â =

1 −1 2 1

2 −4 6 3

1 −3 4 2

 ⇒ x1 =
1

2
− x3, x2 = −1

2
+ x3, x3 ∈ R.

We got the same solution as before.

(3) The augmented matrix is

Â =

1 −1 2 1

2 −4 6 2

1 −3 4 2

 .

By the Gauss-elimination process we get1 −1 2 1

2 −4 6 2

1 −3 4 2

 L2 − 2L1 → L2−−−−−−−−−−−→

1 −1 2 1

0 −2 2 0

1 −3 4 2

 L3 − L1 → L3−−−−−−−−−−→

1 −1 2 1

0 −2 2 0

0 −2 2 1

 − 1
2L2 → L2
−−−−−−−−→

1 −1 2 1

0 1 −1 0

0 −2 2 1

 L3 + 2L2 → L3−−−−−−−−−−−→

1 −1 2 1

0 1 −1 0

0 0 0 1

 .

We got to a point where we know that a solution does not exists as 0x1 + 0x2 + 0x3 = 1, and

this cannot hold.

Remark 3.1. Henceforth and unless stated otherwise, we will present the full elimination process.

However, we will present the relevant matrices and �nal results.

Exercise 3.7. Use the Gauss-Jordan elimination process to solve3x+ 3y = 4

−x− y = 10.

What happens?

Solution. By the Gauss-Jordan elimination process we get to the matrix(
3 3 4

−1 −1 10

)
L2 +

1

3
L1 → L2

−−−−−−−−−−−→

(
3 3 4

0 0 11 1
3

)
,

which means that a solution does not exist as 0 6= 11 1
3 .
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Exercise 3.8. Solve the system −4x+ 6y + 4z = 4

2x− y + z = 1.

Solution. The solution is given by the following set
{

(x, y, z) : x = 5
4 −

5
4z, y = 3

2 −
3
2z, z ∈ R

}
.

Exercise 3.9. Use the Gauss-Jordan elimination process to determine for what values of the parameter

k the system x+ y = 1

x− ky = 1

has no solutions, one solutions, and more than one solution.

Solution. The augmented matrix and elimination process yield(
1 1 1

1 −k 1

)
L2 − L1 → L2−−−−−−−−−−→

(
1 1 1

0 −k − 1 0

)
.

If k = −1, than we have in�nitely many solutions, as x = 1− y and y ∈ R. Otherwise,(
1 1 1

0 −k − 1 0

)
1

−k−1L2 → L2
−−−−−−−−−−→

(
1 1 1

0 1 0

)

L1 − L2 → L1−−−−−−−−−−→

(
1 0 1

0 1 0

)
,

and we have a unique solution x = 1, y = 0.

Exercise 3.10. Which of the following equations are linear?

(1)

3x1 − 4x2 + 9x3 = 17.

(2)

x1x2x3 = 5.

(3)

x2 + 9y = 6.

(4)

x1 + 40.5x2 +
√

3x3 = 172x1.

(5)

(x1 − x2)x3 = 5.

Solution. Equations 1 and 4 are linear, all other are not.

Exercise 3.11. Solve the following systems by the Gauss-Jordan elimination process.

(1)

x− 3y + 6z = −1

2x− 5y + 10z = 0

3x− 8y + 17z = 1;

(2)

x+ y + z = 0

12x+ 2y − 3z = 5

3x+ 4y + z = −4;
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(3)

3x+ 3y = 4

x− y = 10;

(4)

4x+ 2y − 3z = 1

6x+ 3y − 5z = 0

x+ y + 2z = 9;

(5)

2x+ 2y − z = 2

x+ y + z = −2

2x− 4y + 3z = 0.

Solution. The augmented matrices and solutions are

(1)

Â =

1 −3 6 −1

2 −5 10 0

3 −8 17 1

 ⇒ x = 5, y = 6, z = 2.

(2)

Â =

 1 1 1 0

12 2 −3 5

3 4 1 −4

 ⇒ x = 1, y = −2, z = 1.

(3)

Â =

(
3 3 4

1 −1 10

)
⇒ x =

17

3
, y = −13

3
.

(4)

Â =

4 2 −3 1

6 3 −5 0

1 1 2 9

 ⇒ x = 2, y = 1, z = 3.

(5)

Â =

2 2 −1 2

1 1 1 −2

2 −4 3 0

 ⇒ x = 1, y = −1, z = −2.

Exercise 3.12. Use the Gauss-Jordan elimination process to determine for what values of the parameter

k the system 
6x+ y = 7

3x+ y = 4

−6x− 2y = k

has a solution.
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Solution. The reduced echelon form of the system is1 0 1

0 1 1

0 0 8 + k

 ,

which means that for k = −8, the system has the unique solution x = y = 1. If k 6= −8, a solution does

not exist.

3.2. Matrix algebra

A known fact is that a system of linear equations must have either no solution, one solution, or in�nitely

many solutions. An important question about these systems is when a solution exists and how many

solutions are there? We start with a few basic de�nitions regarding a systems of linear equations, denoted

(3.2.1) Ax = b,

when

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

am1 am2 · · · amn

 , x =


x1

x2

...

xn

 , b =


b1

b2
...

bm

 .

That is, A is the coe�cient matrix, and x,b are called vectors (these are basically matrices with a single

column).2

3.2.1. Basic operations.

Before we continue with the problems of solving systems of linear equations, we need to elaborate on

matrices. A matrix is a rectangular array of numbers, so any table of data is a matrix. Its size is

indicated by the number of rows and its number of columns. In other words, a matrix with m rows and

n columns is called a �m × n matrix�. The entry (i.e., the number) in the ith row and jth column is

called the �(i, j)-th entry�.

There are basic operations we can preform on matrices. The basic ones are addition and scalar multi-

plication.

• Scalar multiplication. A scalar is an ordinary real-number. The product of a scalar r and a

m× n matrix A is

rA = r


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

am1 am2 · · · amn

 =


ra11 ra12 · · · ra1n

ra21 ra22 · · · ra2n

...
... · · ·

...

ram1 ram2 · · · ramn

 .

In words, the scalar r multiplies every entry in the matrix.

2Equality (3.2.1) will be explained later on. In simple terms, it is an equability between two vectors, which means that
every coordinate of the vector on the RHS equals every coordinate of the vector on the LHS.
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• Addition. The addition of two matrices is de�ned if and only if the two matrices are of the

same size. Let A and B be two matrices of size m× n. Then,

A+B =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

am1 am2 · · · amn

+


b11 b12 · · · b1n

b21 b22 · · · b2n
...

... · · ·
...

bm1 bm2 · · · bmn



=


a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n
...

... · · ·
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .

Using these two operations, we can de�ne the subtraction A−B as the addition of two matrices, when

the latter is multiplied by the scalar (−1) such that A−B = A+ (−B).

The next operation is multiplication of matrices. The multiplication of two matrices A,C is de�ned if

and only if the number of columns in A equals then umber of rows in C. Therefore, assume that A is a

m× n matrix and C is an n× k matrix. The product AC is de�ned by

AC =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

am1 am2 · · · amn



c11 c12 · · · c1k

c21 c22 · · · c2k
...

... · · ·
...

cn1 cn2 · · · cnk



=



∑n
i=1 a1ici1

∑n
i=1 a1ici2 · · ·

∑n
i=1 a1icik∑n

i=1 a2ici1
∑n
i=1 a2ici2 · · ·

∑n
i=1 a2icik

...
... · · ·

...
...

...
∑n
m=1 aimcmj

...
...

... · · ·
...∑n

i=1 amici1
∑n
i=1 amici2 · · ·

∑n
i=1 amicik


.

Or, in simpler terms, the (i, j)-th entry of AC is
∑n
m=1 aimcmj . That is, we sum the products of the

entries of the ith row in A with the entries of the jth column in C.

Exercise 3.13. De�ne the matrices

A =

(
6 −1

4 3

)
, B =

(
3 4

−2 4

)
.

Compute A+B, A−B, 3A− 2B, AB, and BA.

Solution.

A+B =

(
6 −1

4 3

)
+

(
3 4

−2 4

)
=

(
9 3

2 7

)
,

A−B =

(
6 −1

4 3

)
−

(
3 4

−2 4

)
=

(
3 −5

6 −1

)
,

3A− 2B = 3

(
6 −1

4 3

)
− 2

(
3 4

−2 4

)
=

(
12 −11

16 1

)
,

AB =

(
6 −1

4 3

)(
3 4

−2 4

)
=

(
20 20

6 28

)
,

BA =

(
3 4

−2 4

)(
6 −1

4 3

)
=

(
34 9

4 14

)
.
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Exercise 3.14. Perform the following computations:

a. 4

(
6 −4 2

3 3 9

)
− 5

(
1 0 6

2 3 −5

)
.

b.

(
2 1

−1 4

)(
3 −2 −1

4 4 1

)
.

c.

2 1 0 0

3 2 1 0

1 1 0 7




2 2 1

3 −3 0

7 2 −1

−4 −5 0

 .

d.
(

2 1 1
)3 1 −1

2 1 1

1 2 2


 5

−1

−1

 .

Solution.

a. 4

(
6 −4 2

3 3 9

)
− 5

(
1 0 6

2 3 −5

)
=

(
19 −16 −22

2 −3 61

)
.

b.

(
2 1

−1 4

)(
3 −2 −1

4 4 1

)
=

(
10 0 −1

13 18 5

)
.

c.

2 1 0 0

3 2 1 0

1 1 0 7




2 2 1

3 −3 0

7 2 −1

−4 −5 0

 =

 7 1 2

19 2 2

−23 −36 1

 .

d.
(

2 1 1
)3 1 −1

2 1 1

1 2 2


 5

−1

−1

 = 39.

3.2.1.1. Laws of matrix algebra.

The basic arithmetic of matrix algebra is not so di�erent than the algebra of real numbers. Let A,B,

and C be three matrices such that the following operations are well de�ned.

(1) (A+B) + C = A+ (B + C).

(2) (AB)C = A (BC).

(3) A+B = B +A.

(4) A (B + C) = AB +AC.

However, we should point out that some operations are not similar to commonly-used algebra. For

example, for any two numbers r1, r2, we know that r1 · r2 = r2 · r1. But the same does not hold when

matrices are involved. In fact, the operations might not even be well de�ned when reversing the order

of matrices.

3.2.1.2. The representation of basic operations by matrices.

The three elementary operations can be represented by matrices, such that each basic operation on a

matrix A, it equivalent to left multiplication with the relevant matrix. For example. if one wants to

interchange the ith and jth row of a matrix A, one can left multiply A by the matrix B with entries

bkl =



1, k = l 6= i, j,

1, k = i, l = j,

1 k = j, l = i

0, otherwise.
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This matrix B is a matrix where almost all entries are 0, except for the diagonal where all entries are

1 (excluding bii and bjj), and bij = bji = 1. If one wants to multiply the ith row with a number r, one

can left multiply A by a matrix B with entries

bkl =


1, k = l 6= i,

r, k = l = i,

0, otherwise.

And one can also use left multiplication to add r times row i to row j by using the matrix B where

bkl =


1, k = l,

r, k = j, l = i,

0, otherwise.

For example, consider the generic 3× 3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Say we want to multiply the second raw by 5. We can use the following left multiplication

BA =

1 0 0

0 5 0

0 0 1


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 a12 a13

5a21 5a22 5a23

a31 a32 a33

 ,

as required. Now assume we want to add 5 times the second row to the third row. Then

BA =

1 0 0

0 1 0

0 5 1


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 a12 a13

a21 a22 a23

5a21 + a31 5a22 + a32 5a23 + a33

 .

3.2.2. Special matrices.

• The Identity matrix I is a square matrix, which means that then umber of rows equals then

umber of columns, such that

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

All the non-diagonal entries are 0, and all the entries along the diagonal are 1. The most basic

and important property of this matrix is, that for every matrix A, it follows that AI = A

(assuming that the multiplication is well de�ned). We will usually denoted the n× n identity

matrix by In to state its dimensions. For any n× n matrix A, we get AI = IA.

• The identity matrix is a special form of the Diagonal matrix where all non-diagonal entries are

0,

D =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 .
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The interesting property of diagonal matrices is their form when multiplying by themselves.

For example,

Dk = D ·D · · ·D =


ak11 0 · · · 0

0 ak22 · · · 0
...

...
. . .

...

0 0 · · · aknn

 .

This property will prove useful later on.

• In addition, we have the Upper-Triangular matrix (and, Lower-Triangular matrix ) where every

entry aij = 0 if i > j (if i < j). That is, all entries above (below) the diagonal are zeros. Note

that there product remains a triangular matrix.

An Upper− Triangular matrix =


a11 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 0 · · · ann

 ,

for example,


0 2 17 3

0 −1 9 0

0 0 5 −5

0 0 0 1



A Lower− Triangular matrix =


a11 0 · · · 0

a21 a22 · · · 0
...

...
. . .

...

an1 an2 · · · ann

 ,

for example,


1 0 0 0

0 −1 0 0

8 3 5 0

0 4 7 −6

 .

Exercise 3.15. Let

A =

(
2 3 1

0 −1 2

)
, B =

(
0 1 −1

4 −1 2

)
, C =

(
1 2

3 −1

)
,

D =

(
2 1

1 1

)
, and E =

(
1

−1

)
.

(1) Compute A+B, A−D, 3B, CE, EC, −D.

(2) Verify that CD 6= DC.

Solution.
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(1) A direct computation shows that

A+B =

(
2 4 0

4 −2 4

)
.

A−D = undefined.

3B =

(
0 3 −3

12 −3 6

)

CE =

(
−1

4

)
EC = undefined.

−D =

(
−2 −1

−1 −1

)
(2) We can see that

CD =

(
4 3

5 2

)
6=

(
5 3

4 1

)
= DC.

Exercise 3.16. Show that if B is a scalar multiple of the 2× 2 identity matrix, then AB = BA for all

2× 2 matrices A.

Solution. Fix B = rI when r is a real number. Using the laws of matrix algebra yields

BA = (rI)A = r (IA) = rA = Ar = AIr = AB.

Exercise 3.17.

(1) Prove that (AB)
k

= AkBk if AB = BA.

(2) Show that (AB)
k 6= AkBk in general.

(3) Conclude that (A+B)
2
does not equal A2 + 2AB +B2 unless AB = BA.

Solution.

(1) Proof by induction. Clearly the statement hold for k = 1. assume it holds for k. That is,

(AB)
k−1

= Ak−1Bk−1. Applying AB = BA and using the induction hypothesis, we easily �nd

(AB)
k

= (AB)
k−1

(AB)

= Ak−1Bk−1 (BA)

= Ak−1Bk−1BA

= Ak−1BkA.

Now we can apply AB = BA for k times on BkA = ABk and get

(AB)
k

= Ak−1BkA = Ak−1ABk = AkBk.

(2) Take, for example,

A =

(
1 0

2 0

)
, B = A =

(
3 1

0 0

)
.

For k = 2, we get

AB =

(
1 0

2 0

)(
3 1

0 0

)
=

(
3 1

6 2

)
,

(AB)
2

=

(
3 1

6 2

)(
3 1

6 2

)
=

(
15 5

30 10

)
,
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while

A2 =

(
1 0

2 0

)(
1 0

2 0

)
=

(
1 0

2 0

)
,

B2 =

(
3 1

0 0

)(
3 1

0 0

)
=

(
3 3

0 0

)
,

A2B2 =

(
1 0

2 0

)(
3 3

0 0

)
=

(
3 3

6 6

)
6=

(
15 5

30 10

)
= (AB)

2
.

(3) By the previous answers we can say that

(A+B)
2

= (A+B) (A+B)

= A2 +AB +BA+B2.

And unless AB = BA, then (A+B)
2 6= A2 + 2AB +B2.

3.3. Transpose and invariability

3.3.1. The transpose matrix.

Let A be a m× n matrix, such that

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

am1 am2 · · · amn

 .

The transpose of A, denoted AT , is a n×m matrix such that

AT =


a11 a21 · · · am1

a12 a22 · · · am2

...
... · · ·

...

a1n a2n · · · amn

 .

In words, we reversing the order of values of A, such that the rows became the columns of AT and vice

versa.

There are a few basic rules for the transpose matrix. that one could easily prove by a direct computation.

Assume that A and B are two matrices such that the following operations are well de�ned.

(1) (A±B)
T

= AT ±BT .
(2)

(
AT
)T

= A.

(3)
(
rAT

)
= rAT for every real number r.

(4) (AB)
T

= BTAT .

Exercise 3.18. Let

A =

(
2 3 1

0 −1 2

)
, B =

(
0 1 −1

4 −1 2

)
, C =

(
1 2

3 −1

)
,

D =

(
2 1

1 1

)
, and E =

(
1

−1

)
.

(1) Compute BT , ATCT , (CA)
T
, (CE)

T
, ETCT .

(2) Verify that (DA)
T

= ATDT .

Solution.
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(1) A direct computation and usage of the de�nitions shows:

BT =

 0 4

1 −1

−1 2

 ,

(CA)
T

= ATCT =

2 6

1 10

5 1

 .

ETCT = (CE)
T

=
(
−1 4

)
.

(2) First compute DA.

DA =

(
2 1

1 1

)(
2 3 1

0 −1 2

)
=

(
4 5 4

2 2 3

)
.

Now, see that

ATDT =

2 0

3 −1

1 2

(2 1

1 1

)
=

4 2

5 2

4 3

 = (DA)
T
.

The transpose operations enables us to de�ne a few more special matrices. A matrixA is called symmetric

if AT = A, and it is called anti-symmetric if AT = −A.

3.3.2. Invertible matrices.

Denoted the class of n× n matrices by Mn.

Definition 3.2. (Inverse matrix) Fix A ∈ Mn. If there exists a matrix B ∈ Mn such that AB =

BA = I, then B is the inverse of A and both matrices are invertible.

We denote that inverse matrix of A by A−1. In general, a matrix A ∈ Mn could have a right inverse

matrix B where AB = I. It could also have a left inverse matrix B where BA = I. If the matrix A has

a left inverse and a right inverse then it is invertible.

Lemma 3.1. A matrix A ∈Mn can have at most one inverse matrix.

There are several properties of inverse matrices presented in the following claim.

Claim 3.1. Let A,B ∈Mn be two invertible matrices. Then

•
(
A−1

)−1
= A.

•
(
AT
)−1

=
(
A−1

)T
.

• AB is invertible and (AB)
−1

= B−1A−1.

• For every real number r 6= 0, it follows that (rA)
−1

= 1
rA
−1.

Invertible matrices are very useful when trying to �nd a solution to a system of linear equations. The

following theorem explains this.

Exercise 3.19. Prove that (
1 2

3 4

)−1

=

(
−2 1
3
2 − 1

2

)
.

Solution. We can verify this easily by the de�nition of an inverse matrix.(
−2 1
3
2 − 1

2

)(
1 2

3 4

)
=

(
1 0

0 1

)
,(

1 2

3 4

)(
−2 1
3
2 − 1

2

)
=

(
1 0

0 1

)
.
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Exercise 3.20. Check that (
2 1

1 1

)−1

=

(
1 −1

−1 2

)
,

 1 1 0

0 1 1

−1 1 0


−1

=

 0.5 0 −0.5

0.5 0 0.5

−0.5 1 −0.5

 .

Solution. Using the de�nition of an inverse matrix we see that(
1 −1

−1 2

)(
2 1

1 1

)
=

(
1 0

0 1

)
=

(
2 1

1 1

)(
1 −1

−1 2

)
,

 1 1 0

0 1 1

−1 1 0


 0.5 0 −0.5

0.5 0 0.5

−0.5 1 −0.5

 =

1 0 0

0 1 0

0 0 1

 =

 0.5 0 −0.5

0.5 0 0.5

−0.5 1 −0.5


 1 1 0

0 1 1

−1 1 0

 .

3.3.3. Finding the inverse matrix.

Although the inverse matrices are quite useful, �nding them is not always an easy task. for that case, we

have the Gauss-Jordan elimination process. An identity matrix I is placed along side a matrix A that

is to be inverted. Then, the same elementary row operations are performed on both matrices until A

has been reduced to an identity matrix. The identity matrix upon which the elementary row operations

have been performed will then become the inverse matrix we seek.

Example 3.3. Assume we wish to inverse the matrix

A =

(
1 2

3 4

)
.

First, we write this matrix augmented with the identity matrix,

[A|I] =

(
1 2 | 1 0

3 4 | 0 1

)
.

Then we preform the row operations on this matrix to reduce A to its row echelon form.(
1 2 | 1 0

3 4 | 0 1

)
L2 − 3L1 → L2−−−−−−−−−−−→

(
1 2 | 1 0

0 −2 | −3 1

)
(

1 2 | 1 0

0 −2 | −3 1

)
− 1

2L2 → L2
−−−−−−−−→

(
1 2 | 1 0

0 1 | 3
2 − 1

2

)
(

1 2 | 1 0

0 1 | 3
2 − 1

2

)
L1 − 2L2 → L1−−−−−−−−−−−→

(
1 0 | −2 1

0 1 | − 3
2

1
2

)
.

On the RHS we got the inverse of A as we already shown.

Exercise 3.21. Invert the following matrices:(
2 3

−2 1

)
,

(
−4 1

2 −4

)
,

1 1 2

0 1 1

1 1 0

 ,

5 1 −1

0 2 1

0 1 3

 .
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Solution. Use the method we sew, one gets(
2 3

−2 1

)−1

=
1

8

(
1 −3

2 2

)
.

(
−4 1

2 −4

)−1

=
1

14

(
−4 −1

−2 −4

)
.

1 1 2

0 1 1

1 1 0


−1

=
1

2

 1 −2 1

−1 2 1

1 0 −1

 .

5 1 −1

0 2 1

0 1 3


−1

=
1

25

5 −4 3

0 15 −5

0 −5 10

 .

Exercise 3.22. Assume that ad− bc 6= 0 and �x a matrix A =

(
a b

c d

)
. Find A−1.

Solution. Note that if a = c = 0, then the matrix is singular and therefore not invertible. Thus, we

can assume that a 6= 0 (otherwise we can just exchange the rows). If we divide the �rst row by a and

add −c times the �rst row to the second row, we get(
a b | 1 0

c d | 0 1

)
=

(
a b

a | 1
a 0

0 da−cb
a | − c

a 1

)
.

Multiply the second row by a
ad−bc to get(

a b
a | 1

a 0

0 1 | − c
ad−bc

a
ad−bc

)
L1 − b

aL2 → L1
−−−−−−−−−−−→

(
a 0 | 1

a

(
1 + cb

ad−bc

)
−b

ad−bc

0 1 | − c
ad−bc

a
ad−bc

)

=

(
a 0 | d

ad−bc
−b

ad−bc
0 1 | − c

ad−bc
a

ad−bc

)
.

Thus,

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Exercise 3.23. What is the inverse of the n× n diagonal matrix

D =


d1 0 0 · · · 0

0 d2 0 · · · 0
...

...
...

0 0 0 · · · dn

?

Solution. The inverse is

D−1 =


1
d1

0 0 · · · 0

0 1
d2

0 · · · 0
...

...
...

0 0 0 · · · 1
dn

 .

Clearly we need to assume that di 6= 0 otherwise the rank is smaller than n, and the matrix is not

invertible.

3.4. The rank of a matrix

The concept of a rank of a matrix is important when considering the number of solutions a system might

have.
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Definition 3.3. (Rank) The rank of a matrix is the number of nonzero rows in its row echelon form.

A few simple properties of rank:

(1) let A be the coe�cient matrix and Â be the corresponding augmented matrix. Then,

rank (A) ≤ min
{

rank Â,#
{

columns in Â
}
,#
{

rows in Â
}}

.

(2) For any two matrices A,B such that AB is well de�ned, it follows that

rank (AB) ≤ min (rank (A) , rank (B)) ,

(3) rank (A) = rank
(
AT
)

= rank
(
AAT

)
= rank

(
ATA

)
.

Exercise 3.24. Compute the rank of the following matrices:(
2 −4

−1 2

)
,

(
2 −4 2

−1 2 1

)
,

1 6 −7 3

1 9 −6 4

1 3 −8 4




1 6 −7 3 5

1 9 −6 4 9

1 3 −8 4 2

2 15 −13 11 16

 ,

1 6 −7 3 1

1 9 −6 4 2

1 3 −8 4 5


Solution. We �nd the row echelon form of each matrix and derive the rank from it.(

2 −4

−1 2

)
→

(
2 −4

0 0

)
⇒ so its rank is 1.(

2 −4 2

−1 2 1

)
→

(
2 −4 2

0 0 2

)
⇒ so its rank is 2.

1 6 −7 3

1 9 −6 4

1 3 −8 4

 →

1 6 −7 3

0 3 1 1

0 0 0 2

⇒ so its rank is 3.


1 6 −7 3 5

1 9 −6 4 9

1 3 −8 4 2

2 15 −13 11 16

 →


1 6 −7 3 5

0 3 1 1 4

0 0 0 2 1

0 0 0 0 0

⇒ so its rank is 3.

1 6 −7 3 1

1 9 −6 4 2

1 3 −8 4 5

 →

1 6 −7 3 1

0 3 1 1 1

0 0 0 2 5

⇒ so its rank is 3.

Exercise 3.25. Find the rank of the following matrices:

A =

1 1 1

2 −1 1

4 1 3

 , B =

 1 1 2 1

2 1 0 1

−1 0 2 1

 .

Solution. The rank of A is 2, and the rank of B is 3.

Now we can use the concept of rank to determine then number of solutions to a system. In case a

solution exists, the next question that arises is whether it is unique. For that matter we de�ne the

concept of non-singularity.

Definition 3.4. (Non-singular matrix) A coe�cient matrix A is called non-singular if for every

choice of the RHS b1, b2, . . . , bm its corresponding system Ax = b of linear equations has exactly one

solution.
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The following theorem characterizes systems of linear equations that have a solution using the concept

of rank.

Theorem 3.1. A system of linear equations with coe�cient matrix A and augmented matrix Â has a

solution if and only if rank ˆ(A) = rank (A). Moreover, a coe�cient matrix A is non-singular if and only

if

number of rows of A = number of columns of A = rank (A) .

An important type of systems in this context are homogeneous ones where bi = 0 for every i.

Definition 3.5. (Homogeneous system) If bi = 0 for every i, then system Ax = b is homogeneous.

One can verify that every homogeneous system always has at least one solution, which is the trivial

solution where xi = 0 for every unknown i. On the other hand, a non-homogeneous system may not

have a solution. For example, in Exercise 3.12 we sew that for every k 6= −8, the system
6x+ y = 7

3x+ y = 4

−6x− 2y = k

did not have a solution, as its reduced echelon form is1 0 1

0 1 1

0 0 8 + k

 .

Theorem 3.2. For every A ∈Mn, the following statements are equivalent:

(1) A is invertible.

(2) The homogeneous system Ax = 0 has only the trivial solution, which is x = 0.

(3) For every vector b, the system Ax = b has exactly one solution, which is x = A−1b.

(4) A is non-singular.

(5) rank (A) = n.

Exercise 3.26. Fix a triangular matrix A. Prove that A is invertible if and only if all its diagonal

entries are non zero.

Solution. Note that we can restrict attention to upper triangular matrices, since rank and diagonal

entries do not change when taking the transpose of a matrix. Assume that all diagonal entries are non

zero. Thus, the row-echelon form of A is with n non-zero rows. Thus implies that rank (A) = n, hence

the matrix in invertible. On the other hand, if there exists a zero diagonal entry, then we can perform

the G-J elimination process and eliminate at least one row (if not other rows, than the row with the

zero diagonal entry). Thus, rank (A) < n, and the matrix is in invertible.

Exercise 3.27.

(1) Show that the inverse of a 2× 2 lower-triangular matrix is a lower-triangular matrix.

(2) Show that the inverse of a 2× 2 upper-triangular matrix is a upper-triangular matrix.

Solution.

(1) Fix a lower-triangular matrix A =

(
a 0

b c

)
. Denote A−1 =

(
w x

y z

)
.

(
a 0

b c

)(
w x

y z

)
=

(
aw ax

bw + cy bx+ cz

)
.
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We require that

aw = 1,

ax = 0,

bw + cy = 0,

bx+ cz = 1.

Clearly, x = 0 as a 6= 0. Since the inverse is unique and exists, the result follows.

(2) Fix an upper-triangular matrix A =

(
a b

0 c

)
. Denote A−1 =

(
w x

y z

)
.

(
a b

0 c

)(
w x

y z

)
=

(
aw + by ax+ cz

cy cz

)
.

We require that

aw + by = 1,

ax+ cz = 0,

cy = 0,

cz = 1.

Clearly, y = 0 as c 6= 0. Since the inverse is unique and exists, the result follows.

3.4.1. Number of solutions - a short review. Since there are numerous theorems and corollaries

about the number of solutions of systems of linear equations, we give the short survey in the following

table. Let m be the number of equations in Ax = b (this is basically the number of rows of A), let n be

the number of unknowns x1, x2, . . . , xn. The following table presents the number of solutions a system

has, as a function of the relations between m and n and the conditions given in the LHS column.

m < n m = n m > n

If bi = 0 for every i, ∞ 1,∞ 1,∞
For every b, 0,∞ 0, 1,∞ 0, 1,∞

For every b, if rank (A) = m, ∞ 1 ***
For every b, if rank (A) = n, *** 1 0, 1

Table 1. Number of solutions in di�erent systems of linear equations.

Exercise 3.28. The following �ve matrices are coe�cient matrices of systems of linear equations. For

each matrix, what can you say about the number of solutions of the corresponding system when:

(1) The system is homogeneous.

(2) The system is not homogeneous.

A =

(
2 −4

−1 3

)
, B =

(
1 4 3

2 1 0

)
, C =

2 1

1 4

0 3

 ,

D =

1 4 3

2 1 0

1 1 1

 , E =

1 4 3

2 1 0

0 7 6

 .

Solution. We start with the case where the system is homogeneous.

(1) rank (A) = #rows = #columns, thus there is a unique solution (0, 0).

(2) rank (B) = #rows < #columns, thus there are in�nitely many solutions.

(3) rank (C) = #columns, thus there is a unique solution (0, 0).
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(4) rank (D) = #rows = #columns, thus there is a unique solution (0, 0).

(5) rank (E) < #rows = #columns, thus there are in�nitely many solutions.

In case the system is not homogeneous:

(1) rank (A) = #rows = #columns, thus there is a unique solution.

(2) rank (B) = #rows < #columns, thus there are in�nitely many solutions.

(3) rank (C) = #columns, thus there either zero solutions or one solution.

(4) rank (D) = #rows = #columns, thus there is a unique solution (0, 0).

(5) rank (E) < #rows = #columns, thus either zero solutions or in�nitely many solution..



CHAPTER 4

Determinants

4.1. De�ning the determinant

The determinant of a matrix A ∈ Mn is a value attached to each square matrix. The computation of

this value tends to be complex but it has great signi�cance. The determinant is a value that enables us

to know whether a square matrix is non-singular. More speci�cally, if the determinant of a matrix A

is not 0, then we know that it is invertible, non-singular, and thus the system Ax = b has exactly one

solution, which is x = A−1b.

The determinant is de�ned inductively. We �rst de�ne the determinant for a 1 × 1 matrix, and then

we use this de�nition to �nd the determinant of a 2× 2 matrix and so on. In order to do so, for every

matrix A ∈Mn, let Aij be the (n− 1)× (n− 1) sub-matrix obtained from A by deleting its ith row and

jth column. For example, if

A =

1 2 3

4 5 6

7 8 9

 ,

then

A11 =

(
5 6

8 9

)
, A23 =

(
1 2

7 8

)
, A32 =

(
1 3

4 6

)
, and A13 =

(
4 5

7 8

)
.

In case of a 1 × 1 matrix , the determinant of A ∈ M1 (which is basically a number, A = (a)) is

det (A) = a. The determinant of any A ∈Mn is

det (A) =

n∑
j=1

(−1)
i+j · aij · det (Aij)

for any 1 ≤ i ≤ n. That is, we can choose i = 1, 2, . . . , n and compute the determinants of all Aijs and

use these values to compute det (A).

For example, �x

A =

(
a11 a12

a21 a22

)
,

then

det (A) =

2∑
j=1

(−1)
2+j · a2j · det (A2j)

= (−1)
2+1 · a21 · det (A21) + (−1)

2+2 · a22 · det (A22)

= −a21a12 + a22a11.

One can see that even if we were to choose i = 1, the result remains the same as

det (A) =

2∑
j=1

(−1)
1+j · a1j · det (A1j)

= (−1)
1+1 · a11 · det (A11) + (−1)

1+2 · a12 · det (A12)

= a11a22 − a12a21.

80
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Therefore, the determinant is well de�ned. In case A ∈M3, we get

det (A) =

3∑
j=1

(−1)
1+j · a1j · det (A1j)

= a11det (A11) + a12det (A12) + a13det (A13) =

= a11 (a22a33 − a32a23)− a12 (a21a33 − a23a31) + a12 (a21a32 − a22a31) ,

and we used the previous result for 2× 2 matrices.

4.2. Properties of determinants

Determinant are not easily computable, therefore we have a set of properties that assist with this

computation. Let A,B ∈Mn be two square matrices.

• det (AB) = det (A) det (B).

• det
(
AT
)

= det (A).

• det (A+B) 6= det (A) + det (B), in general.

• det (A) = ±det (R), when R is the row echelon form of A. If no row interchange was used,

then det (A) = det (R).

• det (A) = k · det (R), when R is reached by taking A and multiplying one row by the real

number k.

• det (A) = ±det (R), when R is reached by interchanging any two rows (columns) of A.

• det (A) = det (R), when R is reached by adding a multiple of any row to another row.

• The determinant of any diagonal matrix, lower-triangular matrix, or upper-triangular matrix

is the product of its diagonal entries.

• det (A) = 0 if A has two identical rows.

Exercise 4.1. Find the determinants of the matrices:(
2 1

−4 5

)
,

(
3 6

−4 −1

)
,

 3 1 0

−2 7 −2

2 0 6

 ,

2 0 −1

1 3 0

0 6 −1

 .

Solution. The determinants are:

det

(
2 1

−4 5

)
= 14.

det

(
3 6

−4 −1

)
= 21.

det

 3 1 0

−2 7 −2

2 0 6

 = 134.

det

2 0 −1

1 3 0

0 6 −1

 = −12.

4.2.1. Determinants: applications.

The following theorem, combing with Theorem 3.2, shows how the determinant assists with solving

systems of linear equations and �nding the inverse of a matrix.

4.2.1.1. Computing the inverse.

Theorem 4.1. For every A ∈Mn. The matrix A is invertible if and only if det (A) 6= 0.

Thus, we can use the equivalences given in Theorem 3.2 also when det (A) 6= 0. Moreover, the deter-

minant is not only useful to determine whether a matrix A is invertible, it is also helpful with �nding

A−1.
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Definition 4.1. (Co-factor and adjoint matrix) Fix a matrix A ∈ Mn. The co-factor Cij =

(−1)
i+j

det (Aij) is the determinant of the matrix A after deleting the ith row and jth column. The

adjoint matrix adj (A) of A is

adj (A) =


C11 C12 · · · C1n

C21 C22 · · · C2n

...
... · · ·

...

Cn1 Cn2 · · · Cnn


T

.

That is, the (i, j)
th

entry of adj (A) is Cji (note that the indices are switched by the transpose).

As the following theorem states, the adjoint matrix is the inverse of the original matrix, up to a factor.

Theorem 4.2. If A is an invertible matrix, then A−1 = 1
det(A) · adj (A).

4.2.1.2. Cramer's rule for solving a system of linear equations. The following theorem is known by

the name: Cramer's rule.

Theorem 4.3. (Cramer's Rule) Fix an invertible matrix A ∈ Mn . The unique solution x =

(x1, x2, . . . , xn) to the system Ax = b is

xi =
det (Bi)

det (A)
,

for every i = 1, 2, . . . , n, where Bi is the matrix A with the vector b replacing the ith column of A.

Exercise 4.2. Use Cramer's rule to solve the following systems of equations:

(1)

6x− 2y − 3z = 1

2x+ 4y + z = −2

3x− z = 8.

(2)

5x− 2y + z = 9

3x− y = 9

3y + 2z = 15.

Solution.

(1) Using Cramer's rule we get6 −2 −3

2 4 1

3 0 −1


xy
z

 =

 1

−2

8

 ,

and

x =

det

 1 −2 −3

−2 4 1

8 0 −1



det

6 −2 −3

2 4 1

3 0 −1


= 40,
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y =

det

6 1 −3

2 −2 1

3 8 −1



det

6 −2 −3

2 4 1

3 0 −1


=
−97

2
,

z =

det

6 −2 1

2 4 −2

3 0 8



det

6 −2 −3

2 4 1

3 0 −1


= 112.

(2) Using Cramer's rule we get 5 −2 1

3 −1 0

0 3 2


xy
z

 =

9

9

5

 ,

and

x =

det

9 −2 1

9 −1 0

5 3 2



det

5 −2 1

3 −1 0

0 3 2


=

60

11
,

y =

det

5 9 1

3 9 0

0 5 2



det

5 −2 1

3 −1 0

0 3 2


=

81

11
,

z =

det

5 −2 9

3 −1 9

0 3 5



det

5 −2 1

3 −1 0

0 3 2


= −39

11
.

Exercise 4.3. For each of the following matrices, compute the row echelon form and verify that

det (A) = ±det (R), when R is the row echelon form of A. Remember that if no row interchange

was used, then det (A) = det (R).

(
1 1

2 1

)
,

 2 4 0

4 6 3

−6 −10 0

 ,

0 1 2

3 4 5

0 7 8

 ,

1 1 1

1 4 2

1 4 3

 ,

1 1 1

0 4 5

1 9 6

 .
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Solution.

det

(
1 1

2 1

)
= det

(
1 1

0 −1

)
= −1.

det

 2 4 0

4 6 3

−6 −10 0

 = det

2 4 0

0 −8 3

0 0 3/4

 = −12.

det

0 1 2

3 4 5

0 7 8

 = −det

3 4 5

0 1 2

0 0 −6

 = 18.

det

1 1 1

1 4 2

1 4 3

 = det

1 1 1

0 3 1

0 0 1

 = 3.

det

1 1 1

0 4 5

1 9 6

 = det

1 1 1

0 4 5

0 0 −5

 = −20.

4.3. Linear independence

Let v1, v2, . . . , vn be n vectors in Rn. A convex combination of v1, . . . , vn is the sum
∑n
i=1 αivi when

αi ∈ R for every i = 1, . . . , n. We say that the vectors v1, . . . , vn are linearly dependent if there exists

n numbers α1, . . . , αn (not all of them are zeros) such that
∑n
i=1 αivi = 0. If such n do not exist, then

the vectors are linearly independent.

Linear independence of vectors has a strong connection to the rank of a matrix, and thus to its determi-

nant, and the number of solution a system of linear equations might have. In De�nition 3.3 we de�ned

the rank as the number of nonzero rows in its row echelon form. The following lemma gives present

some equivalences for this value.

Lemma 4.1. The rank of a matrix A, denoted rank (A) , equals the maximal number of linearly inde-

pendent rows (and also, columns).

Theorem 4.4. If k > n, any set of k vectors in Rn are linearly dependent.

In Theorem 3.2 we presented a few equivalent properties of a matrix. In Theorem 4.1 we added another

equivalent property. The following theorem presents all the equivalent properties, including indepen-

dence.

Theorem 4.5. For every A ∈Mn, the following statements are equivalent:

(1) A is invertible.

(2) det (A) 6= 0

(3) The homogeneous system Ax = 0 has only the trivial solution, which is x = 0.

(4) For every vector b, the system Ax = b has exactly one solution, which is x = A−1b.

(5) A is non-singular.

(6) rank (A) = n.

(7) The n vectors that are the n columns of A are linearly independent.

In case, one of the previous statements does not hold, and speci�cally in case that det (A) = 0, then we

use Theorem 3.1. The theorem states that for every system of linear equations with coe�cient matrix

A and augmented matrix Â, a solution exits if and only if rank ˆ(A) = rank (A).

Exercise 4.4. Which of the following pairs or triplets of vectors are linearly independent?

(1)

(2, 1) , (1, 2) .
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(2)

(2, 1) , (−4,−2) .

(3)

(1, 1, 0) , (0, 1, 1) .

(4)

(1, 1, 0) , (0, 1, 1) , (1, 0, 1) .

Solution.

(1) We can write down the equations

c1 (2, 1) + c2 (1, 2) = (0, 0) .

In the matrix form, we get (
2 1

1 2

)(
c1

c2

)
=

(
0

0

)
.

The only solution is (0, 0), and the vectors are linearly independent.

(2) Writing down the equations in the matrix form(
2 −4

1 −2

)(
c1

c2

)
=

(
0

0

)
.

There is a solution (−2, 1), and the vectors are linearly dependent.

(3) The equations are 1 0

1 1

0 1

(c1
c2

)
=

0

0

0

 ,

and the only solution is (0, 0) . Linearly independent.

(4) The equations are 1 0 1

1 1 0

0 1 1


c1c2
c3

 =

0

0

0

 .

Again, the trivial solution is the only solution, and the vectors are linearly independent.

Exercise 4.5. Which of the following triplets of vectors are linearly independent?

(1)

(1, 0, 1, 0) , (1, 0, 0, 1) , (0, 0, 1, 1) .

(2)

(1, 0, 1, 0) , (1, 0,−1, 0) , (1, 0, 0, 0) .

Solution.

(1) The coe�cient matrix is 
1 1 0

0 0 0

1 0 1

0 1 1

 .

The rank of this matrix is 3, so the homogeneous system has only the trivial solution. Thus,

the vectors are independent.
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(2) The coe�cient matrix is 
1 1 1

0 0 0

1 −1 0

0 0 0

 .

The rank of this matrix is 2, so the homogeneous system has in�nitely many solutions. Thus,

the vectors are dependent.

Exercise 4.6. Prove that any collection of vectors that includes the zero-vector cannot be linearly

independent.

Solution. Let {v1, . . . , vk} be a collection of vector where v1 is the zero-vector. Then

1 · v1 + 0 · v2 + · · ·+ 0 · vk = (0, 0, . . . , 0) ,

and the vectors are linearly dependent.

4.4. General exercises

Exercise 4.7. Use the adjoint matrix to �nd A−1 of

A =

(
a b

c d

)
,

where det (A) 6= 0.

Solution. We know that det (A) = ad− bc 6= 0.

adj (A)11 = d , adj (A)22 = a,

adj (A)12 = −b, , adj (A)21 = −c.

Thus,

A−1 =
1

det (A)
adj (A)

=
1

ad− bc

(
d −b
−c a

)
.

Exercise 4.8. Determine the number of solution the following systems have:

(1) 3 6 0

2 0 −5

1 −1 −1


xy
z

 =

 4

8

−10

 .

(2)  4 −1 8

17 −8 10

−3 2 2


xy
z

 =

160

200

40

 .

(3) 2 −3 0

3 0 5

2 6 10


xy
z

 =

 6

15

18

 .

(4) 4 −1 8

3 0 2

5 1 −2


xy
z

 =

30

20

40

 .
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(5) 6 −1 −1

5 2 −2

0 1 −2


xy
z

 =

 3

10

4

 .

Solution.

(1) The determinant is

det

3 6 0

2 0 −5

1 −1 −1

 = −33,

thus the solution is unique.

(2) The determinant of the matrix is 0 so we need to �nd whether there are an in�nite number of

solutions, or no solution at all. The row echelon form of the augmented matrix is4 −1 8 | 160

0 −15/4 −24 | −480

0 0 0 | 0

 ,

so there are in�nitely many solutions.

(3) The determinant of the matrix is 0, and the row echelon form2 −3 0 | 6

3 0 5 | 15

0 0 0 | 0

 ,

suggest that there are in�nitely many solutions.

(4) The determinant of the matrix is 0. The row echelon form of the augmented matrix is4 −1 8 | 30

3 0 2 | 20

0 0 0 | 10

 ,

suggest that there are no solutions.

(5) The determinant of the matrix is −27, so there is a unique solution.

Exercise 4.9. Find the values of a for which the following matrices do not have an inverse.

(1) (
6 −1

2 a

)
.

(2)  5 a 0

4 2 1

−1 3 1

 .

(3) (
5 3

−3 a

)
.

(4) −1 3 1

0 5 a

6 2 1

 .

Solution.

(1) There is no inverse if the determinant is 0, which leads to the equation

6a+ 2 = 0.
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Thus, a = − 1
3 .

(2) Setting the determinant equal to zero and solving for a yields a = −1.

(3) There is no inverse if the determinant is 0, which leads to the equation

5a+ 9 = 0.

Thus, a = − 9
5 .

(4) Setting the determinant equal to zero and solving for a yields a = 7
4 .

Exercise 4.10. Use the adjoint matrix the �nd the inverse of the following matrices:(
4 3

1 1

)
,

1 2 3

0 5 6

1 0 8

 .

Solution. (
4 3

1 1

)−1

=

(
1 −3

−1 4

)
.

1 2 3

0 5 6

1 0 8


−1

=
1

37

40 −16 −3

6 5 −6

−5 −2 5

 .

Exercise 4.11. Use Cramer's rule so solve the following systems:

(1)

5x1 + x2 = 3

2x1 − x2 = 4.

(2)

2x1 − 3x2 = 2

4x1 − 6x2 + x3 = 7

x1 + 10x2 = 1.

Solution.

(1) x1 = 1, x2 = −2.

(2) x1 = 1, x2 = 0, x3 = 3.



CHAPTER 5

Eigenvalues and Eigenvectors

In this chapter we are going to learn a di�erent aspect of matrices which is crucial in the study of linear

and nonlinear system of equations. This aspect is the eigenvalues and eigenvectors of square matrices.

This chapter contains two parts combined together. The �rst is dedicated to the basic de�nition and

properties of eigenvalues and eigenvectors, and the second is dedicated to way they are used. Throughout

this chapter we will give economically-relevant examples to motivate the mathematical aspects.

5.1. De�nition

Let A be an n × n matrix and let x ∈ Rn be a non-zero vector. We say that x is an eigenvector of A

if there exists a value λ ∈ R such that Ax = λx. Similarly, we say that λ ∈ R is an eigenvector of A if

there exists a non-zero vector x ∈ Rn such that Ax = λx.

The equation Ax = λx could be rewritten as follows:

Ax = λIx

Ax− λIx = 0

(A− λI)x = 0.

We will usually use the form (A− λI)x = 0, for reasons that will later be explained. Let us begin with

a basic example.

Example 5.1. Fix A =

(
2 0

0 3

)
. We can see that by taking λ = 2, we get

(
2 0

0 3

)
− 2

(
1 0

0 1

)
=

(
0 0

0 1

)
.

And we can take x = (1, 0) that yields the required result. Thus, λ = 2 is an eigenvalue with eigenvector

x = (1, 0). The same holds for the eigenvalue λ = 3 with eigenvector x = (0, 1). Note that the

eigenvector is determined up to a constant.

Example 5.1 presents a general notion when it comes to the theory of eigenvalues and diagonal matrices.

This notion is presented in the following theorem.

Theorem 5.1. The diagonal entries of a diagonal matrix are its eigenvalues.

5.2. Properties of eigenvalues and matrices

The �rst use of eigenvalues is to determine whether a matrix is singular or not.

Theorem 5.2. A matrix A ∈Mn is singular if and only if λ = 0 is an eigenvalue of A.

That is, we can use eigenvalues to determine the number of solutions a system of linear equations has.

Getting back to the previous representation of the eigenvalues problem, we can see that (A− λI)x = 0

is basically a system of linear equations with the matrix A − λI. Therefore, we already know that it

has a non-trivial solution x if and only if det (A− λI) = 0. In this case, A − λI is singular and not

invertible. The following theorem summarizes these conclusions.

Theorem 5.3. Let A ∈ Mn be an n × n matrix, and let λ be a scalar. The following statements are

equivalent:

89
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(1) A− λI is singular.

(2) det (A− λI) = 0.

(3) Ax = λx for some non zero vector x.

(4) λ is an eigenvalue of A.

Corollary 5.1. A matrix is invertible if and only if all its eigenvalues are non zero. In addition, if a

matrix, with eigenvalues λ1, . . . , λn, is invertible, then the eigenvalues of A−1 are 1
λ1
, . . . , 1

λn
.

Lemma 5.1. Let A be a matrix with eigenvalues λ1, . . . , λn. Then, the eigenvalues of A
k are λk1 , . . . , λ

k
n

for any positive integer k.

These statements show us how closely related are eigenvalues to everything we learned until now. How-

ever, the question that still remains unanswered is how to �nd the eigenvalues of a matrix A? To answer

this question, we have the characteristic polynomial of A, which is det (A− λI) = 0. This is a polyno-

mial of degree n in λ. Thus, the zeros of this polynomial are the eigenvalues of A. After �nding the

eigenvalues, we can use the matrix A− λI to compute the eigenvectors.

Theorem 5.4. Let λ1, . . . , λk be k distinct eigenvalues of A ∈ Mn with corresponding eigenvectors

v1, . . . , vk. Then , v1, . . . , vk are linearly independent.

To conclude, we can summarize previous results and properties in the following manner:

• There exists a non-zero eigenvector x, that is Ax = λx, if and only if det (A− λI) = 0.

• A matrix is invertible if and only if all its eigenvalues are non zero.

• If a matrix with eigenvalues λ1, . . . , λn is invertible, then the eigenvalues of A−1 are 1
λ1
, . . . , 1

λn
.

• If λ1, . . . , λk be k distinct eigenvalues with corresponding eigenvectors v1, . . . , vk, then , v1, . . . , vk

are linearly independent.

We now turn to compute eigenvalues and eigenvectors using the �rst equivalence statement.

Exercise 5.1. Find the eigenvalues and eigenvectors of

A =

(
−1 3

2 0

)
.

Solution. We start with the characteristic polynomial of A.

det (A− λI) = det

(
−1− λ 3

2 −λ

)
= λ+ λ2 − 6

= (λ+ 3) (λ− 2)

λ1,2 = 2,−3.

We wish to compute v1, the eigenvector of λ1 = 2.(
−3 3

2 −2

)(
x

y

)
=

(
0

0

)
.

We can solve this system as any other system of linear equations and get(
−3 3

2 −2

)
− 1

3L1 → L1
−−−−−−−−→

(
1 −1

2 −2

)
(

1 −1

2 −2

)
L2 − 2L1 → L2−−−−−−−−−−−→

(
1 −1

0 0

)
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and we get x− y = 0. Thus we can choose v1 =

(
1

1

)
. Similarly, for v2we get

(
2 3

2 3

)(
x

y

)
=

(
0

0

)
,

which means that x = − 3
2y. Thus, v2 =

(
3

−2

)
.

Exercise 5.2. Find the eigenvalues and eigenvectors of

A =

 3 −1 0

−1 3 0

0 0 5

 .

Solution. The eigenvalues are λ1,2,3 = 5, 4, 2. The eigenvectors are

v1 =

0

0

1

 , v2 =

−1

1

0

 , v3 =

1

1

0

 .

Exercise 5.3. Find the eigenvalues and eigenvectors of

A =

1 0 2

0 5 0

3 0 2

 .

Solution. The eigenvalues are λ1,2,3 = 5, 4,−1. The eigenvectors are

v1 =

0

1

0

 , v2 =

2

0

3

 , v3 =

 1

0

−1

 .

Exercise 5.4. Find the eigenvalues and eigenvectors of the following matrices

A =

(
3 0

4 5

)
,

B =

(
−1 3

−2 4

)
,

C =

(
0 −2

1 −3

)
,

D =

0 0 −2

0 7 0

1 0 −3

 .

Solution. The eigenvalues and eigenvectors of the matrices are:

• A: The eigenvalues are λ1,2 = 3, 5. The eigenvectors are

v1 =

(
1

−2

)
, v2 =

(
0

1

)
.

• B: The eigenvalues are λ1,2 = 2, 1. The eigenvectors are

v1 =

(
1

1

)
, v2 =

(
3

2

)
.

• C: The eigenvalues are λ1,2 = −1,−2. The eigenvectors are

v1 =

(
2

1

)
, v2 =

(
1

1

)
.
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• A: The eigenvalues are λ1,2,3 = 7,−1,−2. The eigenvectors are

v1 =

0

1

0

 , v2 =

2

0

1

 , v3 =

1

0

1

 .

Exercise 5.5. Prove that the eigenvalues of a triangular matrix are its diagonal entries.

Solution. Writing down the characteristic polynomial of a triangular matrix D gives

det (D − λI) =

n∏
i=1

(dii − r) = 0.

The only solution in this case is λi = dii for every i, as required.

5.2.1. Trace of a matrix.

The trace of a matrix A is the sum of its diagonal entries. That is,

trace (A) =

n∑
i=1

aii.

The following theorem shows that the trace and the determinant are directly related to the sum of the

eigenvalues of its matrix.

Theorem 5.5. Let A ∈Mn be a matrix with n distinct eigenvalues λ1, . . . , λn. Then,

trace (A) =

n∑
i=1

λi, det (A) = λ1 · λ2 · · ·λn.

This theorem is very useful when trying to �nd the determinant of a matrix, and even when trying to

verify the computation of the eigenvalues or determinant.

5.3. Applications

5.3.1. Di�erence equations.

Eigenvalues and eigenvectors are very useful when it comes to solving dynamical problems modeled

through linear di�erence equation. We begin with a very simple example that illustrates what a linear

di�erence equations are. Assume you have x0 dollars deposit that gain an interest rate of r each year.

How much money will you have after n years? Denote this amount by xn. The amount increases by a

factor of 1 + r on an annual basis. The di�erence equation in this case is

xk+1 = (1 + r)xk.

Thus, as you probably have guessed, the solution is xn = (1 + r)
n
x0.

This is basically a very simple example. Now what happens if we have two variable xk, yk such that

their dynamics are connected. That is,

xk+1 = axk + byk

yk+1 = cxk + dyk.

How do we solve this problem? Since they both depend on each other, we need to solve them simulta-

neously, which could be quite di�cult. Remember, our goal is to �nd a formula

xn = f (x0, y0, n, a, b, c, d)

yn = g (x0, y0, n, a, b, c, d) .

In the case that b = c = 0, then the equations are uncoupled and we can solve them separately. For

that purpose, we use eigenvalues and eigenvectors. Let us present the coupled equations in the following
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form:

zk+1 =

(
xk+1

yk+1

)
=

(
a b

c d

)(
xk

yk

)
= Azk

zk+1 = Azk.

We are going to survey to ways to deal with this problem. Both are quite similar and are based on

eigenvalues and eigenvectors.

5.3.1.1. The powers of a matrix.

We wish to solve the di�erence equations zk+1 = Azk given the initial conditions z0. Therefore, we

know that

z1 = Az0

z2 = Az1 = AAz0 = A2z0

z3 = A3z0

...

zk = Akz0.

In general, it is di�cult to calculate Ak unless it is diagonal. If it is diagonal, then Ak is similar to A

when all the diagonal entries are taken with the power k. That is, if

D =



λ1 0 · · · · · · 0

0 λ2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λn


,

then

Dk =



λk1 0 · · · · · · 0

0 λk2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λkn


.

clearly, A is not a diagonal matrix (if it was, we would have uncoupled di�erence equations). However,

if we could �nd a non-singular matrix P such that P−1AP = D when D is the matrix described above,

then

Ak =
(
PDP−1

) (
PDP−1

)
· · ·
(
PDP−1

)
= PD

(
P−1P

)
D
(
P−1P

)
D
(
P−1P

)
D · · ·

(
P−1P

)
DP−1

= PDIDIDID · · · IDP−1

= PDkP−1.

Hence, if D is a diagonal matrix and P is invertible, then Ak is easily computable. The following theorem

explains how P and D are found.

Theorem 5.6. Let A ∈ Mn be an n × n matrix with eigenvalues λ1, . . . , λn and the corresponding

eigenvectors v1, . . . , vn. De�ne

P = [v1 v2 · · · vn] .
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If P−1exists, then

A = P



λ1 0 · · · · · · 0

0 λ2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λn


P−1,

and

Ak = P



λk1 0 · · · · · · 0

0 λk2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λkn


P−1.

Thus, the solution of the corresponding system of di�erence equations zk+1 = Azk with initial vector z0

is

zk = P



λk1 0 · · · · · · 0

0 λk2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λkn


P−1z0.

Definition 5.1. Let A ∈Mn be a square matrix.

• A is diagonalizable if there exists a non-singular matrix P such that P−1AP = D when D is a

diagonal matrix.

• A is orthogonal if A−1 = AT .

Proposition 5.1. If A ∈Mn is a symmetric matrix with distinct eigenvalues λ1, . . . , λn and the corre-

sponding normalized1 eigenvectors v1, . . . , vn, there exists an orthogonal matrix P such that

P−1AP =



λ1 0 · · · · · · 0

0 λ2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λn


,

when P = [v1 v2 · · · vn]

Lemma 5.2. If a matrix A ∈ Mn has n distinct eigenvalues, then it is diagonalizable. Moreover, A is

diagonalizable if and only if it has n independent eigenvectors.

Exercise 5.6. For each matrix, �nd an orthogonal matrix that diagonalizes it.

(1) (
2 4

4 2

)
,

(2) (
4 2

2 1

)
,

(3) (
0.6 0.4

0.4 0.6

)
,

1We say that a vector v is normalized if vT v = 1. That is, the sum of its squared coordinates equals 1.
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(4) 2 1 1

1 1 0

1 0 1

 ,

(5)  2 −1 −1

−1 2 −1

−1 −1 2

 ,

(6)  2 0 −1

0 4 0

−1 0 2

 .

Solution.

(1) Eigenvalues are λ = −2, 6. Normalized eigenvectors are

v1 =
1√
2

(
1

−1

)
, v2 =

1√
2

(
1

1

)
.

The orthogonal matrix is

P =
1√
2

(
1 1

−1 1

)
.

(2) Eigenvalues are λ = 0, 5. Normalized eigenvectors are

v1 =
1√
5

(
1

−2

)
, v2 =

1√
5

(
2

1

)
.

The orthogonal matrix is

P =
1√
5

(
1 2

−2 1

)
.

(3) The orthogonal matrix is

P =
1√
2

(
1 1

−1 1

)
.

(4) The orthogonal matrix is

P =


0 1√

3
2√
6

1√
2
− 1√

3
1√
6

− 1√
2
− 1√

3
1√
6

 .

(5) The orthogonal matrix is

P =


1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3
− 1√

2
1√
6

 .

(6) The orthogonal matrix is

P =


1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

 .

Exercise 5.7. For each matrix, �nd an orthogonal matrix that diagonalizes it.

(1) (
2 1

1 2

)
,
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(2) (
1 3

3 1

)
,

(3)  2 −1 −1

−1 2 −1

−1 −1 2

 .

Solution.

(1) The orthogonal matrix is

P =

(
1√
2

1√
2

1√
2
− 1√

2

)
.

(2) The orthogonal matrix is

P =

(
1√
2

1√
2

1√
2
− 1√

2

)
.

(3) The orthogonal matrix is

P =


1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3
− 1√

2
1√
6

 .

Let us discuss a concrete example, and then go over to the next method.

Example 5.2. The Leslie Population model.

The mathematical demographer P.H. Leslie, introduced the model named after him in 1945, to describe

how the population evolves (either grows or shrinks).

Consider an organism that lives for two years. The organism can reproduce in the �rst year and the

second year as well. In addition, the organism can die in the �rst year. De�ne the following parameters:

• bi where i = 1, 2, is the birth rate of individuals in their ith year.

• d1 is the death rate of �rst year individuals.

• xk, yk are the number of �rst-year individuals and second-year individuals on year k, respec-

tively.

The dynamics of this population are described in the following di�erence equations:

xk+1 = b1xk + b2yk

yk+1 = (1− d1)xk.

Our main goal is to solve this problem. For simplicity, we will use speci�c numbers.

xk+1 = xk + 4yk

ynk+1 = 0.5xk,

or, in its matrix form, (
xk+1

yk+1

)
=

(
1 4

0.5 0

)(
xk

yk

)
.
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Fix A =

(
1 4

0.5 0

)
and let us �nd the eigenvalues and eigenvectors of A.

det (A− Iλ) = det

(
1− λ 4

0.5 −λ

)
= −λ (1− λ)− 2 = 0

λ2 − λ− 2 = 0

(λ− 2) (λ+ 1) = 0

λ1,2 = 2,−1.

The eigenvector v1is (
1 4

0.5 0

)(
x

y

)
= 2

(
x

y

)

v1 =

(
4

1

)
,

and v2 =

(
−2

1

)
. De�ne P =

(
4 −2

1 1

)
. Its inverse matrix is P−1 =

(
1
6

1
3

− 1
6

2
3

)
(verify this!). Note

that

PDP−1 =

(
4 −2

1 1

)(
2 0

0 −1

)(
1
6

1
3

− 1
6

2
3

)

=

(
8 2

2 −1

)(
1
6

1
3

− 1
6

2
3

)

=

(
1 4

0.5 0

)
= A,

as required. Thus,

zk =

(
xk

yk

)

= P

(
2k 0

0 (−1)
k

)
P−1z0

=

(
4 −2

1 1

)(
2k 0

0 (−1)
k

)(
1
6

1
3

− 1
6

2
3

)(
x0

y0

)

=

(
2k+1+(−1)k

3
2k+2+4(−1)k+1

3
2k+(−1)k+1

6
2k+2(−1)k

3

)(
x0

y0

)
,

and the problem is solved.

Remark 5.1. One can notice an interesting situation when |λi| < 1 for every i = 1, . . . , n. If that is

indeed the case, then λni → 0 as n → ∞. This implies, that whenever the absolute value of all the

eigenvalues is less than 1, the general solution tends to 0. This situation is called as asymptotically

stable, since the system will remain in 0 once it is reached.

5.3.1.2. Coordinates transformations.

The second method aims at transforming the coordinates of the problem. Assume that we can transform

the coordinates of zk to di�erent coordinates, denoted Zk, by the matrices P and P−1 such that

zk = PZk, Zk = P−1zk.
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In that case,

Zk+1 = P−1zk+1

= P−1 (Azk)

=
(
P−1A

)
zk

=
(
P−1A

)
PZk

=
(
P−1AP

)
Zk,

and if P−1AP is a diagonal matrix, then we get a system of uncoupled equations, where we can solve

each separately. However, how could we �nd such matrices? The answer is as before, use eigenvectors!

Note that we have the following equivalent problem

P−1AP = D,

or equivalently,

AP = PD,

when we require D to be a diagonal matrix. Let λ1, . . . , λn be the eigenvalues of the n × n matrix A,

whose eigenvectors are v1, . . . , vn. De�ne the matrix P to be a matrix whose columns are the eigenvectors

v1, . . . , vn such that

P = [v1 v2 · · · vn] ,

and de�ne D to be a diagonal matrix whose diagonal entries are the respected eigenvalues λ1, . . . , λn

such that

D =



λ1 0 · · · · · · 0

0 λ2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λn


.

Now, we can see that

AP = A [v1 v2 · · · vn]

= [Av1 Av2 · · · Avn]

= [λ1v1 λ2v2 · · · λnvn]

= [λ1v1 λ2v2 · · · λnvn] ,

and

PD = [v1 v2 · · · vn]



λ1 0 · · · · · · 0

0 λ2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λn


= [λ1v1 λ2v2 · · · λnvn] = AP,

and we get the required result. Therefore, we can use the eigenvectors and eigenvalues to create P and

D such that the problem becomes uncoupled.

Example 5.3. The Leslie Population model (revisited). We use the second method to solve again

the same problem. Remember that the dynamics of the problem are given by(
xn+1

yn+1

)
=

(
1 4

0.5 0

)(
xk

yk

)
.
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Using the previously de�ned matrices: P =

(
4 −2

1 1

)
and its inverse P−1 =

(
1
6

1
3

− 1
6

2
3

)
and the new

coordinates are (
Xn+1

Yn+1

)
=

(
1
6

1
3

− 1
6

2
3

)(
xn+1

xn+1

)
.

Thus, we get (
Xn+1

Yn+1

)
=

(
1
6

1
3

− 1
6

2
3

)(
xn+1

xn+1

)

=

(
1
6

1
3

− 1
6

2
3

)(
1 4

0.5 0

)(
xn

yn

)

=

(
1
6

1
3

− 1
6

2
3

)(
1 4

0.5 0

)(
4 −2

1 1

)(
Xn

Yn

)

=

(
1
6

1
3

− 1
6

2
3

)(
8 2

2 −1

)(
Xn

Yn

)

=

(
2 0

0 −1

)(
Xn

Yn

)
,

and we got the equations uncoupled.

We can solve each and get

Xn+1 = 2Xn

Yn+1 = −Yn

⇓

Xn = 2nX0

Yn = (−1)
n
XY0

when X0, Y0 are values that we can get from the initial conditions. Hence,(
xn

yn

)
=

(
4 −2

1 1

)(
Xn

Yn

)

=

(
4 −2

1 1

)(
2nX0

(−1)
n
Y0

)
,

when (
X0

Y0

)
= P−1

(
x0

y0

)

=

(
1
6

1
3

− 1
6

2
3

)(
x0

y0

)
.

The following theorems summarize these conclusions and observations.

Theorem 5.7. Let A ∈Mn be a matrix with eigenvalues λ1, . . . , λn and the corresponding eigenvectors

v1, . . . , vn. De�ne

P = [v1 v2 · · · vn] .
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If P−1exists, then

P−1AP =



λ1 0 · · · · · · 0

0 λ2 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0

0 0 0 0 λn


.

Conversely, if P−1AP == D when D is a diagonal matrix, then the columns of P are the eigenvectors

of A and the diagonal entries of D are the eigenvalues of A.

The following theorem gives the general solution for general di�erence equations.

Theorem 5.8. Let A ∈Mn be a matrix with eigenvalues λ1, . . . , λn and the corresponding eigenvectors

v1, . . . , vn. The general solution for the system of di�erence equations zn+1 = Azn is

zn =

n∑
i=1

cir
n
i vi,

where ci are given by the initial conditions.

Exercise 5.8. For each of the following matrices, �nd a non-singular matrix P and a diagonal matrix

D so that D = P−1AP .

(1) (
3 0

1 2

)
,

(2) (
1 −1

3 4

)
,

(3)  3 −1 0

−1 2 −1

0 −1 3

 ,

(4) 4 −2 −2

0 1 0

1 0 1

 .

Solution.

(1)

P =

(
1 0

1 1

)
, D =

(
3 0

0 2

)
.

(2)

P =

(
1 1

−2 −1

)
, D =

(
3 0

0 2

)
.

(3)

P =

 1 1 1

0 −1 2

−1 1 1

 , D =

3 0 0

0 4 0

0 0 1

 .

(4)

P =

 0 1 2

1 0 0

−1 1 1

 , D =

1 0 0

0 2 0

0 0 3

 .

Exercise 5.9. Find the general solution of the following systems of di�erence equations:
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(1)

xn+1 = 3xn

yn+1 = xn + 2yn;

(2)

xn+1 = yn

yn+1 = −xn + 5yn;

(3)

xn+1 = xn − yn

yn+1 = 2xn + 4yn.

Solution.

(1) (
xn

yn

)
= x0 · 3n ·

(
1

1

)
+ y0 · 2n ·

(
0

1

)
.

(2) (
xn

yn

)
= x0 ·

(
5 +
√

21

2

)n
·

(
1

5+
√

21
2

)
+ y0 ·

(
5−
√

21

2

)n
·

(
1

5−
√

21
2

)
.

(3) (
xn

yn

)
= x0 · 2n ·

(
1

−1

)
+ y0 · 3n ·

(
1

−2

)
.



CHAPTER 6

Quadratic forms

6.1. Introduction to quadratic forms

The natural point to start discussing optimization problems is linear problems. Since we know how to

solve linear problems relatively easily, we can now move forward with the next step, which is quadratic

forms. The simplest case is taught in high school through the quadratic formula. But what happens

when we have more than one variable? In that case, we need to generalize our technique, and matrices

we be much handy for that.

First, let us present the problem. A quadratic form Q (x1, . . . , xn) in n variables x1, x2, . . . , xn is a

polynomial expression in which each component term has a degree two (i.e. each term is a product of

xi and xj , where i, j = 1, 2, · · ·, n). That is, Q (x1, . . . , xn) =
∑n
i=1

∑n
j=1 aijxixj where aij ∈ R.

Claim 6.1. Each quadratic form Q (x1, . . . , xn) in n variables x1, x2, . . . , xn can be represented by a

symmetric matrix A so that

Q (x) = xTAx,

where xT = (x1, . . . , xn).

For example, the quadratic form Q (x1, x2) = a11x
2
1 + a12x1x2 + a22x

2
2 can be written as(

x1 x2

)( a11
1
2a12

1
2a12 a22

)(
x1

x2

)
.

For the case of n = 3: Q (x1, x2, x3) = a11x
2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a13x1x3 + a23x2x3 can be

written as (
x1 x2 x3

) a11
1
2a12

1
2a13

1
2a12 a22

1
2a23

1
2a13

1
2a23 a33


x1

x2

x3

 .

To understand the importance of these forms, let us consider a few concrete examples.

Example 6.1. A manager faces an optimization problem. The revenue from producing x1 units of

product A and x2 units of product B is R(x1, x2) = 8x1x2. However, the cost is given by C (x1, x2) =

3x2
1 + 6x2

2. How much should the manager produce? Use quadratic forms to present the problem.

Solution. One can formulate the problem as f (x1, x2) = 8x1x2 − 3x2
1 − 6x2

2, or equivalently

f (x1, x2) =
(
x1 x2

)(−3 4

4 6

)(
x1

x2

)
.

In the following section, we will see that in such a case, the optimal production is (0, 0).

6.2. De�niteness of quadratic forms

There is an easy way to distinguish between di�erent types of quadratic forms, using its sign.

Definition 6.1. (De�nite quadratic forms) Let Q (x) = xTAx be a quadratic form.

• If Q (x) > 0 for all x 6= 0, then A is called positive de�nite.

• If Q (x) ≥ 0 for all x 6= 0, then A is called positive semi-de�nite.

• If Q (x) < 0 for all x 6= 0, then A is called negative de�nite.

• If Q (x) ≤ 0 for all x 6= 0, then A is called negative semi-de�nite.

102
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• Otherwise A is called inde�nite.

Why is this distinction so important? If a quadratic form is either positive or negative, we know that it

could be minimized or maximized in x = 0. For this reason, optimizing such a form is relatively easy.

However, determining whether a quadratic form is positive or negative is not easy, as it requires to know

the sign of the form for every vector x.

To simplify the classi�cation, we require an additional de�nition.

Definition 6.2. (Principal minors) Let A ∈Mn be an n× n matrix. The k× k matrix formed from

A by deleting the n− k last rows and the last n− k last columns is called a kth order leading principal

sub-matrix of A. That is, if

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 ,

then the kth order leading principal sub-matrix of A is
a11 · · · a1k

...
. . .

...

ak1 · · · akk

 .

The determinant of the kth order leading principal sub-matrix of A is called the kth order leading

principal minor (LPM) of A, and it is denoted by Ak. We use the leading principal minors in the

following characterization of de�nite quadratic forms.

Theorem 6.1. Let A be an n× n matrix.

• A is positive de�nite if and only if all its n leading principal minors are positive.

• A is positive semi-de�nite if and only if all its n leading principal minors are non-negative.

• A is negative de�nite if and only if its n leading principal minors follow the rule (−1)
k ·Ak > 0

for every k = 1, . . . , n.

• A is negative semi-de�nite if and only if its n leading principal minors follow the rule (−1)
k ·

Ak ≥ 0 for every k = 1, . . . , n.

Exercise 6.1. Find the de�niteness of the following matrices:(
2 3

3 7

)
,

(
2 4

4 7

)
,

(
0 0

0 c

)
.

Solution.

(1) Considering

(
2 3

3 7

)
. Since |A1| = 2 and |A2| = 14− 9 = 5, the matrix is positive de�nite.

(2) Considering

(
2 4

4 7

)
. Since |A1| = 2 and |A2| = 14− 16 = −2, the matrix is inde�nite.

(3) Considering

(
0 0

0 c

)
. Since |A1| = 0 and |A2| = 0, the matrix could be either positive semi-

de�nite or negative semi-de�nite. When writing down the form explicitly, we get Q (x1x2) =

cx2
2, and the sign of c clearly determines the de�niteness of the matrix.

Exercise 6.2. Determine the de�niteness of the following symmetric matrices:

(1) (
2 −1

−1 1

)
.
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(2) (
−3 4

4 −5

)
.

(3) (
−3 4

4 −6

)
.

(4) (
2 4

4 8

)
.

(5) 1 2 0

2 4 5

0 5 6

 .

(6) −1 1 0

1 −1 0

0 0 −2

 .

(7) 
1 0 3 0

0 2 0 5

3 0 4 0

0 5 0 6

 .

Solution.

(1) The LPMs are 2 and 1, thus the matrix is positive de�nite.

(2) The LPMs are −3 and −1, thus the matrix is inde�nite.

(3) The LPMs are −3 and 2, thus the matrix is negative de�nite.

(4) The LPMs are 2 and 0, thus the matrix is positive semi-de�nite.

(5) The LPMs are 1, 0, and −25, thus the matrix is inde�nite.

(6) The LPMs are −1, 0, and 0, thus the matrix is negative semi-de�nite.

(7) The �rst three LPMs are 1, 2, and −10, thus the matrix is inde�nite.

Exercise 6.3. Assume that A,B are positive de�nite matrices. Prove that A + B is also a positive

de�nite matrix.

Solution. If xTAx > 0 for every x 6= 0, and xTBx > 0 for every x 6= 0, then

xT (A+B)x = xTAx + xTBx > 0,

as well.

Exercise 6.4. Let Q (x) = xTAx be a quadratic form where A is symmetric. Prove that a necessary

condition for A to be positive de�nite is that all its diagonal entries are positive. Give an example to

show that this necessary condition is not a su�cient condition.

Solution. Suppose Q (x) = xTAx > 0 for all x 6= 0. For x = ei = (0, . . . , 0, 1, 0, . . . ) = aii > 0. If A

is positive semi-de�nite, we must have aii = ei
TAei ≥ 0. Similarly, if A was negative de�nite. To show

that these conditions are not su�cient consider the inde�nite matrix

(
2 4

4 7

)
.

6.2.1. De�niteness of quadratic forms.

The eigenvalues have a strong connection to the de�niteness of quadratic forms.

Theorem 6.2. Let A be a symmetric matrix. Then,
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• A is positive de�nite (respectively, semi-de�nite) if and only if all its eigenvalues are positive

(respectively, non negative).

• A is negative de�nite (respectively, semi-de�nite) if and only if all its eigenvalues are negative

(respectively, non positive).

• A is inde�nite if and only if its has at least one positive eigenvalue and at least one negative

eigenvalue.

The following theorem regarding positive de�nite matrices is important in statistics and econometrics.

Theorem 6.3. Let A be a symmetric matrix. Then, the following statements are equivalent:

• A is positive de�nite.

• There exists a non-singular matrix B such that A = BTB.

• There exists a non-singular matrix Q such that QTAQ = I.

Exercise 6.5. Find the de�niteness of the following matrices:(
2 3

3 7

)
,

(
2 4

4 7

)
,

(
0 0

0 c

)
.

Solution.

(1) The eigenvalues are both positive, thus the matrix is positive de�nite.

(2) The eigenvalues are λ1 < 0 < λ2, thus the matrix is inde�nite.

(3) The eigenvalues are λ1 = 0 and λ2 = c, and the sign of c clearly determines the de�niteness of

the matrix.

Exercise 6.6. Determine the de�niteness of the following symmetric matrices:

(1) (
2 −1

−1 1

)
.

(2) (
−3 4

4 −5

)
.

(3) (
−3 4

4 −6

)
.

(4) (
2 4

4 8

)
.

Solution.

(1) The eigenvalues are 3 and 1, thus the matrix is positive de�nite.

(2) The eigenvalues are λ1 < 0 < λ2, thus the matrix is inde�nite.

(3) The eigenvalues are both negative, thus the matrix is negative de�nite.

(4) The eigenvalues are 10 and 0, thus the matrix is positive semi-de�nite.

6.3. Linear constraints and bordered matrices

Clearly, one can use the classi�cation of quadratic forms in order to determine a global maxima or

minima. However, usually in economics, we are subjected to constraints. Meaning that the optimization

is not taken with respect to Rn, but only s part of it. What happens than? we start with a simple

example.

Example 6.2. Let Q (x1, x2) = x2
1 − x2

2 be a quadratic form. Q (x1, x2) is inde�nite as we can see that

the origin is not a maxima or minima. However, what happens if we impose the constraint that x2 = 0?
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In this case, Q (x1, 0) = x2
1 which has a strict global minimum in x1 = 0. Therefore, when we restrict

out attention to speci�c set, the quadratic form can transfer from de�nite to inde�nite and vice versa.

Theorem 6.4. Fix Q (x1, x2) = xTAx where A =

(
a b

c d

)
and assume that the constraint set is

B1x1 +B2x2 = 0. The quadratic form given the constraint is positive (respectively, negative) if and only

if

det

 0 B1 B2

B1 a b

B2 b c


is negative (respectively, positive). The new matrix is called the bordered matrix.

In other words, we take the linear constraint and the original matrix and generate a new matrix which

determines the de�niteness of the restricted quadratic form.

For the general case, we have the following theorem.

Theorem 6.5. Let Q (x) = xTAx be a quadratic form with n variables and let Bx = 0 be a set of linear

constraints where

B =


B11 B12 · · · B1n

...
...

. . .
...

Bm1 Bm2 · · · Bmn

 .

De�ne the bordered matrix

H =

(
0 B

BT A

)
.

• If the sign of det(H) equals (−1)
n
and if the last n−m leading principal minors of H alternate

in sign, then Q is negative de�nite.

• If the sign of det(H) and the signs of the last n−m leading principal minors of H equal (−1)
m

, then Q is positive de�nite.

Exercise 6.7. Check the de�niteness of Q (x1, x2, x3, x4) = x2
1 − x2

2 + x2
3 + x2

4 + 4x2x3 − 2x1x4 on the

constraint set

x2 + x3 + x4 = 0, x1 − 9x2 + x4 = 0.

Solution. First we form the bordered matrix

H6 =



0 0 | 0 1 1 1

0 0 | 1 −9 0 1

− − − − − − −
0 1 | 1 0 0 −1

1 −9 | 0 −1 2 0

1 0 | 0 2 1 0

1 1 | −1 0 0 1


.

Since the problem has n = 4 variables and m = 2 constraints, we need to check the largest n −m = 2

LPMs which are det (H6) and

det (H5) = det



0 0 | 0 1 1

0 0 | 1 −9 0

− − − − − −
0 1 | 1 0 0

1 −9 | 0 −1 2

1 0 | 0 2 1


.

Note that (−1)
m

= 1. In fact, det (H6) = 24 and det (H5) = 77, so Q is positive de�nite on the given

constraint set.
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Exercise 6.8. Determine the de�niteness of the following constrained quadratics:

(1) Q (x1, x2) = x2
1 + 2x1x2 − x2

2, subject to x1 + x2 = 0.

(2) Q (x1, x2) = 4x2
1 + 2x1x2 − x2

2, subject to x1 + x2 = 0.

(3) Q (x1, x2, x3) = x2
1 +x2

2−x2
3 +4x1x3−2x1x2, subject to x1 +x2 +x3 = 0 and x1 +x2−x3 = 0.

(4) Q (x1, x2, x3) = x2
1 +x2

2 +x2
3 +4x1x3−2x1x2, subject to x1 +x2 +x3 = 0 and x1 +x2−x3 = 0.

(5) Q (x1, x2, x3) = x2
1 − x2

3 + 4x1x2 − 6x2x3, subject to x1 + x2 − x3 = 0.

Solution.

(1) n = 2,m = 1. The bordered matrix is

H =


0 | 1 1

− − − −
1 | 1 1

1 | 1 −1

 .

det (H) = 2 > 0, negative de�nite.

(2) n = 2,m = 1. The bordered matrix is

H =


0 | 1 1

− − − −
1 | 4 1

1 | 1 −1

 .

det (H) = −1 < 0, positive de�nite.

(3) n = 3,m = 2. The bordered matrix is

H =



0 0 | 1 1 1

0 0 | 1 1 −1

− − − − − −
1 1 | 1 −1 2

1 1 | −1 1 0

1 −1 | 2 0 −1


.

det (H) = 16 > 0, positive de�nite.

(4) n = 3,m = 2. The bordered matrix is

H =



0 0 | 1 1 1

0 0 | 1 1 −1

− − − − − −
1 1 | 1 −1 2

1 1 | −1 1 0

1 −1 | 2 0 1


.

det (H) = 16 > 0, positive de�nite.

(5) n = 3,m = 1. The bordered matrix is

H =



0 0 | 1 1 1

0 0 | 1 1 −1

− − − − − −
1 1 | 1 2 −3

1 1 | 2 0 0

1 −1 | −3 0 −1


.

det (H) = 4 > 0 and the determinant of the next LPM is 3, so the matrix is inde�nite.
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Advanced calculus



CHAPTER 7

Calculus of several variables

7.1. Vectors and norms in Rn.

7.1.1. Inner products and norms.

After reviewing one-variable calculus, we now turn to calculus in several variables. Before we discuss

functions, limits and derivatives in several variables, we survey a few basic properties in the Euclidean

space Rn when n ∈ N.
The basic elements of Rn are vectors with n coordinates. Between these objects we can do almost every

arithmetic we did in R. For example, let v = (v1, . . . , vn) and u = (u1, . . . , un) be two vectors in Rn,
then

(1) Addition: u+ v = (u1 + v1, . . . , un + vn).

(2) Subtraction: u− v = (u1 − v1, . . . , un − vn), which is identical to addition of u and −v.
(3) Multiplication by a scalar: cv = (cv1, . . . , cvn), when c ∈ R.

Other actions are more problematic, such as deviating, and are usually not well-de�ned. The �rst new

action we discuss is taking the inner product of two vectors. The inner product u · v of u and v is

(sometimes denoted 〈u, v〉)

u · v =

n∑
i=1

uivi.

The inner product could be quite useful in economic problems. E.g., assume that a �rm uses n inputs with

values x1, . . . , xn. The price per unit for xi is pi. Thus, the total cost of production is p1x1 + · · ·+pnxn,

which could be written as p · x, when p = (p1, . . . , pn) , x = (x1, . . . , xn).

The next element we need to focus on is the concept of length and distance in Rn. The concept of

length in these spaces is described by a norm. As there a many types of norms, we usually deal with

the Euclidean norm, also know as the L2 norm or the L2 distance, and it is de�ned as follows:

‖u‖ =

√√√√ n∑
i=1

u2
i .

Clearly, ||u|| =
√
u · u. Using this notion, the distance between two vectors u and v is given by

‖u− v‖ =

√√√√ n∑
i=1

(ui − vi)2
.

The Euclidean norm, as well as other norms, have the following properties:

• Non negative: ||u|| ≥ 0 for every vector u, and ||u|| = 0 if and only if u = (0, . . . , 0).

• For every c ∈ R and every vector v, it holds that ||cu|| = |c| · ||u||.
• The triangle inequality. For every two vectors u, v, it holds that ||u+ v|| ≤ ||u||+ ||v||.

The inner product could also be presented through the angle between the two vectors. Assume that θ

is the angle between u and v, then u · v = ‖u‖ ‖v‖ cos (θ).

Two vector u, v are orthogonal, or perpendicular, if the inner product (sometimes referred to as the scalar

product) is zero. That is, if u · v = 0. In terms of the angle between the vectors, it follows that θ = π/2,

hence perpendicular. Moreover, if, in addition, ||u|| = ||v|| = 1, then the vectors are orthonormal. Note

that every vector u 6= 0, can be normalized by taking ū = u/||u||.

109
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Exercise 7.1. Let u, v, w be three vectors in Rn and let c be a real number. Prove the following

statements:

(1) u · (v + w) = u · v + u · w.
(2) u · (rv) = (ru) · v.
(3) u · u ≥ 0.

Solution. All the proofs are based on algebraic manipulations.

(1) We are able to split the relevant sums because they are �nite.

u · (v + w) = u · (v1 + w1, . . . , vn + wn)

=

n∑
i=1

ui (vi + wi)

=

n∑
i=1

(uivi + uiwi)

=

n∑
i=1

uivi +

n∑
i=1

uiwi

= u · v + u · w.

(2) We use the fact that r is a real number, not a vector, and get

u · (rv) = u · (rv1, . . . , rvn)

=

n∑
i=1

ui (rvi)

=

n∑
i=1

(rui) vi

= (ru1, . . . , run) · v

= (ru) · v.

(3) Note that for every ui ∈ R, it holds that u2
i ≥ 0. Thus,

u · u =

n∑
i=1

u2
i ≥ 0,

as the sum of non-negative numbers.

Exercise 7.2. For any two vector u, v ∈ Rn, prove that |||u|| − ||v||| ≤ ||u− v||.

Proof. The proof is based on the triangle inequality of the Euclidean norm, which states that for

every two vectors x, y, it holds that ||x+ y|| ≤ ||x||+ ||y||. Fix x = u− v and y = v to get

||x+ y|| ≤ ||x||+ ||y||

⇓

||u− v + v|| ≤ ||u− v||+ ||v||

⇓

||u|| − ||v|| ≤ ||u− v||.
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Now �x y = v − u and x = u to get

||x+ y|| ≤ ||x||+ ||y||

⇓

||u+ v − u|| ≤ ||u||+ ||v − u||

⇓

||v|| − ||u|| ≤ ||u− v||.

Therefore,

−||u− v|| ≤ ||u|| − ||v|| ≤ ||u− v||,

as needed. �

Exercise 7.3. For each of the following vectors, �nd a normalized vector that point in the same direction.

(1) (3, 4).

(2) (6, 0).

(3) (1, 1, 1).

(4) (−1, 2,−3).

Solution. To normalize a vector v 6= 0, all we need to do is to multiply it by a factor 1/||v||.

(1) (3, 4) 1
||(3,4)|| = (3, 4) 1√

9+15
=
(

3
5 ,

4
5

)
.

(2) (6, 0) 1
||(6,0)|| = (6, 0) 1√

36+0
= (1, 0).

(3) (1, 1, 1) 1
||(1,1,1)|| = (1, 1, 1) 1√

1+1+1
=
(

1√
3
, 1√

3
, 1√

3

)
.

(4) (−1, 2,−3) 1
||(−1,2,−3)|| = (−1, 2,−3) 1√

1+4+9
=
(
−1√
14
, 2√

14
, −3√

14

)
.

Exercise 7.4. Prove the following identities:

(1) ||u+ v||2 + ||u− v||2 = 2||u||2 + 2||v||2.
(2) u · v = 1

4 ||u+ v||2 − 1
4 ||u− v||

2.

Solution. Clearly, ||x||2 = x · x. We will use this property to solve both questions.

(1) A direct computation shows

||u+ v||2 + ||u− v||2 = (u+ v) · (u+ v) + (u− v) · (u− v)

= u · u+ u · v + v · u+ v · v + u · u− u · v − v · u+ v · v

= 2 (u · u) + 2 (v · v)

= 2||u||2 + 2||v||2.

(2) Beginning with the right hand side this time,

1

4
||u+ v||2 − 1

4
||u− v||2 =

u · u
4

+
u · v

4
+
v · u

4
+
v · v

4
−
(u · u

4
− u · v

4
− v · u

4
+
v · v

4

)
= 2

u · v
4

+ 2
v · u

4

=
1

2
u · v +

1

2
u · v

= u · v.

Exercise 7.5. Fix x = (4,−3, 6, 2) and y = (6, 1, 7, 7)

(1) 2y + 3x =?

(2) x · y =?

(3) Is
√
x · x +

√
y · y ≥

√
(x + y) · (x + y)?

Solution.

(1) 2y + 3x = (12, 2, 14, 14) + (12,−9, 18, 6) = (24,−7, 32, 20).
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(2) x · y = 24− 3 + 42 + 14 = 77.

(3) Let us compute both sides of the inequality

√
x · x +

√
y · y =

√
16 + 9 + 36 + 4 +

√
36 + 1 + 49 + 49

=
√

65 +
√

135.√
(x + y) · (x + y) =

√
(10,−2, 13, 9) · (10,−2, 13, 9)

=
√

100 + 4 + 169 + 81 =
√

354,

and the inequality holds.

Exercise 7.6. Fix x = (5, 0,−6, 2) and y = (3, 2, 3, 2)

(1) −4y + 6x =?

(2) x · y =?

(3) Is
√
x · x +

√
y · y >

√
(x + y) · (x + y)?

Solution.

(1) −4y + 6x = (−12,−8,−12,−8) + (30, 0,−36, 12) = (18,−8,−48, 4).

(2) x · y = 15 + 0− 18 + 4 = 1.

(3) Let us compute both sides of the inequality

√
x · x +

√
y · y =

√
25 + 0 + 36 + 4 +

√
9 + 4 + 9 + 4

=
√

65 +
√

26.√
(x + y) · (x + y) =

√
(8, 2,−3, 4) · (8, 2,−3, 4)

=
√

64 + 4 + 9 + 16 =
√

93,

and the inequality holds.

7.2. Functions.

A function f : A → B is a rule that assign for every element x ∈ A, one and only one element in B,

which is f (x). When considering function f : Rn → Rm from Rn to Rn, then we should understand

that the input variable x ∈ Rn is a vector, and the output variable f (x) ∈ Rm is a vector as well.

The multivariate function could be as simple as the linear function f (x, y) = x + y, which is linear in

each of its variables, and it could be a bit more complicated, such as f(x, y, z) = (x+ z, y − z).
Why are these functions so important? in elementary microeconomics, for example, we used a one-

dimensional demand function q = f (p) that simply depends on the price p. However, this model is

quite limited. In general, the demand can depend on the price of the good p, as well as on the price of

alternative goods pa and the income y. Implying that q = f (p, pa, y) = c · pc1pc2a yc3 . In addition, if we

take into account the demand of the alternative good, we get a mapping

qT (p, pa, y) = (c · pc1pc2a yc3 , c′ · pc4pc5a yc6) .

Another example is production functions. For example, consider the following Cobb-Douglas production

function1

q (K,L) = kKa1La2 ,

1The Cobb-Douglas production function is a production function, widely used to represent the technological relationship
between the amounts of two or more inputs, particularly Capital and Labor, and the amount of output that can be
produced by those inputs. The parameters a1 and a2 are the output elasticities of Capital and Labor, respectively. These
values are constants determined by available technology. (Taken from Wikipedia).

https://en.wikipedia.org/wiki/Cobb%E2%80%93Douglas_production_function
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and the Constant Elasticity of Substitutions (CES) production function2

q (K,L) = k
(
λK−a + (1− λ)L−a

)−1/a
.

Both relate to two means of production - capital K and labor L. Obviously, one can derive more general

functions that depend on di�erent elements and more variables.

Example 7.1. A sports store in St. Louis carries two kinds of tennis rackets, the Serena Williams and

the Maria Sharapova autograph brands. The consumer demand for each brand depends not only on

its own price, but also on the price of the competing brand. Sales �gures indicate that if the Williams

brand sells for x dollars per racket and the Sharapova brand for y dollars per racket, the demand for

Williams rackets will be D1 (x, y) = 300 − 20x + 30y rackets per year and the demand for Sharapova

rackets will be D2 = 200 + 40x − 10y rackets per year. Express the store's total annual revenue from

the sale of these rackets as a function of the prices x and y.

Solution. Let R denote the total monthly revenue. Then

R (x, y) = D1 (x, y)x+D2 (x, y) y

= (300− 20x+ 30y)x+ (200 + 40x− 10y) y

= 300x+ 200y + 70xy − 20x2 − 10y2.

Example 7.2. Output Q at a factory is often regarded as a function of the amount K of capital

investment and the size L of the labor force. Suppose Q (K,L) = 3K2+5L
K−L . Find the domain of Q and

compute Q(2, 1).

Solution. Since division by any real number except zero is possible, the expression Q (K,L) can be

evaluated for all ordered pairs (K,L) with K − L 6= 0 or K 6= L. Geometrically, this is the set of all

points in the KL plane except for those on the line K = L.

Q (2, 1) =
3 · (2)

2
+ 5 · (1)

2− 1
= 17.

Example 7.3. Output Q at a factory is often regarded as a function of the amount K of capital

investment and the size L of the labor force. Suppose Q (K,L) = KeL + ln (K). Find the domain of Q

and compute Q(e2, ln (2)).

Solution. Since KeL is de�ned for all real numbers K and L and since ln (K) is de�ned only for K > 0,

the domain of Q consists of all ordered pairs (K,L) of real numbers for which K > 0.

Q(e2, ln (2)) = e2eln(2) + ln
(
e2
)

= 2e2 + 2 ≈ 16.78.

7.2.1. Graphs of functions.

When we move to higher dimensions, providing a geometric representation of a function is not so easy.

Since we live in a 3dimensional world, comprehending how 4 dimensions look is problematic. Therefore,

we are so what limited in that perspective. However, there are functions we can sketch, such as functions

from R2 to R1 which are surfaces in R3. For example, the function f (x, y) = x + y is linear in every

coordinate, and its graph is a linear plane that goes through the points (0, 0, 0) with a slope of 1 in

the direction of the axis. Another example is f (x, y) = x2 + y2 which is a parabolic function in every

coordinate, with a global minimum in (0, 0).

Another way to present a function graphically is by using level curves. Taking the function f (x, y) =

x2 + y2, one can sketch the set Bn =
{

(x, y) ∈ R2 : x2 + y2 = n2
}
by drawing a circle in R2 with radius

n for every n ∈ N. In this case, we get a sketch of all the points on which the function equals n.

2Constant elasticity of substitution (CES), in economics, is a property of some production functions and utility functions.
Speci�cally, it arises in a particular type of aggregation function which combines two or more types of consumption, or
two or more types of productive inputs into an aggregate quantity. This aggregation function exhibits constant elasticity
of substitution. (Taken from Wikipedia).

https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution
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One of the simplest function we know is the linear function. A linear function also exist in higher (than

one) dimensions. However, �rst we need to de�ne a linear function. A function f : Rn → Rm is linear if

the followings properties hold for every two vectors x, y ∈ Rn and every real number c ∈ R:

• f (x+ y) = f (x) + f (y).

• f (cx) = cf (x).

Theorem 7.1. Let f : Rn → Rm be a linear function. then there exists an m × k matrix A such that

f (x) = Ax for every x ∈ Rn.

This theorem shows that a linear function could be represented by a matrix and thus, if we chose one

coordinate and �x all others, we get a one dimensional linear function (straight line in one dimension).

7.3. Limits & continuity

When using the Euclidean norm, one can generalize the limit de�nition (De�nition 2.1) directly.

Definition 7.1. Let f : Rn → Rm be a multivariate function and let x0 ∈ Rn and L ∈ Rm be two

real-valued vectors. L is the limit of f in the point x0 if for every ε > 0 there exists a δ > 0 such that

for every ‖x− x0‖ < δ, it follows that

‖f (x)− L‖ < ε.

We denote this limit by limx→x0
f (x) = L.

From the context, one can understand that ‖x − x0‖ is the distance between x and x0 in Rn, and
‖f (x) − L‖ is the distance between L and f (x) in Rm. We use this de�nition to de�ne continuous

functions in the general case. A function f is continuous in x0 if the following conditions holds:

(1) the function f has a limit L in x0.

(2) the function f is de�ned in x0.

(3) the equality f (x0) = L holds.

These are basically the same condition that we needed to ensure that a single-variable function is

continuous. One type of functions that we will consider later is the class of continuous functions f :

R→ Rn. These functions are called curves.

One way to compute limits in R2 is to substitute x, y with r cos (θ) , r sin (θ) when r is the distance of

the point from the origin and θ is the angle the line between the point and the origin creates w.r.t the

x axis. This way, we can replace the limit (x, y) → (0, 0) with the one dimensional limit r → 0, which

is easily computable.

Exercise 7.7. Find the limit the function f (x, y) = xy
x2+y2 in (0, 0) along the curves:

(1) y = 0.

(2) y (x) = x2.

(3) y (x) = x.

Solution. In every case we substitute y with the relevant y (x) that de�nes the curve.

(1)

lim
(x,y)→(0,0)

f (x, y)
y=0
= lim

x→0

x · 0
x2 + 02

=

= lim
x→0

0 = 0.

(2)

lim
(x,y)→(0,0)

f (x, y)
y=x2

= lim
x→0

x · x2

x2 + (x2)
2

= lim
x→0

x3

x2 + x4

= lim
x→0

x

1 + x2
= 0.
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(3)

lim
(x,y)→(0,0)

f (x, y)
y=x
= lim

x→0

x · x
x2 + x2

= lim
x→0

x2

2x2
=

1

2
.

we can see that, om general, the limit in (0, 0) does not exist, as di�erent curves towards (0, 0)

produce di�erent outcomes.

Exercise 7.8. Compute the following limits. If the limit does not exist, prove it.

(1) lim(x,y)→(0,0)
x3+xy
x2+y2 .

(2) lim(x,y)→(0,0)
x2y
x2+y4 .

(3) lim(x,y)→(0,0) x ln (|x|+ |y|).

Solution.

(1) Let us compute the above limit a long the curves y = 0 and y = x. If y = 0 then

lim
(x,y)→(0,0)

x3 + xy

x2 + y2
= lim

x→0

x3 + x · 0
x2 + 02

= lim
x→0

x3

x2

= lim
x→0

x = 0.

However, if y = x then

lim
(x,y)→(0,0)

x3 + xy

x2 + y2
= lim

x→0

x3 + x · x
x2 + x2

= lim
x→0

x3 + x2

2x2

= lim
x→0

x+ 1

2
=

1

2
,

which means the the limit above does not exist.

(2) We compute the limit in absolute value.

lim
(x,y)→(0,0)

∣∣∣∣ x2y

x2 + y4

∣∣∣∣ = lim
(x,y)→(0,0)

∣∣∣∣ x2

x2 + y4

∣∣∣∣ · |y|
= lim

(x,y)→(0,0)

x2

x2 + y4
· |y|

≤ lim
(x,y)→(0,0)

1 · |y| = 0.

(3) Now, we use the polar coordinates (r cos (θ) , r sin (θ)) to compute the limit.

lim
(x,y)→(0,0)

f (x, y) = lim
(x,y)→(0,0)

x ln (|x|+ |y|) =

= cos (θ) lim
r→0+

r ln (|r cos (θ)|+ |r sin (θ)|) =

= cos (θ) lim
r→0+

r ln (r (|cos (θ)|+ |sin (θ)|)) =

= cos (θ) lim
r→0

[r ln (r) + r ln (|cos (θ)|+ |sin (θ)|)] .

The term r ln (|cos (θ)|+ |sin (θ)|) goes to zero as r → 0+. Therefore, we need to compute the

limit of the �rst term.

lim
r→0+

r ln (r) = lim
r→0+

ln (r)
1
r

=

”∞∞ ”
= lim

r→0+

1
r

− 1
r2

=

= lim
r→0+

−r = 0.
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7.4. Partial derivatives

Although the de�nition of a continuous function is similar to the one-variable case, the same is not true

when it comes to derivative. As the function depends on many variables, one can take a derivative

with respect to each one di�erently. This leads us to the concept of partial derivatives. We start with

the simple case of a function f : Rn → R1. The partial derivative with respect to xi (i = 1, . . . , n) in

x = (x1, . . . , xn) is
∂f (x)

∂xi
= lim
h→0

f (x + hei)− f (x)

h
,

when ei = (0, . . . , 0, 1, 0, . . . , 0), when the ith coordinate is 1.

The partial derivative w.r.t. xi in x tells us how the function changes with an in�nitesimal change in x.

If we want to discuss the derivative of f we should understand that the function can act quite di�erently

under in�nitesimal changes in di�erent coordinates. For example, F (x, y) = x− y is increasing in x and

decreasing in y. For this reason, the Gradient of f : Rn → R1 is a vector of n coordinates de�ned as

follows:

DF (x) =

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xn

)
.

We also denote it by ∇f (x). Every coordinate is a partial derivative of f .

7.4.1. First-order approximation in Rn. One possible use of this derivative is to approximate

the value of the function near a known value. Namely, �x x0 ∈ Rn and consider the linear approximation

(FOA) which follows

f (x) ≈ f
(
x0
)

+

n∑
i=1

∂f
(
x0
)

∂xi

(
xi − x0

i

)
.

This representation of f using a linear approximation is identical to the approximation we studied in

the one-dimensional case.

An alternative formulation is reached by taking x = x0 + ∆x

f
(
x0 + ∆x

)
= f

(
x0

1 + ∆x1, . . . ,x
0
n + ∆xn

)
≈ f

(
x0
)

+

n∑
i=1

∂f
(
x0
)

∂xi
∆xi.

In some cases, we use dxi instead of ∆xi.

Exercise 7.9. It is estimated that the weekly output of a certain plant is given by the function Q(x, y) =

1, 200x + 500y + x2y − x3 − y2 units, where x is the number of skilled workers and y the number of

unskilled workers employed at the plant. Currently the workforce consists of 30 skilled workers and 60

unskilled workers. Use marginal analysis to estimate the change in the weekly output that will result

from the addition of 1 more skilled worker if the number of unskilled workers is not changed. Compare

your result with the actual change.

Solution. The partial derivative

Qx (x, y) = 1200 + 2xy − 3x2

is the rate of change of output with respect to the number of skilled workers. For any values of x and

y, this is an approximation of the number of additional units that will be produced each week if the

number of skilled workers is increased from x to x+1 while the number of unskilled workers is kept �xed

at y. In particular, if the workforce is increased from 30 skilled and 60 unskilled workers to 31 skilled

and 60 unskilled workers, the resulting change in output is approximately

Q (30, 60) = 1, 200 + 2 · 30 · 60− 3 · 302 = 2, 100.



7.4. PARTIAL DERIVATIVES 117

Whereas, the actual change is

Q (31, 60)−Q(30, 60) = 1, 200x+ 500y + x2y − x3 − y2

= 91, 469− 89, 400 = 2, 069.

Exercise 7.10. Consider the function f (x, y) = 3x2y2 − 9xy3.

(1) Find its partial derivatives using the de�nition.

(2) Find its partial derivatives using the rules of di�erentiation.

Solution. We need to �nd the partial derivatives w.r.t. x and w.r.t. y.

(1) We need to �nd the partial derivatives w.r.t. x and w.r.t. y.

∂f (x, y)

∂x
= lim

h→0

3 (x+ h)
2
y2 − 9 (x+ h) y3 − 3x2y2 + 9xy3

h

= lim
h→0

3x2y2 + 6xhy2 + 3h2y2 − 9xy3 − 9hy3 − 3x2y2 + 9xy3

h

= lim
h→0

6xhy2 + 3h2y2 − 9hy3

h

= lim
h→0

6xy2 + 3hy2 − 9y3 = 6xy2 − 9y3.

∂f (x, y)

∂y
= lim

h→0

3x2 (y + h)
2 − 9x (y + h)

3 − 3x2y2 + 9xy3

h

= lim
h→0

3x2y2 + 6x2hy + 3h2x2 − 9x
(
y3 + 3y2h+ 3yh2 + h3

)
− 3x2y2 + 9xy3

h

= lim
h→0

6x2hy + 3h2x2 − 9x
(
3y2h+ 3yh2 + h3

)
h

= lim
h→0

6x2y + 3hx2 − 27xy2 − 27xyh+−9xh2 = 6x2y − 27xy2.

(2) Using the rules of di�erentiation yields

∂f (x, y)

∂x
=

∂
(
3x2y2 − 9xy3

)
∂x

= 6xy2 − 9y3,

∂f (x, y)

∂y
=

∂
(
3x2y2 − 9xy3

)
∂y

= 6x2y − 27xy2.

Exercise 7.11. Consider the following Cobb-Douglas production function q (K,L) = kKa1La2 , and the

Constant Elasticity of Substitutions (CES) production function q (K,L) = k (λK−a + (1− λ)L−a)
−1/a

.

Compute the partial derivative of these functions assuming that all parameters are positive. Give an

economic interpretation for these derivatives.

Solution. Let us begin with the Cobb-Douglas production function.

∂q (K,L)

∂K
=

∂ (kKa1La2)

∂K

= ka1K
a1−1La2 ,

∂q (K,L)

∂L
=

∂ (kKa1La2)

∂L

= ka2K
a1La2−1.

We move on to the CES production function. Before we di�erentiate, we make a few small algebraic

changes in the function.

k
(
λK−a + (1− λ)L−a

)−1/a
= ke

ln
[
(λK−a+(1−λ)L−a)

−1/a
]

= ke−
ln(λK−a+(1−λ)L−a)

a .
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Thus,

∂q (K,L)

∂K
=

∂

(
ke−

ln(λK−a+(1−λ)L−a)
a

)
∂K

= ke−
ln(λK−a+(1−λ)L−a)

a

[
− −aλK−a−1

a (λK−a + (1− λ)L−a)

]
= k

(
λK−a + (1− λ)L−a

)−1/a
[

λK−a−1

(λK−a + (1− λ)L−a)

]
= k

(
λK−a + (1− λ)L−a

)− 1
a−1

λK−a−1.

∂q (K,L)

∂L
=

∂

(
ke−

ln(λK−a+(1−λ)L−a)
a

)
∂L

= ke−
ln(λK−a+(1−λ)L−a)

a

[
− −a (1− λ)L−a−1

a (λK−a + (1− λ)L−a)

]
= k

(
λK−a + (1− λ)L−a

)−1/a
[

(1− λ)L−a−1

(λK−a + (1− λ)L−a)

]
= k

(
λK−a + (1− λ)L−a

)− 1
a−1

(1− λ)L−a−1.

The derivative taken w.r.t. K presents the change in production given a small change in capital, while

the derivative taken w.r.t. L presents the change in production given a small change in labor.

Exercise 7.12. Consider the production function Q (K,L) = 9K1/3L2/3.

(1) What is the output when K = 216 and L = 1000?

(2) Use marginal analysis to estimate Q (216, 998) and Q (217.5, 1000). Compute these values up

to three decimal places and compare with your estimation.

Solution.

(1) Q (216, 1000) = 9 (216)
1/3

(1000)
2/3

= 9 · 6 · 100 = 5400.

(2) We use the regular linear approximation,

Q (K,L+ ∆L) ≈ Q (K,L) +
∂Q (K,L)

∂L
∆L,

and

Q (K + ∆K,L) ≈ Q (K,L) +
∂Q (K,L)

∂K
∆K.

We need to compute the partial derivatives w.r.t. K and L.

∂Q (K,L)

∂K
=

3L2/3

K2/3
;
∂Q (K,L)

∂L
=

6K1/3

L1/3
.

Hence,

Q (216, 998) ≈ Q (216, 1000) +
∂Q (216, 1000)

∂L
(−2)

= 5400−
[
6

6

10

]
· 2

= 5400− 7.2 = 5392.8,

while the true value is 5392.798. The error is −0.002.

Q (217.5, 1000) ≈ Q (216, 1000) +
∂Q (216, 1000)

∂K
(1.5)

= 5400 +

[
3

100

36

]
· 3

2

= 5400 + 12.5 = 5412.5,
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while the true value is 5412.471. The error is −0.029.

Exercise 7.13. A �rm has the Cobb-Douglas production function Q = 10x
1/3
1 x

1/2
2 x

1/6
3 . It is currently

using the input bundle (27, 16, 64)

(1) How much is it producing?

(2) Use di�erentials to approximate its new output when x1 = 27.1, x2 = 15.7, and x3 remains

the same.

(3) Compare your results for an exact computation with a calculator.

Solution.

(1) Q (27, 16, 64) = 10 · 271/3 · 161/2 · 641/6 = 10 · 3 · 4 · 2 = 240.

(2) The relevant partial derivatives are

∂Q (x1, x2, x3)

∂x1
=

10x
1/2
2 x

1/6
3

3x
2/3
1

,
∂Q (x1, x2, x3)

∂x2
=

5x
1/3
1 x

1/6
3

x
1/2
2

.

Thus,

Q (27.1, 15.7, 64) = Q (27, 16, 64) +
∂Q (27, 16, 64)

∂x1
∆x1 +

∂Q (27, 16, 64)

∂x2
∆x2

= 240 + 0.1 · 10 · 161/2 · 641/6

3 · 272/3
− 0.3 · 5 · 271/3 · 641/6

161/2

= 240 + 0.1 · 10 · 4 · 2
3 · 9

− 0.3 · 5 · 3 · 2
4

= 238.046.

(3) The actual output is 238.032, an error of 0.14.

7.4.2. The Jacobian matrix and The Hessian matrix.

To generalize this notion, let f be a function from Rn to Rm. That is, f (x) = (f1 (x) , . . . , fm (x)) when

fi is a function from Rn to R1. We can apply the same notion once again to every fi and get that the

derivative, usually called the Jacobian (or, Jacobian matrix \ derivative) is a matrix

DF
(
x0
)

=


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn

 .

The Jacobian is also denoted by Jf (x).

The Hessian, or Hessian matrix, is similar to the Jacobian, where the derivatives are of the second order

instead of the �rst order. The Hessian of a function f : Rn → R is

D2F (x) = HF (x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x2∂x1

· · · ∂f2(x)
∂xn∂x1

∂f2(x)
∂x1∂x2

∂f2(x)
∂x2

2
· · · ∂f2(x)

∂xn∂x2

...
...

. . .
...

∂f2(x)
∂x1∂xn

∂f2(x)
∂x2∂xn

· · · ∂f2(x)
∂x2
n

 .

It is easy to generalize this to the general case of a function f : Rn → Rm, as every coordinate of f , i.e.,

every fi, is di�erentiated w.r.t. every xi and xj .

When high-order derivatives are concerned, there is one important theorem that helps us with the

computation, and that is Young's theorem.

Theorem 7.2. (Young's theorem) Suppose that f : Rn → Rm is a C2 function, then for every

coordinates i, j, k it holds that
∂2fk
∂xi∂xj

=
∂2fk
∂xj∂xi

.

Young's theorem tells us that the order by which we di�erentiate is not important when the function

are at least twice continuously di�erential.
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Exercise 7.14. Using Young's theorem, compute the third order partial derivatives of Q = 4K3/4L1/4.

Solution. We compute the partial derivatives up to the third order explicitly.

∂Q

∂K
= 3K−

1
4L

1
4 ,

∂Q

∂L
= K

3
4L−

3
4 ,

∂2Q

∂K2
= −3

4
K−

5
4L

1
4 ,

∂2Q

∂L2
= −3

4
K

3
4L−

7
4 ,

∂2Q

∂L∂K
= ∂2Q

∂K∂L =
3

4
K−

1
4L−

3
4 .

And the third order derivatives are

∂3Q

∂K3
=

15

16
K−

9
4L

1
4 ,

∂3Q

∂L3
=

21

16
K

3
4L−

11
4 ,

∂3Q

∂L∂K2
= − 3

16
K−

5
4L−

3
4 ,

∂3Q

∂K∂L2
= − 9

16
K−

1
4L−

7
4 ,

and all the other derivative are given by Young's theorem.

Exercise 7.15. In this question we examine a function such that Young's theorem does not hold.

f (x, y) =

0, if (x, y) = (0, 0) ,

x3y−xy3
x2+y2 , if (x, y) 6= (0, 0) .

(1) Prove that the partial derivatives in (0, 0) are both zero.

(2) Compute the partial derivative for any point (x, y).

(3) Compute the partial derivative in (0, y) and in (x, 0).

(4) Prove that the second partial derivatives in (0, 0) are not equal.

Solution.

(1) When x = 0, then f (0, y) = 03y−0y3

02+y2 = 0 and the same holds for f (x, 0), thus

∂f (0, 0)

∂x
= lim

x→0

f (x, 0)− f (0, 0)

x
= lim
x→0

0− 0

x
= 0,

∂f (0, 0)

∂y
= lim

y→0

f (0, y)− f (0, 0)

y
= lim
y→0

0− 0

y
= 0.

(2) We can use the rules of di�erentiation and get

∂f (x, y)

∂x
=

(
3x2y − y3

) (
x2 + y2

)
− 2x

(
x3y − xy3

)
(x2 + y2)

2

=
3x4y + 3x2y3 − y3x2 − y5 − 2x4y + 2x2y3

(x2 + y2)
2

=
x4y + 4x2y3 − y5 − x3y2

(x2 + y2)
2 .

∂f (x, y)

∂y
=

(
x3 − 3xy2

) (
x2 + y2

)
− 2y

(
x3y − xy3

)
(x2 + y2)

2

=
x5 + x3y2 − 3x3y2 − 3xy4 − 2x3y2 + 2xy4

(x2 + y2)
2

=
x5 − 4x3y2 − xy4

(x2 + y2)
2 .

(3) Using the previous computation yields

∂f (0, y)

∂y
= 0 ,

∂f (x, 0)

∂y
= x,

∂f (0, y)

∂x
= −y ,

∂f (x, 0)

∂x
= 0.
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(4) We compute the second derivatives using the de�nition.

∂2f (0, 0)

∂x∂y
= lim

x→0

∂f(x,0)
∂y − ∂f(0,0)

∂y

x
= lim
x→0

x− 0

x
= 1,

∂2f (0, 0)

∂y∂x
= lim

y→0

∂f(0,y)
∂x − ∂f(0,0)

∂x

y
= lim
x→0

−y − 0

y
= −1.

We can see that the second derivative in (0, 0) are not equal.

Exercise 7.16. Consider the production function Q = K3/4L3/4. Show that the marginal productivity

of each factor is diminishing. Show, however, that if the input combination is doubled, then output

more than doubles.

Solution. We need to compute the partial derivatives.

∂Q

∂K
=

3L3/4

4K1/4
,
∂Q

∂L
=

3K3/4

4L1/4
.

We can see that the productivity diminishes in every factor. However,

Q (2K, 2L) = 26/4K3/4L3/4

= 21.5K3/4L3/4 > 2Q (K,L) .

7.4.3. The chain rule.

A function f : Rn → Rm is continuously di�erential on a set U if the partial derivative
∂fj(x)
∂xi

in every

coordinates i, j and in every point x ∈ U exists, and it is continuous in x. In other words, a function

is continuously di�erential if it has all its partial derivatives and all of them are continuous. The set of

functions that are continuously di�erential is denoted by C1. Moreover, the set of functions that are n

times continuously di�erential is denoted by Cn.

When composing two functions, the derivative of the composition is based on the derivative of both

functions we used. For that purpose we have the chain rule. In the one-dimensional case, the chain

rule was relatively simple. However, the generalization is a bit more complicated. Thus, we make this

generalization in two stages. First we present the chain rule for curves and later on for general functions.

Theorem 7.3. (The chain rule for curves) Assume that x (t) = (x1 (t) , . . . , xn (t)) is a C1 curve3

and f : Rn → R is also C1. Then g (t) = (f ◦ x) (t) = f (x1 (t) , . . . , xn (t)) is also C1 and

g′ (t) =
dg (t)

dt
=

∂f (x (t))

∂x1
· dx1 (t)

dt
+ · · ·+ ∂f (x (t))

∂xn
· dxn (t)

dt

=
∂f (x (t))

∂x1
x′1 (t) + · · ·+ ∂f (x (t))

∂xn
x′n (t) =

= ∇f (x (t)) · (x′1 (t) , . . . , x′n (t)) .

We see that the derivatives of the composition is the inner product of the gradients of both functions.

Theorem 7.4. (The chain rule for general functions) Let f : Rn → Rm and g : Rk → Rn be two

C1 functions such that the composition h = f ◦ g : Rk → Rm is well de�ned. Then h (x) = (f ◦ g) (x) is

also C1 and the Jacobian of h is given by

Dh (x) = Df (g (x)) ·Dg (x) =

Jh (x) = Jf (g (x)) · Jg (x) .

In words, the Jacobian of h is the matrix product of the Jacobian of f in g (x) and the Jacobian of g in

x.

3As we do not want to discuss the domain and co-domain of every function, we assume that the composition of functions
is well de�ned.
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Note that the Jacobian of f is an m× n matrix and the Jacobian of g is an n× k matrix, which means

that the matrix product of both is well de�ned and yields an m× k matrix, as the Jacobian of h should

be.

Exercise 7.17. At a given moment in time, the marginal product of labor is 2.5 and the marginal

product of capital is 3, the amount of capital is increasing by 2 each unit of time and the rate of change

of labor is +0.5. What is the rate of change of output w.r.t. time?

Solution. The rate of change of output is ∆Q = 2.5 · 0.5 + 3 · 2 = 7.25.

Exercise 7.18. Let f (x, y) = 3xy2 + 2x where x (t) = −3t2 and y (t) = 4t3 + t.

(1) Use the chain rule to �nd how f (x (t) , y (t)) changes as a function of t.

(2) Use substitution and direct di�erentiation to compute how f changes as a function of t.

Solution.

(1) With the chain rule we get

d

dt
f (x (t) , y (t)) =

∂f

∂x
· x′ (t) +

∂f

∂y
· y′ (t)

=
(
3y2 (t) + 2

)
(−6t) + 6x (t) y (t) ·

(
12t2 + 1

)
.

(2) Using direct di�erentiation we get

d

dt
f (x (t) , y (t)) =

d

dt
f
(
−3t2, 4t3 + t

)
=

d

dt

[
3
(
−3t2

) (
4t3 + t

)2
+ 2

(
−3t2

)]
=

d

dt

[
−9t2

(
4t3 + t

)2 − 6t2
]

= −3
d

dt

[
t2
(

3
(
4t3 + t

)2
+ 2
)]

= −6t
(
4t3 + t

) [
3
(
4t3 + t

)
+ 2 + 3t

(
12t2 + 1

)]
.

Exercise 7.19. A health store carries two kinds of vitamin water, brand A and brand B. Sales �gures

indicate that if brand A is sold for x dollars per bottle and brand B for y dollars per bottle, the demand

for brand A will be Q (x, y) = 300− 20x2 + 30y bottles per month. It is estimated that t months from

now the price of brand A will be x = 2 + 0.05t dollars per bottle, and the price of brand B will be

y = 2 + 0.1
√
t dollars per bottle. At what rate will the demand for brand A be changing with respect

to time 4 months from now?

Solution. Your goal is to �nd dQ
dt when t = 4. Using the chain rule, you get

dQ

dt
=
∂q

∂x
· dx
dt

+
∂q

∂y
· dy
dt

= −40x · (0.05) + 30 ·
(
0.05t−0.5

)
.

When t = 4, we get x = 2 + 0.05 · 4 = 2.2, hence

dQ

dt
= −40 · 2.2 · 0.05 + 30 · 0.05 · 0.5 = −3.65.

That is, 4 months from now the monthly demand for brand A will be decreasing at the rate of 3.65

bottles per month.

Exercise 7.20. Let w (r, s) be a function from R2 to R. Assume that r = y − x and that s = y + x.

De�ne F (x, y) = w (r (x, y) , s (x, y)). Compute the partial derivatives of F in terms of the partial

derivatives of w.
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Solution. A direct computation shows

∂F

∂x
=

∂w

∂r
· ∂r
∂x

+
∂w

∂s
· ∂s
∂x

= −∂w
∂r

+
∂w

∂s
;

∂F

∂y
=

∂w

∂r
· ∂r
∂y

+
∂w

∂s
· ∂s
∂y

=
∂w

∂r
+
∂w

∂s
.

7.5. The Implicit function theorem

The functions we dealt with so far were explicit functions. For example, y = f (x1, x2, . . . , xn) as the

endogenous variable y is a function of the exogenous variables x1, . . . , xn. There are functions, commonly

known as implicit functions, where the variables cannot be separated as in the previous case, so that

F (x1, x2, . . . , xn, y) = 0 represents y as an implicit function of the variables x1, . . . , xn. For example,

y3−3xy+x2−7 = 0. For every value of x, we can solve the equation for y and get a value (when there is

more than one value we can choose one). This implies that y is a function of x, but this function cannot

be represented generally in the form y = f (x), because x and y cannot be algebraically separated.

When considering these functions, we wish to know whether we can represent y explicitly as a function

of the other variables, and also compute it's derivative. For that we have the Implicit Function Theorem.

Theorem 7.5. (Implicit Function Theorem) Let F (x, y) be a C1 function where x = (x1, . . . , xn) ∈
Rn and y ∈ R. Assume there exists a vector

(
x0, y0

)
=
(
x0

1, . . . , x
0
n, y0

)
such that

F
(
x0, y0

)
= Constant;

∂F
(
x0, y0

)
∂y

6= 0.

Then, there exists a C1 function Y = Y (x1, . . . , xn) such that

(1) F (x, Y (x)) = c, for every vector x ∈ Rn close to x0;

(2) Y
(
x0
)

= y0, and

(3)
∂Y (x0)
∂xi

= −
∂F(x0,y0)

∂xi
∂F(x0,y0)

∂y

, for every coordinate xi.

The motivation behind the theorem is to construct a function Y which, essentially, represents the variable

y, at least locally, around x0. We do not know how the function Y looks like, so we do not have an

explicit formulations for it. However, we do know the value of the function at x0,which is y0,we do know

that the function sustain the equality w.r.t. F (where F (x, Y (x)) = c), and most importantly, we know

the derivative of Y w.r.t. every xi. Thus, by the �rst and third point above, we can produce a �rst-order

approximation of Y w.r.t. every other coordinate, and this �rst-order approximation will give us some

intuition of the behavior of the variable y, according to the xis, at least locally around x0.

For example, consider the previous example F (x, y) = y3−3xy+x2 = 7 and the point
(
x0, y

0
)

= (4, 3).

We can see that the point sustains the condition F (4, 3) = 7. If we compute that partial derivatives of

F we get,

∂F (x, y)

∂x
= −3y + 2x ,

∂F (x, y)

∂y
= 3y2 − 3x,

∂F (4, 3)

∂x
= −1 ,

∂F (4, 3)

∂y
= 15.

Thus, the conditions of the Implicit Function Theorem, Theorem 7.5, hold, so we know that a C1

function Y (x) exists around x = 4, that sustains the three conditions above. That is,

(1) F (x, Y (x)) = 7, for every x near 4,
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(2) Y (4) = 3, and

(3) Y ′ (4) = −
∂F (4,3)
∂x

∂F (4,3)
∂y

= 1
15 .

Why does that help us? Well, assume that we want to know the value of y when x = 4.3. Then we can

use the �rst-order approximation and get

Y (4.3) ≈ Y (4) + y′ (4) ∆x

= 3 +
1

15
· 0.3 = 3.02.

The true value in this case is F (4.3, y) = y3 − 12.9y + 18.49 = 7. Solving the equation yields

y3 − 12.9y + 11.49 = 0 ⇒ y = 3.01475.

Exercise 7.21. Prove the the expression x2 − xy3 + y5 = 17 is an implicit function of y in terms of x

around the point
(
x0, y0

)
= (5, 2). Estimate the value of y when x = 4.8.

Solution. First, de�ne F (x, y) = x2 − xy3 + y5. We can see that 52 − 5 · 23 + 25 = 25− 40 + 32 = 17,

as needed. In addition,

∂F (x, y)

∂x
= 2x− y3 ,

∂F (x, y)

∂y
= −3xy2 + 5y4,

∂F (5, 2)

∂x
= 2 ,

∂F (5, 2)

∂y
= −20,

and the second condition of Theorem 7.5 holds as well. The estimation yields

y (4.8) = y (5) + y′ (5) ∆x

= 2 +

(
−
∂FG(5,2)

∂x
∂F (5,2)
∂y

)
(−0.2) =

= 2− 2

20
· 1

5
= 1.98.

Exercise 7.22. Consider the function F (x1, x2, y) = x2
1 − x2

2 + y3.

(1) If x1 = 6 and x2 = 3 then �nd a y which satis�es F (x1, x2, y) = 0.

(2) Does the equation de�ne y as a function of (x1, x2) near (6, 3)?

(3) If so, compute the partial derivative of y in (6, 3).

(4) If (x1, x2) = (6.2, 2.9) estimate the value of y.

Solution.

(1) We need to solve the equation

36− 9 + y3 = 0,

y3 = −27,

y = −3.

(2) We need to see whether the second condition of the Implicit Function Theorem holds.

∂F (x1, x2, y)

∂y
= 3y2,

∂F (6, 3,−3)

∂y
= 27 6= 0.

Thus, the conditions hold.

(3) Lets us compute the partial derivatives of the function F ,

∂F (x1, x2, y)

∂x1
= 2x1 ,

∂F (x1, x2, y)

∂x2
= −2x2,

∂F (6, 3,−3)

∂x1
= 12 ,

∂F (6, 3,−3)

∂x2
= −6.
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Therefore,

∂y (6, 3)

∂x1
= −

∂F (6,3,−3)
∂x1

∂F (6,3,−3)
∂y

= − 12

27
= −4

9
,

∂y (6, 3)

∂x2
= −

∂F (6,3,−3)
∂x2

∂F (6,3,−3)
∂y

= −−6

27
=

2

9
.

(4) We can use �rst-order approximation and get

y (6.2, 2.9) = y (6, 3) +
∂y (6, 3)

∂x1
∆x1 +

∂y (6, 3)

∂x2
∆x2

= −3− 4

9
· 2

10
− 2

9
· 1

10
= −3.111.

Exercise 7.23. Consider the function 3x2yz + xyz2 = 30 as de�ning x as an implicit function of (y, x)

around (1, 3, 2).

(1) Estimate x when (y, z) = (3.2, 2).

(2) Solve the equation 3x2yz+xyz2 = 30 explicitly to �nd x as a function of y, z. Use approximation

to estimate x when (y, z) = (3.2, 2). Which way was easier?

Solution.

(1) We need to �nd the derivative of x w.r.t. y.

∂x (y, z)

∂y
= −

∂(3x2yz+xyz2)
∂y

∂(3x2yz+xyz2)
∂x

= −3x2z + xz2

6xyz + yz2

= − 5

24
, at (1, 3, 2) .

Hence,

x (3.2, 2) = x (3, 2) +
∂x (y, z)

∂y
∆y

= 1− 5

24
· 0.2 =

23

24
.

(2) Solving the second-order equation 3x2yz + xyz2 − 30 = 0 yields

x =
−yz2 +

√
y2z4 + 360yz

6yz

∂x (y, z)

∂y
=

6yz
(
−z2 + 2yz2+360z

2(y2z4+360yz)

)
−
(
−yz2 +

√
y2z4 + 360yz

)
6z

36y2z2
.

When plugging in (3, 2) we get − 5
24 , as before. Clearly the �rst method was much easier.

Exercise 7.24. Suppose the output at a certain factory is Q (x, y) = 2x3 + x2y + y3 units, where x is

the number of hours of skilled labor used and y is the number of hours of unskilled labor. The current

labor force consists of 30 hours of skilled labor and 20 hours of unskilled labor. Estimate the change in

unskilled labor y that should be made to o�set a 1-hour increase in skilled labor x, so that output will

be maintained at its current level.

Solution. The current level of output is the value of Q when x = 30 and y = 20. That is,

Q (30, 20) = 2 · 303 + 302 · 20 + 203 = 80, 000.
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If output is to be maintained at this level, the relationship between skilled labor x and unskilled labor

y is given by the equation

80, 000 = 2x3 + x2y + y3,

which de�nes y implicitly as a function of x. The goal is to estimate the change in y that corresponds

to a 1-unit increase in x when x and y are related by this equation. The change in y caused by a

1-unit increase in x can be approximated by the derivative dy
dx . To �nd this derivative, we use implicit

di�erentiation.

0 = 6x2 + x2 dy

dx
+ 2xy + 3y2 dy

dx
dy

dx

(
−x2 − 3y2

)
= 6x2 + 2xy

dy

dx
= −6x2 + 2xy

x3 + 3y2
= −6 · 302 + 2 · 30 · 20

303 + 3 · 202
= −3.14.

That is, to maintain the current level of output, unskilled labor should be decreased by approximately

3.14 hours to o�set a 1-hour increase in skilled labor.

7.6. Multidimensional Integrals

7.6.1. Integrals in several variables.

Integrating a function with several variables is not that di�erent from one-variable integration. Similarly

to di�erentiation, when integrating several variables we relate to the other variables as constant and

integrate the function as if it was a one-variable function.

However, there are times that we wish to compute one integral before the other. That is, assume that

f (x, y) is an integrable function (which means that we can compute its integral which is �nite), and

assume that we need to compute ˆ 1

0

ˆ y

0

f (x, y) dxdy.

There are cases, where it is easier to �rst integrate the y variable and only later the x variable. For

these cases, we have Fubini's Theorem.

Theorem 7.6. (Fubini's Theorem) If the function f (x, y) is integrable and the integral is �nite, thenˆ ˆ
f (x, y) dxdy =

ˆ [ˆ
f (x, y) dx

]
dy =

ˆ [ˆ
f (x, y) dy

]
dx.

7.6.2. Di�erentiating integrals.

Often we want to di�erentiate an objective function to �nd an optimum, and when the objective function

has an integral we need to know how to di�erentiate it. There is a rule for doing so, called Leibniz's rule,

named after the 17th-century German mathematician who was one of the two independent inventors of

calculus (along with Newton). We want to �nd

d

dt

ˆ b(t)

a(t)

f(x, t)dx.

Note that we are di�erentiating with respect to t, and we are integrating with respect to x. Nevertheless,

t shows up three times in the expression, once in the upper limit of the integral, b(t), once in the lower

limit of the integral, a(t), and once in the integrand, f(x, t). We need to �gure out what to do with

these three terms.

Three things happen when t changes. First, the function f(x, t) shifts. Second, the right endpoint b(t)

changes, and third, the left endpoint a(t) changes. Leibniz's rule accounts for all three of these shifts.

Leibniz's rule says

d

dt

ˆ b(t)

a(t)

f(x, t)dx =

ˆ b(t)

a(t)

∂f(x, t)

∂t
dx+ b′(t)f(b(t), t)− a′(t)f(a(t), t).
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Each of the three terms corresponds to one of the shifts we mentioned. The �rst term accounts for the

shift of the curve f(x, t). The term ∂f(x,t)
∂t tells how far the curve shifts at point x, and the integral´ b(t)

a(t)
∂f(x,t)
∂t dx tells how much the area changes because of the shift in f(x, t). The second term accounts

for the movement in the right endpoint, b(t). The third term accounts for the movement in the left

endpoint, a(t). Putting these three terms together gives us Leibniz's rule, which looks complicated but

hopefully makes sense.

One of the important uses for this operation is in the �eld of auction theory. In auctions, when searching

for an equilibrium, we sometimes need to optimize function that are based on integrals. We will discuss

such examples broadly when we study probability.

Exercise 7.25. Compute the following derivative. First by using Leibniz's rule, and then by integrating

and taking the required derivative.

(1) d
dt

´ t2
−t2 tx

2dx.

(2) d
dt

´ 4t2

−3t
t2x3dx.

Solution. We start by di�erentiating both integrals directly.

d

dt

ˆ t2

−t2
tx2dx =

ˆ t2

−t2
1 · x2dx+ 2t ·

(
t ·
(
t2
)2)− (−2t) ·

(
t ·
(
−t2

)2)
=

ˆ t2

−t2
x2dx+ 2t6 + 2t6

=
t6

3
− −t

6

3
+ 4t6

=
14

3
t6.

d

dt

ˆ 4t2

−3t

t2x3dx =

ˆ 4t2

−3t

2tx3dx+ 8t ·
(
t2 ·
(
4t2
)3)− (−3) ·

(
t2 · (−3t)

3
)

= 2t

ˆ 4t2

−3t

x3dx+ 29t9 − 34t5

= t

[(
4t2
)4

2
− (−3t)

4

2

]
+ 29t9 − 34t5

= 27t9 − 34

2
t5 + 29t9 − 34t5

= 5 · 27t9 − 35

2
t5.

Now, we �rst integrate and then take the derivative.

d

dt

ˆ t2

−t2
tx2dx =

d

dt

[
t
(
t2
)3

3
−
t
(
−t2

)3
3

]

=
d

dt

[
2t7

3

]
=

14

3
t6.
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d

dt

ˆ 4t2

−3t

t2x3dx =
d

dt

[
t2
(
4t2
)4

4
− t2 (−3t)

4

4

]

=
d

dt

[
43t10 − 34

4
t6
]

= 10 · 26t9 − 6 · 34

4
t5

= 5 · 27t9 − 35

2
t5.



CHAPTER 8

Optimization

8.1. Unconstrained optimization

Though functions of more than one variable are complicated, �nding an extreme point of such a function

is quite similar to the one-dimensional case. Similarly to Fermat's Theorem, Theorem 2.3, when a

function f : Rn → R1 is C1 and it has a local minimum (or, a local maximum) x, then ∂f(x)
∂xi

= 0 for

every i = 1, . . . , n.

Theorem 8.1. Let f : Rn → R1 be a C1 function with an interior local minimum (or, a local maximum)

x, then ∂f(x)
∂xi

= 0 for every i = 1, . . . , n.

Again, the fact that the partial derivatives are zero, does not imply that the point is an extreme point.

It is the other way around.

One can use the Hessian of f to determined whether the point is a minimum, a maximum, or a saddle

point.

Lemma 8.1. Let f : Rn → R1 be a C1 function where all the partial derivative in a point x are zero (we

assume that x is an inner point of the domain of f).

• If the Hessian Hf (x) is a negative (semi-) de�nite symmetric matrix, then f is a strictly

(weakly) concave function, which implies that x is a strict (weak) local maximum of f .

• If the Hessian Hf (x) is a positive (semi-) de�nite symmetric matrix, then f is a strictly

(weakly) convex function, which implies that x is a strict (weak) local minimum of f .

• If the Hessian Hf (x) is a inde�nite symmetric matrix, then f is neither concave nor convex,

thus x is neither a local minimum of f , nor a local maximum of f .

In case you do not remember what the de�niteness of a matrix is, you should go over Section 6.2 once

more. Here is a quick reminder of Theorem 6.1.

Lemma 8.2. Let f : Rn → R1 be a C1 function where all the partial derivative in a point x are zero (we

assume that x is an inner point of the domain of f).

• The Hessian Hf (x) is positive de�nite (semi-positive de�nite) if all principle minor are strictly

positive (non-negative, respectively) . That is, if

∣∣∣∂2f
∂x2

1

∣∣∣ > 0,

∣∣∣∣∣
∂2f
∂x2

1

∂2f
∂x2∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
∂2f
∂x2

1

∂2f
∂x2∂x1

∂2f
∂x3∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2

∂2f
∂x3∂x2

∂2f
∂x1∂x3

∂2f
∂x2∂x3

∂2f
∂x2

3

∣∣∣∣∣∣∣∣ > 0, . . .

Alternatively, the Hessian is positive de�nite if all its eigenvalues are positive. (Semi-positive

de�nite follows from either non-negative eigenvalues or non-negative principle minors.)

• The Hessian Hf (x) is negative de�nite (semi-negative de�nite) if have alternating signs: the

minors of odd order are strictly positive and the others are strictly negative. That is, if

∣∣∣∂2f
∂x2

1

∣∣∣ > 0,

∣∣∣∣∣
∂2f
∂x2

1

∂2f
∂x2∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2

∣∣∣∣∣ < 0,

∣∣∣∣∣∣∣∣
∂2f
∂x2

1

∂2f
∂x2∂x1

∂2f
∂x3∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2

∂2f
∂x3∂x2

∂2f
∂x1∂x3

∂2f
∂x2∂x3

∂2f
∂x2

3

∣∣∣∣∣∣∣∣ > 0, . . .

129
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Alternatively, the Hessian is negative de�nite if all its eigenvalues are negative. (Semi-negative

de�nite follows from either non-positive eigenvalues or alternating signs in principle minors

with weak inequalities.)

• If the principle minors of Hf (x) violate the two previous patterns, then x is a saddle point.

Exercise 8.1. The production function of a �rm is F (K,L) = K1/4L1/2. The retail price of the product

is 12, and the unit price of capital and labor are 6 each. Find the optimal values for K and L.

Solution. The pro�t function is

π (K,L) = 12K1/4L1/2 − 6K − 6L.

The �rst order conditions are

∂π (K,L)

∂K
= 3K−3/4L1/2 − 6 = 0,

∂π (K,L)

∂L
= 6K1/4L−1/2 − 6 = 0.

Thus,

L1/2

K3/4
= 2 ⇒ L2 = 16K3,

K1/4

L1/2
= 1 ⇒ K = L2.

And we get K = 0.25, L = 0.5. The Hessian is(
∂2f
∂K2

∂2f
∂L∂K

∂2f
∂K∂L

∂2f
∂L2

)
=

(
− 9

4K
−7/4L1/2 3

2K
−3/4L−1/2

3
2K
−3/4L−1/2 −3K1/4L−3/2

)

=

(
− 9

4 · 0.25−7/40.51/2 3
2 · 0.25−3/40.5−1/2

3
2 · 0.25−3/40.5−1/2 −3 · 0.251/40.5−3/2

)
.

But computing the leading principal minors we get that the point is a strict local maximum.

Exercise 8.2. A monopolist is facing two distinct markets - a domestic market and a foreign one. Let

Qi be the amount supplied to market i, and let Pi = Gi (Qi) be the inverse demand function of market

i. Speci�cally, the revenue from market i is QiPi = QiGi (Qi) when

G1 (Q1) = 50−Q1, G2 (Q2) = 100− 10Q2.

The cost function of the �rm is

C (Q1 +Q2) = C (Q) = 90 + 20Q.

Find how much should the monopoly produce for each market in order to maximize pro�t.

Solution. The monopolist pro�t function is

π (Q1, Q2) = Q1 (50−Q1) +Q2 (100−Q2)− 90− 20 (Q1 +Q2) =

= 30Q1 −Q2
1 + 80Q2 −Q2

2 − 90.

The FOC conditions show that

∂π (Q1, Q2)

∂Q1
= 30− 2Q1 = 0,

∂π (Q1, Q2)

∂Q2
= 80− 2Q2 = 0.

Thus,

Q1 = 15, Q2 = 40.
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For the SOC we get ∂2π(Q1,Q2)
∂Q2

1

∂2π(Q1,Q2)
∂Q2∂Q1

∂2π(Q1,Q2)
∂Q1∂Q2

∂2π(Q1,Q2)
∂Q2

2

 =

(
−2 0

0 −2

)
.

One can see that the �rst LPM is −2 and the second LPM is 4, which means that the bundle is pro�t

maximizing.

Exercise 8.3. Find the critical points of the functions

f (x, y) = 4x2 + 3y2 − 12xy + 18x.

f (x, y) = 16xy − 4x+ 2y−1.

Solution. Taking the FOC for f (x, y) = 4x2 + 3y2 − 12xy + 18x yields

fx (x, y) = 8x− 12y + 18 = 0,

fy (x, y) = 6y − 12x = 0.

Thus, y = 2x and

8x− 24x+ 18 = 0

⇓

16x = 18

x =
9

8
, y =

9

4
.

Taking the FOC for f (x, y) = 16xy − 4x+ 2y−1 yields

fx (x, y) = 16y − 4 = 0,

fy (x, y) = 16x− 2y−2 = 0.

And y = 1
4 ,

x =
1

8y2
= 2.

Exercise 8.4. A �rm has a Cobb-Douglas production function

Q (x, y) = xayb.

It faces output prices of p, and input prices of w, r respectively. Find the pro�t-maximizing input bundle.

Find condition on the parameters such that this solution is a global maximum.

Solution. The pro�t function is

π (x, y) = pxayb − wx− ry.

The FOC yield

πx (x, y) = apxa−1yb − w = 0,

πy (x, y) = bpxayb−1 − r = 0.

Solving this system gives y = bw
ar x, and so

w

ap
= xa−1

(
bw

ar
x

)b
x =

[
w1−brb

a1−bpbb

]1/(a+b−1)

,

y =
bw

ar

[
w1−brb

a1−bpbb

]1/(a+b−1)

.
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The Hessian is (
a (a− 1) pxa−2yb abpxa−1yb−1

abpxa−1yb−1 b (b− 1) pxayb−2

)
.

Thus the �rst LPM is a (a− 1) pxa−2yb < 0 if and only if a ∈ (0, 1). The second LPM is

ab
[
(a− 1) (b− 1) p2x2a−2y2b−2 − abp2x2a−2y2b−2

]
= abp2x2a−2y2b−2 [(a− 1) (b− 1)− ab]

= abp2x2a−2y2b−2 [1− a− b] .

And if a+ b < 1, a ∈ (0, 1) , and b ∈ (0, 1), this is a global maximum.

8.2. Optimization with constraints

8.2.1. Equality constraints.

In the previous section we studied unconstrained optimization problems. We had a function f : Rn → R1

and we needed to maximize or minimize it. However, many problems in economics have constraints. For

example, consider a simple consumers problem. If the consumers do not have a budget constraint, and

given that more consumption is better for the consumers, a consumer would choose an in�nite amount

of every good. Clearly this cannot be achieved in the real world, because consumers cannot purchase

unlimited quantities of goods. The budget constraint is another condition that we need to take into

account when trying to optimize the utility of the consumer. How do we that? Well, it turns out to be

not that di�cult due a very simple, yet ingenious, function called The Lagrangian.

8.2.1.1. Lagrangian.

The Lagrangian is named after the person who developed it, a 18th century Italian-French mathemati-

cian, called Joseph-Louis Lagrange. The Lagrangian takes the function we wish to optimize and the

conditions we need to sustain and bundles into one function that we need to optimize. It is a very

elegant and easy way to solve constrained optimization problems. How does it work?

(1) Assume that we wish to maximize a function f (x) when f : Rn → R1, but we have the

following m equality constraints given by the equations

g1 (x) = a1,

g2 (x) = a2,

...

gm (x) = am,

where gi : Rn → R1 is a C1 function and ai ∈ R, for every i = 1, . . . ,m.

(2) First, we write down the Lagrangian L : Rn+m → R1,

L (x, λ1, . . . , λm) = f (x) +

m∑
i=1

λi [ai − gi (x)] .

Note that L is a function of x and of λ1, . . . , λm, where λi are called the Lagrange multipliers.

(3) Next we use the FOC (�rst-order condition) on L. That is, we compare the partial derivatives

to 0 and �nd the critical points,

∂L (x, λ1, . . . , λm)

∂x1
= 0, . . . ,

∂L (x, λ1, . . . , λm)

∂xn
= 0,

∂L (x, λ1, . . . , λm)

∂λ1
= 0, . . . ,

∂L (x, λ1, . . . , λm)

∂λn
= 0.

The following theorem concludes this procedure.
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Theorem 8.2. Let f : Rn → R1 and gi : Rn → R1 wherei = 1, . . . ,m be C1 functions, and consider the

problem of maximizing (or minimizing) f (x) given the constraints

g1 (x) = a1,

g2 (x) = a2,

...

gm (x) = am,

where ai ∈ R for every i = 1, . . . ,m. If x∗ is a solution for this problem then there exists (λ∗1, . . . , λ
∗
m)

such that

∂L (x∗, λ∗1, . . . , λ∗m)

∂x1
= 0, . . . ,

∂L (x∗, λ∗1, . . . , λ∗m)

∂xn
= 0,

∂L (x∗, λ∗1, . . . , λ∗m)

∂λ1
= 0, . . . ,

∂L (x∗, λ∗1, . . . , λ∗m)

∂λn
= 0.

In other words, the theorem states that if a solution exists, then we should �nd it by the FOC of The

Lagrangian.

The best way to understand this procedure at this point is by exercising it several times, thus we move

along to solving problems.

Exercise 8.5. A consumer has a utility function

u (x1, x2) = x0.5
1 x0.5

2 ,

The prices are p1 = 10, p2 = 20 and his budget is M = 120. Find the bundle that maximizes his utility.

Solution. The maximizing problem is

maxx1,x2
u (x1, x2) = x0.5

1 x0.5
2 ,

s.t. 10x1 + 20x2 = 120.

The Lagrangian is

L (x1, x2, λ) = x0.5
1 x0.5

2 + λ (120− 10x1 − 20x2) .

The FOCs give

Lx1
(x1, x2, λ) =

√
x2

2
√
x1
− 10λ = 0,

Lx2
(x1, x2, λ) =

√
x1

2
√
x2
− 20λ = 0,

Lλ (x1, x2, λ) = 120− 10x1 − 20x2 = 0.

Solving this system yields

x1 = 6, x2 = 3, λ =
1

20
√

2
.

Exercise 8.6. Solve the maximization problem

maxx1,x2
f (x1, x2) = 3x1x2 + 4x1,

s.t. 4x1 + 12x2 = 80.

Solution. The Lagrangian is

L (x1, x2, λ) = 3x1x2 + 4x1 + λ (80− 4x1 − 12x2) .
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The FOCs give

Lx1 (x1, x2, λ) = 3x2 + 4− 4λ = 0,

Lx2 (x1, x2, λ) = 3x1 − 12λ = 0,

Lλ (x1, x2, λ) = 80− 4x1 − 12x2 = 0.

Solving this system yields

x1 = 12, x2 =
8

3
, λ = 3.

Exercise 8.7. Solve the minimization problem

minx1,x2
f (x1, x2) = 5x1 + 2x2,

s.t. 3x1 + 2x1x2 = 80.

Solution. The Lagrangian is

L (x1, x2, λ) = 5x1 + 2x2 + λ (80− 3x1 − 2x1x2) .

The FOCs give

Lx1 (x1, x2, λ) = 5− 3λ− 2λx2 = 0,

Lx2 (x1, x2, λ) = 2− 2λx1 = 0,

Lλ (x1, x2, λ) = 80− 3x1 − 2x1x2 = 0.

Solving this system yields two results and the one that minimizies the function is

x1 = −4, x2 = −11
1

2
, λ = −1

4
.

Exercise 8.8. Solve the maximization problem

maxx1,x2
f (x1, x2) = x1x2,

s.t. x1 + 4x2 = 16.

Solution. The Lagrangian is

L (x1, x2, λ) = x1x2 + λ (16− x1 − 4x2) .

The FOCs give

Lx1
(x1, x2, λ) = x2 − λ = 0,

Lx2
(x1, x2, λ) = x1 − 4λ = 0,

Lλ (x1, x2, λ) = 16− x1 − 4x2 = 0.

Solving this system yields

x1 = 8, x2 = 2, λ = 2.

Exercise 8.9. Solve the maximization problem

maxx1,x2
f (x1, x2) = x2

1x2,

s.t. 2x2
1 + x2

2 = 3.

Solution. The Lagrangian is

L (x1, x2, λ) = x2
1x2 + λ

(
3− 2x2

1 − x2
2

)
.
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The FOCs give

Lx1 (x1, x2, λ) = 2x1x2 − 4λx1 = 0,

Lx2 (x1, x2, λ) = x2
1 − 2λx2 = 0,

Lλ (x1, x2, λ) = 3− 2x2
1 − x2

2 = 0.

Solving this system yields several solutions, thus we can plug each solution into the goal function and

see which is the maximizer. The �nal solution is

x1 = 1 , x2 = 1,

or

x1 = −1 , x2 = 1.

Exercise 8.10. Solve the maximization problem

maxx1,x2,x3 f (x1, x2, x3) = x1x2x3,

s.t. x2
1 + x2

2 = 1,

x1 + x3 = 1.

Solution. The Lagrangian is

L (x1, x2, x3, λ1, λ2) = x1x2x3 + λ1

(
1− x2

1 − x2
2

)
+ λ2 (1− x1 − x3) .

The FOCs give

Lx1
(x1, x2, x3, λ1, λ2) = x2x3 − 2λ1x1 − λ2 = 0,

Lx2
(x1, x2, x3, λ1, λ2) = x1x3 − 2λ1x2 = 0,

Lx3
(x1, x2, x3, λ1, λ2) = x1x2 − λ2 = 0,

Lλ1
(x1, x2, x3, λ1, λ2) = 1− x2

1 − x2
2 = 0,

Lλ2
(x1, x2, x3, λ1, λ2) = 1− x1 − x3 = 0.

The �nal solution is

x1 ≈ −0.7676, x2 = −0.6409, x3 = 1.7676.

Exercise 8.11. Find the optimal bundle for the general Cobb-Douglas utility function

u (x1, x2) = kxa1x
1−a
2 ,

on the budget set p1x1 + p2x2 = I.

Solution. The Lagrangian is

L (x1, x2, λ) = kxa1x
1−a
2 + λ (I − p1x1 − p2x2) .

The FOCs give

Lx1
(x1, x2, λ) = kaxa−1

1 x1−a
2 − λp1 = 0,

Lx2
(x1, x2, λ) = k (1− a)xa1x

−a
2 − λp2 = 0,

Lλ (x1, x2, λ) = I − p1x1 − p2x2 = 0.

Solving this system yields

x1 =
aI

p1
, x2 =

(1− a) I

p2
.

Exercise 8.12. Find the point closest to the origin that is on both planes

3x+ y + z = 5,

x+ y + z = 1.
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Solution. We need to solve the minimization problem

minx,y,z f (x, y, z) = x2 + y2 + z2,

s.t. 3x+ y + z = 5,

x+ y + z = 1.

The Lagrangian is

L (x, y, z, λ1, λ2) = x2 + y2 + z2 + λ1 (5− 3x− y − z) + λ2 (1− x− y − z) .

The FOCs give

Lx (x, y, z, λ1, λ2) = 2x− 3λ1 − λ2 = 0,

Ly (x, y, z, λ1, λ2) = 2y − λ1 − λ2 = 0,

Lz (x, y, z, λ1, λ2) = 2z − λ1 − λ2 = 0,

Lλ1
(x, y, z, λ1, λ2) = 5− 3x− y − z = 0,

Lλ2
(x, y, z, λ1, λ2) = 1− x− y − z = 0.

The solution we get from this system is

(x, y, z) =

(
2,−1

2
,−1

2

)
.

8.2.2. Inequality constraints.

The previous problems focused on equality constraints. But what happens when some of the constraints

are in the form of inequalities? For example, instead of the constraints set

g1 (x) = a1,

g2 (x) = a2,

...

gm (x) = am,

we have

g1 (x) = a1,

g2 (x) = a2,

...

gk (x) = ak,

gk+1 (x) ≤ ak+1,

...

gm (x) ≤ am.

What happens now? The setup is quite simple to the one we had before. We still form the Lagrangian,

but now we take a few di�erent conditions as the following theorem states.

Remark 8.1. We now focus on maximization problems. When we have inequality constraints, then

distinction is important, thus the following formulation holds for the maximization problem depicted.
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Theorem 8.3. Let f : Rn → R1 and gi : Rn → R1 wherei = 1, . . . ,m be C1 functions, and consider the

problem of maximizing f (x) given the constraints

g1 (x) = a1,

g2 (x) = a2,

...

gk (x) = ak,

gk+1 (x) ≤ ak+1,

...

gm (x) ≤ am.

where ai ∈ R for every i = 1, . . . ,m. De�ne the Lagrangian function

L (x, λ1, . . . , λm) = f (x) +

m∑
i=1

λi [ai − gi (x)] .

If x∗ is a solution for this problem, then there exists (λ∗1, . . . , λ
∗
m) such that

∂L (x∗, λ∗1, . . . , λ∗m)

∂xi
= 0, for every i = 1, . . . , n,

∂L (x∗, λ∗1, . . . , λ∗m)

∂λi
= 0, for every i = 1, . . . , k,

and for every inequality constraint i = k + 1, . . . ,m, it holds that
λ∗i (ai − gi (x∗)) = 0,

λ∗i ≥ 0,

gi (x∗) ≤ ai.

Note that the formulation of the Lagrangian is such that all constraints are taken as non-negative

constraints. That is, we write ai− gi (x) ≥ 0 which is non negative, instead of gi (x)−ai ≤ which is non

positive.

Remark 8.2. What happens if we have a minimization problem? In that case, the formulation is similar

to the one presented in Theorem 8.3, but the Lagrangian is formulated with a minus sign, such that

L (x, λ1, . . . , λm) = f (x)−
m∑
i=1

λi [ai − gi (x)] .

8.2.2.1. Kuhn-Taker Formulation.

When the constraints are of the form

x1 ≥ 0,

x2 ≥ 0,

...

xn ≥ 0,

gn+1 (x) ≤ an+1,

...

gm (x) ≤ am,
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that is, when there are m+ n inequality constraints, when the �rst n relate to the non negativity of the

coordinates of the solution, the Lagrangian of the maximization is de�ned as

(8.2.1) L (x, λ1, . . . , λm) = f (x) +

n∑
i=1

λixi +

m∑
i=n+1

λi [ai − gi (x)] ,

which is identical to the Lagrangian presented in Theorem 8.3 with the relevant constraints. Yet, as this

setup is quite common in economic problems, the Lagrangian presented in Equation 8.2.1 is called the

Kuhn-Tucker Lagrangian. It is named after its developers, Harold Kuhn and A.W. Tucker.

Exercise 8.13. Solve the maximization problem

maxx1,x2 f (x1, x2) = x1 − x2
2,

s.t. x2
1 + x2

2 = 4,

x1 ≥ 0,

x2 ≥ 0.

Solution. The Lagrangian is

L (x1, x2, λ1, λ2, λ3) = x1 − x2
2 + λ1x1 + λ2x2 + λ3

(
4− x2

1 − x2
2

)
.

The conditions we need to sustain are

Lx1 (x1, x2, λ1, λ2, λ3) = 1 + λ1 − 2λ3x1 = 0,

Lx2 (x1, x2, λ1, λ2, λ3) = −2x2 + λ2 − 2λ3x2 = 0,

Lλ3 (x1, x2, λ1, λ2, λ3) = 4− x2
1 − x2

2 = 0,

λ1x1 = 0, λ2x2 = 0,

λi ≥ 0, for i = 1, 2,

xi ≥ 0, for i = 1, 2.

We can see that 1 + λ1 = 2λ3x1 implies that x1 > 0 and λ3 > 0 (since λ1 ≥ 0). Thus, the equation

λ1x1 = 0 implies that λ1 = 0. Take the second equation are write it down as 2x2 (1 + λ3) = λ2. Since

1+λ3 > 0, we can deduce that either λ2 and x2 are both strictly positive or both are zero. By λ2x2 = 0,

we conclude that λ2 = x2 = 0. Thus,

x2
1 + 0 = 4 ⇒ x1 = 2,

⇒ λ1 = 0,

⇒ λ3 =
1

4
.

The �nal solution is

(x1, x2, λ1, λ2, λ3) =

(
2, 0, 0, 0,

1

4

)
.

Exercise 8.14. Solve the maximization problem

maxx1,x2
f (x1, x2, x3) = x1x2x3,

s.t. x1 + x2 + x3 ≤ 1,

x1 ≥ 0,

x2 ≥ 0,

x3 ≥ 0.

Solution. The Lagrangian is

L (x1, x2, x3, λ1, λ2, λ3, λ4) = x1x2x3 + λ1x1 + λ2x2 + λ3x3 + λ4 (1− x1 − x2 − x3) .
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The conditions we need to sustain are

Lx1 (x1, x2, x3, λ1, λ2, λ3, λ4) = x2x3 + λ1 − λ4 = 0,

Lx2 (x1, x2, x3, λ1, λ2, λ3, λ4) = x1x3 + λ2 − λ4 = 0,

Lx3 (x1, x2, x3, λ1, λ2, λ3, λ4) = x1x2 + λ3 − λ4 = 0,

λ4 (1− x1 − x2 − x3) = 0, λ1x1 = 0,

λ2x2 = 0, λ3x3 = 0,

λi ≥ 0, for i = 1, 2, 3, 4,

xi ≥ 0, for i = 1, 2, 3,

and, x1 + x2 + x3 ≤ 1.

The �rst three equations can be written as

λ4 = x2x3 + λ1 = x1x3 + λ2 = x1x2 + λ3.

We need to separate the problem into two cases: λ4 = 0 or λ4 > 0. If λ4 = 0, by the non negativity of

the variables we get that λi = 0 ∀i = 1, 2, 3, 4, and

x2x3 = x1x2 = x1x3 = 0.

Thus, the solution is that two variables equal zero, and the last one equals any number in [0, 1]. Speci�-

cally, the objective function equals zero, and clearly this is a minimum point and not a maximum given

the above-mentioned conditions. Now assume that λ4 > 0. Thus, we get

1− x1 − x2 − x3 = 0,

and at least one coordinate is strictly positive. Assume that x1 = 0. Thus,the equations

λ4 = x2x3 + λ1 = x1x3 + λ2 = x1x2 + λ3,

and the fact λ4 > 0 yield

λ2 = λ3 = λ4 > 0.

This means that x2 = x3 = 0 which contradicts the conclusion that x1 + x2 + x3 = 1. Thus x1 > 0, and

by symmetry, the same holds for x2 and x3. Hence, λ1 = λ2 = λ3 = 0, and

x2x3 = x1x3 = x1x2

⇓

x2 = x1 = x3,

and the solution is

(x1, x2, x3, λ1, λ2, λ3, λ4) =

(
1

3
,

1

3
,

1

3
, 0, 0, 0,

1

9

)
.

Exercise 8.15. Solve the minimization problem

minx1,x2
f (x1, x2) = −x2

1 + 2x2,

s.t. x2
1 + x2

2 ≤ 1,

x1 ≥ 0,

x2 ≥ 0.

Solution. Note that this is a minimization problem and so the Lagrangian is

L (x1, x2, λ1, λ2, λ3) = −x2
1 + 2x2 − λ1x1 − λ2x2 − λ3

(
1− x2

1 − x2
2

)
.
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The conditions we need to sustain are

Lx1 (x1, x2, λ1, λ2, λ3) = −2x1 − λ1 + 2λ3x1 = 0,

Lx2 (x1, x2, λ1, λ2, λ3) = 2− λ2 + 2λ3x2 = 0,

λ1x1 = 0, λ2x2 = 0,

λ3

(
1− x2

1 − x2
2

)
= 0

λi ≥ 0, for i = 1, 2, 3

xi ≥ 0, for i = 1, 2,

and, x2
1 + x2

2 ≤ 1.

Writing the equation 2 + 2λ3x2 = λ2 and using the non negativity of all the variables yields

λ2 > 0⇒ x2 = 0,

as λ2x2 = 0. Thus, we conclude that λ2 = 2. From the equation 2x1 + λ1 = 2λ3x1 we conclude that

if x1 = 0, then λ1 = 0. If x1 = λ1 = 0, then x1 = x2 = 0, and the goal function is also 0. However,

if x1 > 0, then λ1 = 0 and λ3 = 1 (follows from 2x1 + λ1 = 2λ3x1). Hence, by λ3

(
1− x2

1 − x2
2

)
= 0

we know that x2 = 0 and x1 = 1. In this situation, the goal function is f (1, 0) = −1 and this is the

minimum of the function given the previous constraints.

Remark 8.3. For more exercises, one could use the Book �Must Have Tools for Graduate Study in

Economics� by William Neilson, pages 48-51, and pages 67-70.
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CHAPTER 9

Basic concepts in probability and statistics

9.1. Probability spaces and axioms

Every probability (down to its most basic element) starts with some kind of an experiment whose result

we cannot accurately predict. The experiment has several possible outcomes, each may occur due to

several parameters which we bind together as Probability.

To better understand the notion of probability, we start with one of the simplest experiment which is -

a symmetric coin toss. Assume we have a coin with ′0′ written on one side, and ′1′ written on the other

side. We are told that half the times the coin lands on ′0′. Therefore, every toss of this symmetric coin

is an experiment, that could end with ′0′ with probability (w.p.) 0.5, or ′1′ w.p. 0.5.

The set of all possible results is denoted by Ω, which is a sample space. A probability function Pr : 2Ω →
R is a function that assigns a number Pr (A) ∈ [0, 1] to every subset A ⊆ Ω. A subset A of the sample

space is call an event. In the example above, Ω = {0, 1} and

Pr ({1}) =
1

2
, Pr ({2}) =

1

2
, Pr ({1, 2}) = 1, Pr (φ) = 0.

Another simple example is a simple symmetric dice with six faces. In this case, Pr (A) = |A|
6 for every

subset A ⊆ Ω as Ω = {1, 2, 3, 4, 5, 6}. The couple (Ω,Pr) is called a probability space.

9.1.1. The Probability axioms.

There is a good reason for using the number of elements is a subset of the sample space to de�ne the

probability of that set. It is for the symmetry between the di�erent possible results in the sample space

and the basic assumptions on the probability function. There are three axioms, know as The Probability

Axioms, or The Kolmogorov axioms, that we assume on Pr (·):

(1) For every event A ⊆ Ω, it follows that Pr (A) ≥ 0.

(2) Pr (Ω) = 1.

(3) Any countable sequence of disjoint1 events A1, A2, . . . satis�es Pr (
⋃∞
i=1Ai) =

∑∞
i=1 Pr (Ai).

These three axioms are all the assumptions we make on the function Pr (·).

Exercise 9.1. Prove the following statements:

(1) For every event A, it holds that Pr (Ac) = 1− Pr (A).

(2) Pr (φ) = 0.

(3) if A ⊂ B, then Pr (A) ≤ Pr (B).

Solution.

(1) Note that A ∪Ac = Ω and since A and Ac are disjoint, it follows that

Pr (A) + Pr (Ac) = Pr (A ∪Ac)

= Pr (Ω)

= 1

⇒ Pr (Ac) = 1− Pr (A) .

(2) This follows directly from the previous conclusion and the axiom Pr (Ω) = 1 when Ωc = φ.

1Events A1, A2, . . . are disjoint if Ai ∩Aj = φ for every i 6= j.
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(3) De�ne the event C = B \A, and note that C and A are disjoint such that C ∪A = B. Hence,

Pr (B) = Pr (C ∪A)

= Pr (C) + Pr (A)

≥ Pr (A) ,

since Pr (C) ∈ [0, 1].

9.1.2. The inclusion�exclusion principle.

The inclusion-exclusion principle gives us an easy way to compute the probability of unions of events.

It states that:

• For any two events A,B, it holds that

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B) .

• For any three events A,B,C, it holds that

Pr (A ∪B ∪ C) = Pr (A) + Pr (B) + Pr (C)

− Pr (A ∩B)− Pr (A ∩ C)− Pr (B ∩ C)

+ Pr (A ∩B ∩ C) .

Exercise 9.2. We toss a symmetric, six-faces dice twice.

(1) De�ne the probability space.

(2) Write down the event A where both tosses are identical and the event B where the sum of

results equals 4.

(3) Compute Pr (A) , Pr (B) , and Pr (A ∪B).

Solution.

(1) The sample space is Ω = {(i, j) : i, j = 1, 2, . . . , 6} and Pr (ω) = 1/36 for every ω ∈ Ω.

(2) A = {(i, i) : i = 1, 2, . . . , 6} and B = {(i, j) : i+ j = 4, i, j = 1, 2, 3}.
(3) Using the probability axioms, we get

Pr (A) = 6 · 1

36
=

1

6
,

Pr (B) = 3 · 1

36
=

1

12
.

Now we use the inclusion-exclusion principle. First,Pr (A ∩B) = Pr (2, 2) = 1
36 . Thus,

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B)

=
6

36
+

3

36
− 1

36
=

2

9
.

Exercise 9.3. There are n students in a class room. What is the probability that there exists at least

one couple of students with the same birthday?

Solution. Let A be the event where there is at least one couple of students with the same birthday. We

are going to compute Pr (Ac). In order for no such couple to exists, all the students must have di�erent

birthdays. Thus we need to choose n dates from 365 possible days of the year, and then distribute them

to the students. The size of the sample space is |Ω| = 365n as every student has, in general, 365 options.

Therefore,

Pr (Ac) =

(
365
n

)
n!

365n
=

365!

365n (365− n)!
,

⇒ Pr (A) = 1− 365!

365n (365− n)!
,

which is more than half when n = 23, and about 0.994 when n = 60.
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Exercise 9.4. How many solutions are there for the equation x1 + x2 + · · ·+ xm = n?

Solution. We solve this question by creating an equivalent experiment. Assume you have m− 1 sticks

and n identical balls which you place in a raw. The sticks act as partitions and the balls within two

sticks is the number of balls in that partition. Note that randomly organizing these objects in a raw

creates m cells (including the two outer cell created by the extreme sticks) and the number of balls states

the value of that cell. This is exactly like distributing n times the number 1 into m di�erent variables.

Thus the answer to the question is
(
n+m−1

n

)
, or

(
n+m−1
m−1

)
.

Exercise 9.5. In a box there are 100 bulbs among which 6 are defected. We choose 5 randomly without

putting them back in the box.

(1) What is the probability that we will have exactly 2 working bulbs?

(2) What is the probability that we will have at least 2 working bulbs?

Solution.

(1) Let Aibe the event where we have exactly i working bulbs. The probability of A2 is

Pr (A2) =

(
94
2

)(
6
3

)(
100
5

) .

(2) We can sum up disjoint events and get

Pr

(
5⋃
i=2

Ai

)
=

5∑
i=2

Pr (Ai)

=
1(

100
5

) 5∑
i=2

(
94

i

)(
6

5− i

)
.

9.2. Conditional probability

The idea behind conditional probability is to give changes in probability when the information we have

changes. For example, take a basic experiment of tossing twice a fair six-faces dice. We know that every

combination (i, j) when i, j ∈ 1, . . . , 6 have the same 1/36 probability to be realized. Now assume that

someone told us that the sum of the two tosses is at least 10, now what is the probability of a couple

(i, j) to be realized? Well, in this case, we can intuitively say that

Pr ((i, j) |i+ j ≥ 10) =



1
6 , if (i, j) = (4, 6) ,

1
6 , if (i, j) = (6, 4) ,

1
6 , if (i, j) = (5, 5) ,

1
6 , if (i, j) = (5, 6) ,

1
6 , if (i, j) = (6, 5) ,

1
6 , if (i, j) = (6, 6) ,

0, otherwise.

Note that we used symmetry to compute the non-zero probabilities.

Definition 9.1. (Conditional probability) The probability of event A conditional on event B such

that Pr (B) > 0 is

Pr (A|B) =
Pr (A ∩B)

Pr (B)
.

Proposition 9.1. For any event B with positive probability, the conditional probability Pr (·|B) is a

probability. That is, it sustains the three probability axioms.

Proof. We need to prove that Pr (·|B) sustains the three probability axioms. First,

Pr (A|B) =
Pr (A ∩B)

Pr (B)
≥ 0,
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as both the numerator and the denominator are non-negative. Second,

Pr (Ω|B) =
Pr (Ω ∩B)

Pr (B)
=

Pr (B)

Pr (B)
= 1.

And last, let A1, A2, . . . be a sequence of disjoint events. Then

Pr

(⋃
i

Ai|B

)
=

Pr ((
⋃
iAi) ∩B)

Pr (B)

=
Pr (

⋃
i (Ai ∩B))

Pr (B)

=

∑
i Pr (Ai ∩B)

Pr (B)

=
∑
i

Pr (Ai ∩B)

Pr (B)

=
∑
i

Pr (Ai|B) ,

as required. �

Exercise 9.6. An urn contains 10 white balls, 5 yellow balls, and 10 black balls. You take out a ball

at random and it turns out that it is not black.

(1) What is the probability that it is yellow?

(2) What is the probability that it is white?

Solution.

(1) Pr (Y |Bc) = Pr(Y ∩Bc)
Pr(Bc) = Pr(Y )

Pr(Bc) =
5
25
15
25

= 1
3 .

(2) Pr (W |Bc) = 1− Pr (Y |Bc) = 2
3 .

Example 9.1. Assume that a patient can either be healthy, an event denoted by H, or he

can have a certain condition, an event denoted by U . He takes a test to determine his status.

The probabilities are given in the following table:

Positive test Negative test Overall

H 0.001 0.987 0.988

U 0.010 0.002 0.012

Overall 0.011 0.989

we can see that condition U is rare, only 0.012 percent of the population have it (that is,

12 people out of every 1000 people on average).

(a) Assuming that the test was positive, what is the probability of actually having the condi-

tion?

(b) Assuming that the test was negative, what is the probability of actually having the con-

dition?

These question are based on the idea of conditional probabilities. First, denote the event that the test

was positive, meaning the person has the condition, by P , and the event where the test is negative is

denoted N . We need to compute the following probabilities:

Pr (U |P ) =? , Pr (U |N) =?
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Using conditional probability,

Pr (U |P ) =
Pr (U ∩ P )

Pr (P )
=

=
0.010

0.011
=

10

11
≈ 0.91,

Pr (U |N) =
Pr (U ∩N)

Pr (N)
=

=
0.002

0.989
=

2

989
≈ 0.002.

This means that a false positive (getting a positive test when you do not have the condition) occurs w.p.

0.09. Almost 10% of the times! On the other hand, a false negative occur only 0.2% of the times.

9.2.1. Bayes' Law.

Bayes' law is basically a simple law of conditional probability that helps us to transform the relation

between the event in question and the event we condition on. This law is easily derived from the

de�nition of conditional probability: For any two events A,B both with positive probabilities,

Pr (A|B) =
Pr (B|A) Pr (A)

Pr (B)
.

Usually in economics, we call Pr (A) the prior (probability), as this is the probability we have before we

get additional information. The probability Pr (A|B) is called the posterior, as it is known to us only

after event B is given.

Although Bayes' law is simple and very important in economics (game theory, �nance and so on), people

do not always follow it. Consider the example given by Kahneman and Tversky in 1973 (published in

Psychological Review).

Example 9.2. (Kahneman and Tversky, 1973) Some subjects are told that a group consists of

70 lawyers and 30 engineers. The rest of the subjects are told that the group has 30 lawyers and 70

engineers. All subjects were then given the following description:

Dick is a 30 year old man. He is married with no children. A man of high ability and high motivation,

he promises to be quite successful in his �eld. He is well liked by his colleagues.

Subjects were then asked to judge the probability that Dick is an engineer. Subjects in both groups said

that it is about 0.5, ignoring the prior information. Note that the new information is uninformative and

irrelevant, so

Pr (engineer| new information) = Pr (engineer) ,

or in other words, Pr (B|A) = Pr (B). According to Bayes rule the posterior should be the same as the

prior, Pr (A|B) = Pr (A).

9.2.2. Law of total probability.

The law of total probability is a very important aspect in probability theory. It helps us to compute the

probability of may events in the same manner a probability tree helps with the computation. In fact,

the law of total probability is a mathematical, or more accurately an algebraic, way to write down a

probability tree.

Definition 9.2. (The law of total probability) Assume that B1, B2, . . . is a countable sequence

(�nite or in�nite) of disjoint events that forms a partition of the sample space Ω. That is, Bi ∩Bj = φ

and
⋃
iBi = Ω. Then, for every event A it follows

Pr (A) =
∑
i

Pr (A|Bi) Pr (Bi) .

This law states the one can break down every event to a countable set of smaller events, compute the

probability of each conditional event and take its product with the probability of the event, on which

we conditioned. This is basically the same thing we do with probability trees. First we write down all
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the edges (that are the di�erent options Bi). Then we compute the probability that the event A occurs

in every edge. And lastly we sum-up the probabilities of all the edges.

Exercise 9.7. We toss two fair, six-faces dices until the sum of the two is higher than 10.

(1) What is the probability that the number of tosses will be less than 10?

(2) What is the probability that we will get a sum of 12 before we get a sum of 11?

Solution.

(1) Let A be the required event. In order for the number of tosses to be less than 10, we need no

more than 9 repetitions. Let us compute the probability of Ac. The event Ac states that there

are at least 10 repetitions, which means that we need to fail 9 straight times. The probability

of getting a sum that is higher than 10 is 3
36 = 1

12 . Thus, the probability of failing 9 straight

times is
(

11
12

)9
. Hence, Pr (A) = 1−

(
11
12

)9
.

(2) We solve this question by conditioning on the �rst experiment. Let X be the outcome of the

�rst experiment and let A be the event where we get a sum of 12 before we get a sum of 11.

Pr (A) = Pr (A|X = 11) Pr (X = 11)

+ Pr (A|X = 12) Pr (X = 12)

+ Pr (A|X 6= 11, 12) Pr (X 6= 11, 12)

= 0 · 2

36
+ 1 · 1

36
+ Pr (A) · 33

36
,

where we use symmetry between the tosses to conclude that if the sum of the �rst toss in

neither 11 nor 12, then the probability of A remains the same. Thus,

3

36
Pr (A) =

1

36
,

Pr (A) =
1

3
.

Exercise 9.8. In a casino we have two slot machines. One of them has a 0.4 probability of winning and

the other has a 0.2 probability of winning. A person chooses the following strategy: he picks a machine

at random, if he wins, he plays another game, otherwise he plays the next game in the other machine.

(1) What is the probability of losing both games?

(2) What is the probability of winning exactly one game?

Solution.

(1) We need to condition on the machine that the person choose. Let A be the event where he

choose the machine with the higher probability and denote the event where he chose the other

machine by B. We use W and L to denote a win or a lose, respectively.

Pr (L,L) = Pr (L,L|A) Pr (A) + Pr (L,L|B) Pr (B)

=
3

5
· 4

5
· 1

2
+

4

5
· 3

5
· 1

2

=
12

25
.

(2) Let us compute the probability of winning both games.

Pr (W,W ) = Pr (W,W |A) Pr (A) + Pr (W,W |B) Pr (B)

=

(
2

5

)2

· 1

2
+

(
1

5

)2

· 1

2

= 0.1.

Thus, the probability of winning exactly one game is 1− 0.5− 0.1 = 0.4.

Exercise 9.9. A binary signal passes through a noisy system.
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• If the signal is ′0′, there is a probability of e0 that is goes through as ′1′.

• If the signal is ′1′, there is a probability of e1 that is goes through as ′0′.

answer the following questions:

(1) Assuming the we sent out ′0′ w.p. p, and ′1′ w.p. 1 − p. What is the probability that the

signal received is accurate?

(2) What is the probability that the signal ′1011′ reaches its destination correctly?

(3) Assuming that we submit every signal three times and it is interpreted according to the majority

rule. What is the probability that a signal of ′0′ will be decoded accurately?

(4) Given the probabilities in the previous questions 1 and 3. If we received ′101′, what are the

chances that the original transmission was ′000′?

Solution.

(1) Denote by A the event where the signal passed correctly. We use ′s′0,
′ s′1 to denote the signal

that were sent out and ′r′0,
′ r′1 to denote the signals received.

Pr (A) = Pr (r0|s0) Pr (s0) + Pr (r1|s1) Pr (s1)

= (1− e0) p+ (1− e1) (1− p) .

(2) The probability is (1− e1)
3

(1− e0).

(3) The signal will be decoded correctly if among the three received signals there are at least two
′0′. Therefore, the probability is (1− e0)

3
+
(

3
2

)
(1− e0)

2
e0.

(4) First, we wish to write down the question mathematically.

Pr (s0s0s0|r1r0r1) =?

We can compute this using the law of total probability and Bayes' law.

Pr (s0s0s0|r1r0r1) =
Pr (r1r0r1|s0s0s0) Pr (s0s0s0)

Pr (r1r0r1)

=
e2

0 (1− e0) p

Pr (r1r0r1|s0s0s0) Pr (s0s0s0) + Pr (r1r0r1|s1s1s1) Pr (s1s1s1)

=
e2

0 (1− e0) p

e2
0 (1− e0) p+ e1 (1− e1)

2
(1− p)

.

Exercise 9.10. There are three chests with two drawers each. All look the same from the outside. In

one chest there are two gold coins, one in each drawer, in another chest there are two silver coins and

the last has one silver coin and one gold coin. We pick a chest and a drawer randomly. Given that we

found a gold coin, what are the chances that the other coin is also gold?

Solution. We need to condition on the chest we chose. Denote the following events:

• Gi, choosing the chest with i gold coins when i = 0, 1, 2.

• A, �nding a gold coin in a random drawer we choose.

Pr (G2|A) =
Pr (A|G2) Pr (G2)

Pr (A)

=
1 · (2/3)

1/2
=

2

3
.

Exercise 9.11. In the �rst group there are 17 girls and 3 boys. In the second group there are 5 girls

and 10 boys. We choose two students randomly from the second group and move them to the �rst

group. Then, we choose randomly one student from the �rst group. What is the probability that the

last student is a boy? is a girl?
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Solution. We need to condition on the students that were moved from the second group to the �rst.

Let Gi be the event where i boys moved from the second group to the �rst (i = 0, 1, 2).

Pr (Boy) =

2∑
i=0

Pr (Boy|Gi) Pr (Gi)

=
3

22
Pr (G0) +

4

22
Pr (G1) +

5

22
Pr (G2)

=
3

22
·
(

5
2

)(
15
2

) +
4

22
·
(

10
1

)(
5
1

)(
15
2

) +
5

22
·
(

10
2

)(
15
2

)
=

3

22
· 4 · 5

14 · 15
+

4

22
· 5 · 10 · 2

14 · 15
+

5

22
· 9 · 10

14 · 15

=
1

77
+

20

77 · 3
+

15

77 · 2
=

13

66
,

and Pr (Girl) = 1− Pr (Boy) = 53
66 .

Exercise 9.12. There are 3 coins, two fair coins (with equal probabilities to fall on both sides) and one

coin that lands on ′H ′ w.p. 0.25. We choose one coin at random and �ip it twice.

(1) What is the probability of getting exactly one ′H ′?

(2) Given we got exactly one time ′H ′, what is the probability that we chose the non-symmetric

coin?

Solution.

(1) We condition on the chosen coin. Let F denote the event of a fair coin chosen, and let U

denote the event of choosing the unfair coin. Denote by Hi the event of getting i times ′H ′.

Therefore,

Pr (H1) = Pr (H1|U) Pr (U) + Pr (H1|F ) Pr (F )

= 2 · 1

4
· 3

4
· 1

3
+ 2 · 1

2
· 1

2
· 2

3
=

11

24
.

(2) Bayes' law states that

Pr (U |H1) =
Pr (H1|U) Pr (U)

Pr (H1)

=
2 · 1

4 ·
3
4 ·

1
3

11
24

=
3

11
.

9.2.3. The Monty Hall Problem.

This problem is based on a game show called �Lets Make a Deal� whose host for several years was Monty

Hall.

Exercise 9.13. (The Monty Hall Problem) There are three doors, labeled A,B, and C, when

behind only one of them there is a prize and nothing behind the other two (with equal probabilities for

each door). The host, Monty Hall, o�ers a contestant the choice among three doors. Then, the host,

who knows where the prize is, reveals one of the doors with no prize. The contestant needs to choose

whether to stay with her original pick or switch to the other door. What should she do?

Solution. The answer is that she should take the other door. To see why, suppose she chooses door

A, and that Monty reveals door B. What is the probability that the prize is behind door C given that

door B was revealed? Bayes' rule says we use the formula

Pr (prize in C| open B) =
Pr (open B| prize in C) Pr (prize in C)

Pr (open B)
.

By symmetry, we know that Pr (prize in C) = Pr (prize in A) = Pr (prize in B) = 1/3. When the prize

is in C, the probability of opening door B is 1. This is due to the fact that Monty cannot open door A

(as this is the door the contestant choose), and he cannot open door C, as the prize is there. Using the
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law of total probability we get

Pr (open B) = Pr (open B| prize in A) Pr (prize in A)

+ Pr (open B| prize in B) Pr (prize in B)

+ Pr (open B| prize in C) Pr (prize in C)

=
1

2
· 1

3
+ 0 · 1

3
+ 1 · 1

3
=

1

2
.

Thus

Pr (prize in C| open B) =
Pr (open B| prize in C) Pr (prize in C)

Pr (open B)

=
1 · 1

3
1
2

=
2

3
.

This means that the probability of winning by switching is 2/3, and this is true also in the case that

Monty opens door C. Since A is arbitrarily, we conclude that switching guarantees a probability of 2/3

of winning.

9.3. Independent events

We say that two events are independent if the realization of one event does not a�ect the probability

that the other is realized.

Definition 9.3. Let A,B be two events given a probability space (Ω,Pr). The events A and B are

independent if Pr (A ∩B) = Pr (A) Pr (B).

Exercise 9.14. In the library there are 10 probability books, 5 with solutions. When a student comes

to collect a book, he gets one at random. One book is lost. A student borrows a book and brings it

back after 3 days. A week later, a di�erent student comes and also borrows a book at random. De�ne

the following events:

• A- the �rst student got a book with solutions.

• B- the second student got a book with solutions.

Are A and B independent?

Solution. Let S be the event the the lost book has solution. Thus,

Pr (A) = Pr (A|S) Pr (S) + Pr (A|Sc) Pr (Sc)

=
4

9
· 1

2
+

5

9
· 1

2
=

1

2
.

One can verify that the same computation hols for Pr (B). However,

Pr (A ∩B) = Pr (A ∩B|S) Pr (S) + Pr (A ∩B|Sc) Pr (Sc)

=
42

81
· 1

2
+

52

81
· 1

2
=

41

162
>

1

2
· 1

2
= Pr (A) Pr (B) ,

which means that the event are dependent. The intuition behind this result is interesting. Although the

students do not take book at the same time, the fact the one either got a book with solution or without,

a�ects the probability that the other will get a book with solutions. To make this more intuitive, try

think of what would happen had we repeated the process for many times. Would we then know what

kind of book was lost?

Exercise 9.15. Two fair dices are tossed. Consider the events:

• A, the result in the �rst dice is odd.

• B, the result in the second dice is odd.

• C, the sum of the results is odd.

(1) Prove that every two events from the above are independent.
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(2) AreA,B,C independent? That is, do they satisfy the equality Pr (A ∩B ∩ C) = Pr (A) Pr (B) Pr (C)

?

Solution.

(1) This is proven by straightforward computation.

Pr (A) = Pr (B) =
1

2
,

and Pr (C) = 1
2 since C occurs once one dice is odd and the other is even. The chances for

that are 0.25 and there are two options (for each of the coins), so the probability is half.

Pr (A ∩B) =
1

4
= Pr (A) Pr (A) ,

Pr (A ∩ C) = Pr (C|A) Pr (A)

=
1

2
· 1

2
= Pr (C) Pr (A) ,

and the same result is reached when A is replaced by B. To conclude, every two events are

independent.

(2) The three events are dependent. Why?

Pr (A ∩B ∩ C) = 0,

since the sum of two odd numbers is even. this means that Pr (A ∩B ∩ C) 6= Pr (A) Pr (B) Pr (C).

Exercise 9.16. (Polya's Urn) Assume there is an urn with 8 balls, 5 black balls and 3 white ones.

Whenever we take out a ball randomly, we put it back in along with 4 more of the same color.

(1) What is the probability that the �rst ball we take out is black?

(2) What is the probability that the second ball we take out is black?

(3) What is the probability that the 100th ball we take out is black?

Solution.

(1) The probability is 5
8 .

(2) Denote the event where the i-th ball is black by Bi.

Pr (B2) = Pr (B2|B1) Pr (B1) + Pr (B2|Bc1) Pr (Bc1)

=
9

12
· 5

8
+

5

12
· 3

8
=

5

8
,

and we got the same result.

(3) Since we do not want to consider all the possible cases up to the 100th stage, we try using

symmetry. Assume that the balls are numbered such that the black balls have numbers from

1 to 5 and the white ones have numbers from 6 to 8. Now assume that whenever a ball is

taken out, we put it back in along with four other balls with the same number and color. By

symmetry, we know that the probability of taking out a ball with a digit i = 1, . . . , 8 is 1
8 , since

all the numbers have the same chance of being picked. This means that the chances of taking

out a ball with a number 1 till 5, i.e., a black ball, is 5
8 .

Exercise 9.17. A disease hits 1 in every 20, 000 people. A diagnostic test is 95% accurate, that is, the

test is positive for 95% of people with the disease, and negative for 95% of the people who do not have

the disease. Max just tested positive for the disease. What is the probability he has it?
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Solution. We use the previously-de�ned notation where H means healthy, U means unhealthy, P means

a positive test, and N means a negative test.

Pr (U |P ) =
Pr (P |U) Pr (U)

Pr (P )

=

95
100 ·

1
20,000

Pr (P |U) Pr (U) + Pr (P |H) Pr (H)

=

95
100 ·

1
20,000

95
100 ·

1
20,000 + 5

100 ·
19,999
20,000

=
95

95 + 5 · 19, 999
= 0.000949.

In words, although the test came in positive, the chances of actually being sick is less than 0.01%.

Exercise 9.18. You have data that sorts individuals into occupations and age groups. There are three

occupations: doctor, lawyer, and entrepreneur. There are two age categories: below 40 (young) and

above 40 (old). You wanted to know the probability that an old person is an entrepreneur. Your grad

student misunderstands you, though, and presents you with the following information:

• 20% of the sample are doctors and 30% are entrepreneurs;

• 40% of the doctors are young;

• 20% of the entrepreneurs are young;

• 70% of the lawyers are young.

Find the probability that the an old person is an entrepreneur.

Solution. De�ne the following events:

• A person is an entrepreneur - E.

• A person is a doctor - D.

• A person is a lawyer - L.

• A person is young - Y .

• A person is old - O.

We need to compute Pr (E|O).

Pr (E|O) =
Pr (O|E) Pr (E)

Pr (O)

=
0.8 · 0.3

0.8 · 0.3 + 0.6 · 0.2 + 0.3 · 0.5

=
24

24 + 12 + 15
=

8

17
≈ 0.47.



CHAPTER 10

Probability functions and probability density functions

10.1. Discrete Random variables

A random variable (RV) X : Ω → R is a function such that for every result ω ∈ Ω of the experiment,

get a number X (ω). For example, we toss two fair dices and X is the sum of the results. Clearly, X

could be every natural number from 2 to 12 and the probability that X equals such a number changes.

E.g., Pr (X = 2) = 1
36 as it occurs only when both dices land on 1, while Pr (X = 7) = 1

6 (verify this!).

Usually we use random variables as tolls to compute many things, such as averages etc. A random

variable that can get a countable set of values is called a discrete random variable. The set of values

that any RV can get is referred to as its support.

10.1.1. Distributions.

Consider an experiment where we toss a fair dice. Let X be the result of the experiment. That is, X

gets any natural number from 1 to 6 with equal probabilities. The distribution PX of X is a function

that assigns every value k ∈ R, the probability that X = k. Speci�cally, PX : R → [0, 1] is a function

form the real numbers to [0, 1] such that PX (k) = Pr (x = k). In this example,

PX (k) =

 1
6 , if k = 1, 2, 3, 4, 5, 6,

0, otherwise.

Definition 10.1. (Distribution) For every discrete RV X, the distribution PX is a function from R
to [0, 1], such that PX (k) = Pr (X = k) for every k ∈ R.

Exercise 10.1. We toss two fair dices and X is the sum of their results. Find the support and the

distribution of X.

Solution. The support of X is the set {n ∈ N : 2 ≤ n ≤ 12}. The distribution of X is

Pr (X = 2) =
1

36
, Pr (X = 3) =

2

36
,

Pr (X = 4) =
3

36
, Pr (X = 5) =

4

36
,

Pr (X = 6) =
5

36
, Pr (X = 7) =

6

36
,

Pr (X = 8) =
5

36
, Pr (X = 9) =

4

36
,

Pr (X = 10) =
3

36
, Pr (X = 11) =

2

36
,

Pr (X = 12) =
1

36
.

10.1.2. Cumulative distribution function.

An important function regarding any RV is the cumulative distribution function, CDF, denoted by FX

for every RV X.1 The CDF FX is de�ned from R to R such that for every k ∈ R, FX (k) = Pr (X ≤ k).

That is, it sums up the values of the distribution of X up until the value k, hence its name �cumulative

distribution function�.

The CDF has three properties:

(1) limk→∞ Fx (k) = 1 and limk→−∞ Fx (k) = 0.

1When the random variable is clear from the context, the CDF is denoted by F .
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(2) Fx (·) is monotone non-decreasing.

(3) Fx (·) is right-continuous.

Exercise 10.2. We toss three fair dices and X is the maximal value of their results.

(1) Find the CDF of X.

(2) Use the previous result to �nd the distribution of X.

Solution. Note that this is a symmetric sample space, and |Ω| = 63 = 216.

(1) The CDF of X is

FX (k) = Pr (X ≤ k)

= 1
216 ·



0, k < 1,

13, 1 ≤ k < 2,

23, 2 ≤ k < 3,

33, 3 ≤ k < 4,

43, 4 ≤ k < 5,

53, 5 ≤ k < 6,

63, k > 6.

(2) We can use the previous results to compute the distribution of X.

PX (k) = Pr (X = k)

= Pr (X ≤ k)− Pr (X ≤ k − 1)

= FX (k)− FX (k − 1)

=


k3−(k−1)3

216 , k = 1, 2, 3, 4, 5, 6,

0, otherwise.

10.1.3. Common discrete distributions.

There are several commonly-used RVs, and therefore their distributions are well known and categorized.

As these random variables are common, we tend to remember their properties. Most of the times we

relate to the distributions rather than thee RVs themselves. Nevertheless, we will de�ne the RVs �rst,

and their distributions are deduced directly.

10.1.3.1. Bernoulli distribution. First we de�ne the most basic random variable, which is a Bernoulli

random variable X with parameter p ∈ [0, 1], denoted by X ∼ B (p). The RV X is basically an indicator

that equals 1 if an experiment succeeds (occurs w.p. p), or 0, otherwise. A Bernoulli distribution with

parameter p is

PX (k) =

p, k = 1,

1− p, k = 0,

10.1.3.2. Binomial distribution. The next random variable is the Binomial random variable with

parameters (n, p), denoted by X ∼ Bin (n, p). The RV X counts the number of success in n indepen-

dent experiments where each experiment succeeds w.p. p. Therefore, A Binomial distribution with

parameters n, p is

PX (k) =

(
n

k

)
pk (1− p)n−k ,

for every k = 0, 1, . . . , n.

10.1.3.3. Geometric distribution. Another very common random variable is the Geometric random

variable with parameter p ∈ [0, 1], denoted by X ∼ G (p). The RV X count the number of experiments

in a sequence of independent Bernoulli experiments (all with parameter p ∈ [0, 1] ) needed to reach the
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�rst success. Its Geometric distribution is

PX (k) = (1− p)k−1
p,

for every k ∈ N.
10.1.3.4. Poisson distribution. One random variable that can be observed in many places in our

everyday lives is the Poisson random variable. This random variable counts the number of events in

a given time frame (or, given some other units), when there is a �xed average rate of occurrences. A

Poisson random variable X with parameter λ, denoted by X ∼ Pois (λ), can equal any non-negative

integer, under the following Poisson distribution,

PX (k) = e−λ
λk

k!
,

when k = 0, 1, 2, . . . . One can prove that the Poisson distribution is derived from the binomial distribu-

tion when n→∞ and np = λ. Note that λ is the average rate of occurrences.

10.1.3.5. Uniform distribution. The last discrete common RV we are going to discuss is the uniformly

distributed RV. The uniform random variable X with parameters a, b ∈ Z, denoted X ∼ U [a, b] equals

every number between a and b with equal probability. That is, the uniform distribution is

PX (k) =
1

b− a+ 1
∀k = a, a+ 1 . . . , b.

There are several more common distribution, such as the negative binomial, and the hyper-geometric

and more. Nevertheless we will focus on these ones, and the others could be found in any probability

textbook.

Exercise 10.3. A drunk person is moving one step to the right w.p. p and one step to the left w.p.

1− p. If he moves to the right, then w.p. q he slides two steps to the left. Let X be his location after n

steps. Find the distribution of X.

Solution. Let Y be the number of successful steps to the right, without sliding back to the left.

Y ∼ Bin (n, p (1− q)) and

n = Y + steps right with slide + steps left.

Since a step right with a slide of two to the left is basically a step left, then

X = Y − steps right with slide− steps left.

Combining this two equations yields

X = 2Y − n.

Thus,

Pr (X = k) = Pr (2Y − n = k)

= Pr

(
Y =

k + n

2

)
=

(
n
k+n

2

)
[p (1− q)]

n+k
2 [1− p (1− q)]

n−k
2 ,

when k ∈ Z, k ∈ [−n, n], and k+n
2 ∈ N.

Exercise 10.4. We toss two coins until one shows �Heads� and the other �Tails�. One coin shows

�Heads� w.p. p, while the other lands on �Heads� w.p. q. Let X be the number of rounds.

(1) Find the distribution of X.

(2) What are the chances that the �rst coin (i.e., the one w.p. p) will show �Heads� in the last

round?

Solution.
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(1) We have a sequence of i.i.d. Bernoulli experiments, where a success is reached w.p. p (1− q) +

q (1− p) in each. Thus, X ∼ G (p (1− q) + q (1− p)).
(2) The fact that it is the last round implies that one coin fell on �Heads� and the other on �Tails�.

Denote this event by A. Denote the event where the �rst coin shows �Heads� in the last round

by B.

Pr (B|A) =
Pr (B ∩A)

Pr (A)

=
p (1− q)

p (1− q) + q (1− p)
.

Exercise 10.5. A drunk person moves either one step right or one step left with equal probabilities

and independently of past steps. After a hundred steps, he is located at +10 to the right of his starting

point. Find the distribution of his �rst step.

Solution. The �rst step could be either right, +1, or left, −1. Let p be the probability that the �rst

step is +1. We know that until the 100th round, he made 55 steps right and 45 steps left. As all the

steps are symmetric, when randomly choosing a �rst step from this collection there is a 0.55 probability

of getting +1, and a probability of 0.45 of getting −1.

10.2. Continuous Random variables

A continuous random variable is a random variable whose support (that is, the set of values he can

take) is uncountable and is piece-wise convex. In other words, the support is given by a union of non-

degenerate intervals. For example, take the interval [0, 1] and choose uniformly a point within this

interval. Denote its value by X. In this case, X is a continuous RV distributed uniformly on [0, 1].

10.2.1. Cumulative probability distribution and density functions.

Although continuous RVs are random variables, the fact that they can take an uncountable number of

values makes them very di�erent from discrete random variables. First, the probability that a single

speci�c point is chosen is 0. In fact, when discussing continuous RVs, we do not discuss the distribution

as we previously studied, but we use a di�erent function to describe the RVs, which is the density

function.

A continuous random variable X has a CDF, just as a discrete RV, and its de�nition is the same,

FX (t) = Pr (x ≤ t). However, when it comes to continuous RVs, the CDF is not only continuous, but

also continuously di�erentiable, C1. For this reason, we can discuss its derivative fx (t) = dFx(t)
dt which is

an integrable, non-negative function whose integral on R equals 1. This function is called the probability

density function (PDF) of X. The PDF has the following properties:

(1) fX (t) ≥ 0 for every t ∈ R.
(2) −∞

´∞
fX (t) dt = 1.

(3) −∞
´ k

fX (t) dt = FX (k) for every k ∈ R.

The support of a continuous RV is the smallest closed set such that {t ∈ R : f (t) > 0}.

10.2.2. Common continuous distributions.

There are a few continuous RVs whose classes are common and are important to remember.

10.2.2.1. Uniform distribution. Let a < b be two real numbers. The uniform (and continuous)

random variable between a and b, denoted by X ∼ U (a, b) is a RV that can take any value in [a, b] and

whose density function is constant. That is,

fX (t) =
1

b− a
, ∀t ∈ [a, b] ,
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Figure 10.2.1. PDF and CDF of a uniform distribution

and equals 0, otherwise. Hence, the CDF of X is

FX (t) = Pr (X ≤ t)

= −∞

ˆ t

fX (s) ds

=


0, if t < a,

t−a
b−a , if a ≤ t ≤ b,

1, if t > b.

The graphs of these functions are presented in Figure 10.2.1.

10.2.2.2. Exponential distribution. An exponential RV count the time between events that occur

according to a Poisson distribution. That is, if a Poisson RV count the number of events in a given time,

the exponential RV counts the time between events. In some sense, these RV are equivalent as each one

of them de�nes the other. The parameter of this RV (and distribution) is λ, and the density function is

given by

fX (t) = λe−λt, ∀t ≥ 0,

and 0, otherwise. Its CDF is

FX (t) = Pr (X ≤ t)

= −∞

ˆ t

fX (s) ds

=

0, if t < 0,

1− e−λt, if t ≥ 0.

It is denoted X ∼ Exp (λ).

10.2.2.3. Normal distribution. The normal distribution is probably the most common and used

distribution of all. A RV with a normal distribution has two parameter, µ and σ2, which will be

discussed later on. It is denoted by X ∼ N
(
µ, σ2

)
and its density function is

fX (t) =
1√

2πσ2
e
−(t−µ)2

2σ2 , ∀t ∈ R.

When µ = 0 and σ = 1, the normal distribution is called a standard distribution. The CDF of the

standard distribution is denoted by Φ (·). The graphs of these functions are presented in Figure 10.2.2.

Remark 10.1. We do not have an explicit function for the CDF of the normal distribution. The reason

for that is that such a representation does not exists and the function is computed numerically. Therefore,

in order to �nd the relevant probabilities we use the normal distribution table. One important property

of the CDF of the normal distribution is symmetry. That is,

Φ (−t) = 1− Φ (t) .

This property is quite useful when using the table of the normal distribution, since it contains only

positive values and do not related to cases where t < 0.
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Figure 10.2.2. PDF and CDF of a normal distribution

10.2.3. Examples and Exercises.

Example 10.1. (Second-Price auctions)2 A simple application of Leibniz's rule comes from auction

theory. A �rst-price sealed bid auction has bidders submit bids simultaneously to an auctioneer who

awards the item to the highest bidder who then pays his bid. This is a very common auction form. A

second-price sealed bid auction has bidders submit bids simultaneously to an auctioneer who awards the

item to the highest bidder, just like before, but this time the winning bidder pays the second-highest

price. To model the second-price auction, suppose that there are n bidders and that bidder i values the

item being auctioned at vi, which is independent of how much everyone else values the item. Bidders

do not know their opponents valuations, but they do know the probability distribution of the opponents

valuations. Bidder i must choose his bid bi.

Let Fi(b) be the probability that the highest other bid faced by i, that is, the highest bid except for bi,

is no larger than b. Then Fi(b) is a probability distribution function, and its density function is fi(b).

Bidder i's expected payo� is

Vi(bi) =

ˆ bi

0

(vi − b)fi(b)db.

Lets interpret this function. Bidder i wins if his bid is the highest bid, which occurs if the highest other

bid is between 0 (the lowest possible bid) and his own bid bi. If the highest other bid is above bi bidder

i loses and gets a payo� of zero. This is why the integral is taken over the interval [0, bi]. If bidder i

wins he pays the highest other bid b, which is distributed according to the density function fi(b). His

surplus if he wins is vi − b, his value minus how much he pays.

Bidder i chooses the bid bi to maximize his expected payo� Vi(bi). Since this is a maximization problem

we should �nd the �rst-order condition:

V ′i (bi) =
d

dbi

ˆ bi

0

(vi − b)fi(b)db = 0.

Notice that we are di�erentiating with respect to bi, which shows up only as the upper endpoint of the

integral. Using Leibniz's rule we can evaluate this �rst-order condition:

0 =
d

dbi

ˆ bi

0

(vi − b)fi(b)db

=

ˆ bi

0

∂

∂bi
[(vi − b)fi(b)]db+

dbi
dbi
· (vi − bi)fi(bi)−

d0

dbi
· (vi − 0)fi(0).

The �rst term is zero because (vi − b)fi(b) is not a function of bi, and so the partial derivative is zero.

The second term reduces to (vi− bi)fi(bi) because dbi
dbi

is simply one. The third term is zero because the

derivative d0
dbi

= 0 . This leaves us with the �rst-order condition

0 = (vi − bi)fi(bi)

Since density functions take on only non-negative values, the �rst-order condition holds when vi−bi = 0,

or bi = vi. In a second-price auction the bidder should bid his value.

2Taken from MUST-HAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS by William Neilson, Depart-
ment of Economics University of Tennessee � Knoxville September 2009© web.utk.edu/~wneilson/mathbook.pdf



10.2. CONTINUOUS RANDOM VARIABLES 159

This result makes sense intuitively. Let bi be bidder is bid, and let b denote the highest other bid.

Suppose �rst that bidder i bids more than his value, so that bi > vi. If the highest other bid is in

between these, so that vi < b < bi, bidder i wins the auction but pays b > vi more than his valuation.

He could have avoided this by bidding his valuation, vi. If b > bi or b < vi, then bidding bi does not

matter compared to bidding vi.

Now suppose that bidder i bids less than his value, so that bi < vi. If the highest other bid is between

these two, so that bi < b < vi, bidder i loses the auction and gets nothing. But if he had bid his value

he would have won the auction and paid b < vi, and so he would have been better o�. Again, if b < bi

or b > vi, then bidding bi does not matter compared to bidding vi. Thus, the best thing for him to do

is bid his value.

Definition 10.2. (First-order stochastic dominance) For every two lotteries F and G such that

G (x) ≥ F (x) in every x, we say that F stochastically dominates G (also called, �rst-order stochastic

dominance).

Exercise 10.6. Let U(a, b) denote the uniform distribution over the interval [a, b]. Find conditions on

a and b that guarantee that U(a, b) (�rst-order) stochastically dominates U(0, 1).

Solution. First we need to write down the lottery G, which is the CDF of U (0, 1) and the lottery F ,

which is the CDF of U (a, b).

G (x) =


0, x < 0,

x−0
1−0 , 0 ≤ x ≤ 1,

1 x > 1,

and

F (x) =


0, x < a,

x−a
b−a , a ≤ x ≤ b,

1 x > b.

Now, we need to observe G (x)− F (x). Clearly, if a < 0, then taking every a < x < min (0, b) yields

G (x)− F (x) = 0− F (x) < 0.

Thus, a ≥ 0. If b < 1, then every max (b, 0) < x < 1 yields

G (x)− F (x) = G (x)− 1 < 0.

This implies that a ≥ 0 and b ≥ 1. Let us write G (x)− F (x)explicitly.

G (x)− F (x) =



0, x < 0,

x, 0 ≤ x ≤ a,

x− x−a
b−a , a ≤ x ≤ 1,

1− x−a
b−a , 1 ≤ x ≤ b,

0 x > b,

=



0, x < 0,

x, 0 ≤ x ≤ a,
x(b−1)+a(1−x)

b−a , a ≤ x ≤ 1,

b−x
b−a , 1 ≤ x ≤ b,

0 x > b,

and the result holds.
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Exercise 10.7. The time X it takes to serve a client is distributed exponentially with λ = 0.5. In order

to improve the service time, the employees are being trained to speak faster. The new service time is

Y = 1
2X + 1

10 . Find the PDF of Y .

Solution. To �nd the density of Y , we �rst need to �nd the CDF of Y .

FY (t) = Pr (Y ≤ t)

= Pr

(
1

2
X +

1

10
≤ t
)

= Pr

(
X ≤ 2t− 1

5

)
= FX

(
2t− 1

5

)

=

0, if 2t− 1
5 < 0,

1− e−λ(2t− 1
5 ), if 2t− 1

5 ≥ 0,

=

0, if t < 1
10 ,

1− e−t+ 1
10 , if t ≥ 1

10 .

And the density is

fY (t) =

0, if t < 1
10 ,

e−t+
1
10 , if t ≥ 1

10 .

Exercise 10.8. The time X an economist exits his work place is distributed U (7, 9). The driving time

home is distributed Y = 1 + 1
X . Find the density of Y .

Solution. We need to �nd the CDF of Y and then the density. Note that Y ∈
(
1 + 1

9 , 1 + 1
7

)
,

FY (t) = Pr (Y ≤ t)

= Pr

(
1 +

1

X
≤ t
)

= Pr

(
1

t− 1
≤ X

)
= 1− Pr

(
X <

1

t− 1

)

= 1−


0, if 1

t−1 < 7,
1
t−1−7

9−7 , if 7 ≤ 1
t−1 ≤ 9,

1, if 9 < 1
t−1 ,

=


1, if 1 + 1

7 < t,

9t−10
2(t−1) , if 1 + 1

9 ≤ t ≤ 1 + 1
7 ,

0, if t < 1 + 1
9 .

The density is

fY (t) =

 1
2(t−1)2

, if t ∈
[

10
9 ,

8
7

]
,

0, otherwise.



CHAPTER 11

Joint distributions - probability functions in several variables

11.1. Joint distributions

Until now we discussed one-dimensional RVs. Clearly, this is not the general case. One can think of

RVs in several dimensions as a vector where each coordinate is a one-dimensional RV. For example,

consider an experiment where two fair dices are tossed. Let X be the sum of the results and let Y be the

maximal result between the two. The support of (X,Y ) is
{

(i, j) ∈ N2 : i = 2, 3 . . . , 12, j = 1, 2, . . . , 6
}
.

The joint distribution PX,Y of (X,Y ) is a function such that for every k, l ∈ R2,

PX,Y (k, l) = Pr (X = k, Y = l) .

Themarginal distribution ofX is the distribution ofX, and it could be derived from the joint distribution

by summing over the support of Y ,

Pr (X = k) =
∑
l

Pr (X = k, Y = l) .

The same holds for the marginal distribution of Y . This is true for the discrete case. For the continuous

case, we can discuss the joint distribution of (X,Y ) when relating the the CDF

FX,Y (k, l) = Pr (X ≤ k, Y ≤ l) .

In this case, the density function is fX,Y (k, l) =
∂FX,Y (k,l)

∂k∂l . Similarly to the discrete case, we can use

integration to compute the marginal density of X by

fX (k) =−∞

ˆ ∞
fX,Y (k, l) dl,

and

FX (x) = −∞

ˆ x

−∞

ˆ ∞
fX,Y (k, l) dldk.

The same holds for Y .

The conditional distribution of X given Y = l is given by

fX|Y (k|l) =
fX,Y (k, l)

fY (l)
,

when the RVs are continuous, and

PX|Y (k|l) =
PX,Y (k, l)

PY (l)
,

when the RVs are discrete.

In case A is an event with positive probability, then conditional distribution of a continuous random

variable X given A is

fX|A (k) =
fX (k)

Pr (A)
· 1{{X=k}⊆A}.

11.2. Independent random variables

Definition 11.1. Two random variables X,Y are independent if for every k, l ∈ R,they satisfy the

equality

fX,Y (k, l) = fX (k) fY (l) ,

161
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in case the RVs are continuous; And the equality

PX,Y (k, l) = PX (k)PY (l) ,

in case the RVs are discrete.

Note that we the above equalities must hold for every k and every l, and not just for some values.

The intuition behind the de�nition of independence of RVs is as follows. When two RVs are independent,

the fact that one of them is �xed, does not change the distribution of the other. Basically, when we �x

one of them, the other maintains the same values and probabilities it already had, and is not a�ected

in any way.

Exercise 11.1. The joint distribution of X,Y is given in the following table:

X\Y Y = 1 Y = 2 Y = 3 Y = 4 Y = 5

X = 5 0.01 0.03 0.17 0.00 0.00

X = 20 0.03 0.05 0.04 0.2 0.12

X = 30 0.11 0.04 0.02 0.07 0.11

Answer the following questions:

(1) Find Pr (X = 30), and Pr (X ∈ [5, 20] , Y ∈ [2, 4]).

(2) Given that X ≥ 20, �nd the probability that Y ≤ 2.

(3) Determine whether the events A = {X ≤ 20} and B = {Y ∈ {1, 4}} are independent.

Solution.

(1) The probability Pr (X = 30) could be computed by summing over all the values of Y when

X = 30.

Pr (X = 30) =

5∑
y=1

Pr (X = 30, Y = y)

= 0.11 + 0.04 + 0.02 + 0.07 + 0.11

= 0.35.

Pr (X ∈ [5, 20] , Y ∈ [2, 4]) = 0.03 + 0.17 + 0.05 + 0.04 + 0.2

= 0.49.

(2) We need to compute Pr (Y ≤ 2|X ≥ 20).

Pr (Y ≤ 2|X ≥ 20) =
Pr (Y ≤ 2, X ≥ 20)

Pr (X ≥ 20)

=
0.05 + 0.03 + 0.04 + 0.11

Pr (X = 20) + Pr (X = 30)

=
0.23

0.79
=

23

79
.

(3) We need to �nd the probability of the following events: A, B, and A ∩B.

Pr (A) = Pr (X ≤ 20)

= 1− Pr (X = 30)

= 0.65,

Pr (B) = Pr (Y = 1) + Pr (Y = 4)

= 0.15 + 0.27 = 0.42,

Pr (A ∩B) = Pr (Y ∈ {1, 4} , X ≤ 20)

= 0.04 + 0.2 = 0.24.
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Hence,

Pr (A ∩B) = 0.24 6= 0.273 = 0.42 · 0.65 = Pr (A) · Pr (B) ,

which means they are dependent.

Exercise 11.2. The joint distribution of X,Y is given in the following table:

X\Y Y = 1 Y = 2 Y = 3 Y = 4

X = 1 0.02 0.02 0.21 0.02

X = 2 0.03 0.01 0.05 0.06

X = 3 0.01 0.01 0.01 0.06

X = 4 0.00 0.05 0.00 0.12

X = 5 0.12 0.06 0.00 0.14

Answer the following questions:

(1) Which event is more likely A = {X ∈ [3, 4]} or B = {Y ≤ 2, X = 5}?
(2) Find the probability that Y 6= 3.

(3) Compute Pr (Y = 2|X = 5) and Pr (X ≥ 3|Y ∈ {1, 4}).
(4) Determine whether the events A = {X ∈ {1, 3}} and B = {Y ∈ {1, 2, 4}} are independent?

Solution.

(1) We �nd the probability of both events by summing over the relevant cells.

Pr (A) = 0.01 + 0.01 + 0.01 + 0.06 + 0.05 + 0.12 = 0.26,

Pr (B) = 0.12 + 0.06 = 0.18,

and so event A is more likely to occur.

(2) Using the complement of Y 6= 3 yields

Pr (Y 6= 3) = 1− Pr (Y = 3)

= 1− (0.21 + 0.05 + 0.01)

= 0.73.

(3) These probabilities are easily computed using the de�nition of conditional probability.

Pr (Y = 2|X = 5) =
Pr (Y = 2 ∩X = 5)

Pr (X = 5)

=
0.06

0.06 + 0.12 + 0.14

=
0.06

0.32
=

3

16
.

Pr (X ≥ 3|Y ∈ {1, 4}) =
Pr (X ≥ 3 ∩ Y ∈ {1, 4})

Pr (Y ∈ {1, 4})

=
0.45

0.58
=

45

58
.

(4) We need to �nd the probability of the following events: A, B, and A ∩B.

Pr (A) = Pr (X ∈ {1, 3}) = 0.36,

Pr (B) = Pr (Y ∈ {1, 2, 4}) = 0.73,

Pr (A ∩B) = Pr (Y ∈ {1, 2, 4} , X ∈ {1, 3}) = 0.14.

Hence,

Pr (A ∩B) = 0.14 6= 0.2628 = 0.73 · 0.36 = Pr (A) · Pr (B) ,

which means the events are not independent.



CHAPTER 12

Moments

Moments are types of averages of RVs. As every random variable X is a stochastic function (gets values

with certain probabilities), one can discuss its average value, or the average value of X2 and so on. A

moment of degree k is the average value of Xk and we will now see how it is computed.

12.1. Expectation

The expected value of a random variable X, denoted E [X] is

E [X] =


∑
k kPr (X = k) , X is discrete,´
tfX (t) dt, X is continuous.

In general, the expectation of a RV is the weighted average of the values he gets, times the probabilities

of getting these values.

The expectation has the important property of linearity. For every RVs x, y and a real number c ∈ R,

E [X + Y ] = E [X] + E [Y ] , E [cX] = cE [X] .

Exercise 12.1. Find the expected value of the following random variables:

(1) X ∼ U [a, b].

(2) X ∼ Bin (n, p).

(3) X ∼ Pois (λ).

(4) X ∼ U (a, b).

(5) X ∼ Exp (λ).

(6) X ∼ N (0, 1).

Solution. We will compute these expected values one by one.1

X ∼ U [a, b]

E [X] =

b∑
k=a

kPr (X = k)

=

b∑
k=a

k

b− a+ 1

=
1

b− a+ 1

b∑
k=a

k

=
1

b− a+ 1
· (b+ a) (b− a+ 1)

2

=
b+ a

2
.

1You can �nd di�erent and additional computations of expected values online or in most probability textbooks.
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X ∼ Bin (n, p)

E [X] =

n∑
k=0

kPr (X = k)

=

n∑
k=1

kPr (X = k)

=

n∑
k=1

k

(
n

k

)
pk (1− p)n−k

= np

n∑
k=1

(n− 1)!

(k − 1)! (n− k)!
pk−1 (1− p)n−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1 (1− p)n−k

= np

n−1∑
k=0

(
n− 1

k

)
pk (1− p)n−k−1

= np (p+ 1− p)n−1
= np,

and the last line is due to the binomial formula.

X ∼ Pois (λ)

E [X] =

∞∑
k=1

kPr (X = k)

=

∞∑
k=1

ke−λ
λk

k!

= λe−λ
∞∑
k=1

λk−1

(k − 1)!

= λe−λ
∞∑
k=0

λk

k!

= λe−λeλ = λ,

when the last line follows from the Taylor expansion of eλ.

X ∼ U (a, b)

E [X] =

ˆ
R
kfX (k) dk

=

ˆ b

a

k
1

b− a
dk

=
1

b− a
· b

2 − a2

2

=
b+ a

2
.
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X ∼ Exp (λ)

E [X] =

ˆ
R
kfX (k) dk

=

ˆ ∞
0

kλe−λkdk

= λ

[(
k · e

−λk

−λ

)
|∞0 +

1

λ

ˆ ∞
0

e−λkdk

]
=

ˆ ∞
0

e−λkdk

= − 1

λ
e−λk|∞0 =

1

λ
.

X ∼ N (0, 1)

E [X] =

ˆ
R
kdk

=

ˆ ∞
−∞

k
1√
2π
e
−k2
2 dk

=
1√
2π

ˆ ∞
−∞

ke
−k2
2 dk

= 0,

as e
−k2
2 is an even function (symmetric around k = 0) and k is an odd function (asymmetric around

k = 0), hence ke
−k2
2 is an odd function and its integral on a symmetric interval around k = 0 is 0.

Example 12.1. (Choice between lotteries)2 Suppose that an individual is choosing between two

lotteries. Lotteries are just probability distributions, and the individual wishes to maximize its expected

utility with an increasing utility function u (x), where x is an mount of money given in the lottery.

Assume that the amount of money in every lottery is bounded between a and b such that b > a.

Exercise 12.2. Given a lottery F (in other words, F is a CDF over amount of money), what is the

objective function of the decision maker? That is, what is the function that the decision maker wishes

to maximize?

Solution. The objective function of the decision maker is his expected utility given by
ˆ b

a

u(x)F ′(x)dx,

where a is the lowest possible payo� from the lottery, b is the highest possible payo�, u (x) is a utility

function de�ned over amounts of money, and F ′(x) is the density function corresponding to the CDF

F (x). We assume that the decision maker prefers to get more money than less, meaning u is non-

decreasing and u′ (x) ≥ 0.

Exercise 12.3. The individual can choose between lottery F (x) and lottery G(x). Assume that F (x) ≤
G (x) for every x. Prove that the decision maker would choose F over G.

Proof. In order to answer this question, we prove that
ˆ b

a

u(x)F ′(x)dx−
ˆ b

a

u(x)G′(x)dx ≥ 0,

2Taken from MUST-HAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS by William Neilson, Depart-
ment of Economics University of Tennessee � Knoxville September 2009© web.utk.edu/~wneilson/mathbook.pdf
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which implies that the by choosing F instead of G, the decision maker is maximizing its objective

function. Thus, using integration by parts
ˆ b

a

u(x)F ′(x)dx−
ˆ b

a

u(x)G′(x)dx =

ˆ b

a

u(x) [F ′(x)−G′ (x)] dx

= (u(x) [F (x)−G (x)]) |ba −
ˆ b

a

u′(x) [F (x)−G (x)] dx

= u(b) [F (b)−G (b)]− u(a) [F (a)−G (a)]−
ˆ b

a

u′(x) [F (x)−G (x)] dx

= u(b) [1− 1]− u(a) [0− 0]−
ˆ b

a

u′(x) [F (x)−G (x)] dx

=

ˆ b

a

u′(x) [G(x)− F (x)] dx

≥ 0,

when the last inequality follows from the non-negativity of u′ (x) and G (x)− F (x) in every x. �

Exercise 12.4. Your annul income depends on the number of products X you are able to sell. There are

5 companies interested in your product, each will eventually buy it with probability 0.25 (independently

of the other �rms). The retail price of the product is 1 million dollars and your annul costs are �xed,

and equal $500, 000. Find the expected annual income.

Solution. Let Y denote the annual income. Clearly, Y = 106 ·X−5·105. In addition, X ∼ Bin (5, 0.25),

which implies E [X] = 5
4 . Hence, by the linearity of the expectation we get

E [Y ] = 106 ·E [X]− 5 · 105

= 106 · 5

4
− 5 · 105

= 5 · 105

(
10

4
− 1

)
= 750, 000.

12.1.1. The expected value of a function of a RV.

In many cases, we do not know the distribution of the RV whose expected value we wish to compute.

Although this could be problematic, there are cases in which the computation is not too di�cult. Fix a

random variable X and let Y = g (X) be a function of X. That is, g : R→ R is a real-valued function,

and so Y = g (X) is a new random variable. In this case, the expected value of Y is

E [Y ] =


∑
k g (k) Pr (X = k) , X is discrete,´
g (t) fX (t) dt, X is continuous.

Note that the distributions, PX and fX , are taken w.r.t. the random variable X, and not Y . Thus, in

cases that the distribution of X is known and Y is a known function of X, �nding the expected value

E [Y ] is just a direct computation.

12.1.2. Conditional expectation.

Another value we should consider is the conditional expectation. The conditional expectation of X given

Y = l is

E [X|Y = l] =


∑
k kPX|Y (k|l) , when the RVs are discrete,´

R kfX|Y (k|l) dk, when the RVs are continuous.

12.1.3. The law of iterated expectation.

Conditional expectation is useful just as the law of total probability. Its helps us computing the expected

value of a RV by conditioning on another RV.
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Theorem 12.1. (The law of iterated expectation) Let X,Y be two RVs with �nite expected values

such that the expected value of X|Y exists and is also �nite. Then,

E [X] = E [E [X|Y ]] .

Note that E [X|Y ] is a function of Y . Thus, the expected value of E [X|Y ] is taken over the values of Y .

Exercise 12.5. There are two random variables X,Y with a joint probability distribution given in the

following table. Show that the law of iterated expectation works for the random variable X.

Pr (X = k, Y = l) l = 1 l = 2 Pr (X = k)

k = 1 0.1 0.3 0.4

k = 2 0.2 0.1 0.3

k = 3 0.1 0.2 0.3

Pr (Y = l) 0.4 0.6

Solution. Lets begin by computing the expected value of X and the expected value of X|Y = l for

every l = 1, 2.

E [X] = 1 · 0.4 + 2 · 0.3 + 3 · 0.3 = 1.9.

E [X|Y = 1] = 1 · 0.1

0.4
+ 2 · 0.2

0.4
+ 3 · 0.1

0.4
= 2,

E [X|Y = 2] = 1 · 0.3

0.6
+ 2 · 0.1

0.6
+ 3 · 0.2

0.6
=

11

6
.

Thus,

E [E [X|Y ]] = E [X|Y = 1] Pr (Y = 1) + E [X|Y = 2] Pr (Y = 2)

= 2 · 0.4 +
11

6
· 0.6

=
8

10
+

11

10
= 1.9 = E [X] ,

as required.

Example 12.2. (Calculating the bene�t of a search)3 Consider the following search process. A

consumer, Max, wants to buy a particular digital camera. He goes to a store and looks at the price.

At that point he has three choices: (i) buy the camera at that store, (ii) go to another store to check

its price, or (iii) go back to a previous store and buy the camera there. Stores draw their prices P

independently from the distribution F (p) given by

P =



170, w.p. 0.1,

180, w.p. 0.4,

190, w.p. 0.3,

200, w.p. 0.2.

Exercise 12.6. We want to answer the following question: If the lowest price so far is q, what is the

expected bene�t from checking one more store?

Solution. Lets begin by answering this in the most straightforward way possible. Suppose that q = 200,

so that the lowest price found so far is the worst possible price. If Max searches one more time there

is a 10% chance of �nding a price of $170 and saving $30, a 40% chance of �nding a price of $180 and

saving $20, a 30% chance of �nding a price of $190 and saving only $10, and a 20% chance of �nding

another store that charges the highest possible price of $200, in which case the savings are zero.

The expected saving is

0.1 · 30 + 0.4 · 20 + 0.3 · 10 + 0.2 · 0 = 14.

3Taken from MUST-HAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS by William Neilson, Depart-
ment of Economics University of Tennessee � Knoxville September 2009© web.utk.edu/~wneilson/mathbook.pdf
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When q = 200, the expected bene�t of search is $14. \

Now suppose that q = 190, so that the best price found so far is $190. Max has a 10% chance of �nding

a price of $170 and saving $20, a 40% chance of �nding a price of $180 and saving $10, a 30% chance of

�nding the same price and saving nothing, and a 20% chance of �nding a higher price of $200, in which

case he also saves nothing. The expected saving is

0.1 · 20 + 0.4 · 10 + 0.3 · 0 + 0.2 · 0 = 6.

When the best price found so far is q = 190, the expected bene�t of search is $6.

Finally, suppose that q = 180. Now there is only one way to improve, which comes by �nding a store

that charges a price of $170, leading to a $10 saving. The probability of �nding such a store is 10%, and

the expected saving from search is $1.

So now we know the answers, and lets use these answers to �gure out a general formula, speci�cally one

involving conditional expectations. Note that when Max �nds a price of p and the best price so far is

q, his bene�t is q − p, in the case the new price p is lower than the old price q. Otherwise the bene�t is

zero because he would be better o� buying the item at a store hes already found. This "if" statement

lends itself to a conditional expectation. In particular, the "if" statement pertains to the conditional

expectation E[q−P |P < q], where the expectation is taken over the random variable P . This expression

tells us what the average bene�t is, provided that the bene�t is non-negative. The actual expected

bene�t is

Pr (P < q)E[q − P |P < q],

which is the probability that the bene�t is positive times the expected bene�t conditional on the bene�t

being positive. Lets make sure this works using the above example. In particular, lets look at q = 190.

The expected bene�t is

Pr (P < 190)E[190− P |P < 190] = 0.5 · [(190− 180) Pr (P = 180|P < 190)]

+ 0.5 · [(190− 170) Pr (P = 170|P < 190)]

= 0.5

[
10 · Pr (180)

Pr (P < 190)
+ 20 · Pr (170)

Pr (P < 190)

]
= 10 · 0.4 + 20 · 0.1 = 6,

which is exactly what we found before.

The conditional expectation lets us work with more complicated distributions. Suppose that prices are

drawn independently from the uniform distribution over the interval [150, 200]. Let the corresponding

distribution function be F (p) and the density function be f(p). The expected bene�t from searching at

another store when the lowest price so far is q is

Pr (P < q)E[q − P |P < q] = F (q)

ˆ q

150

[q − p] f(p)

F (q)
dp

=

ˆ q

150

[q − p]f(p)dp.

To see why this works, look at the top line. The probability that P < q is simply F (q), because that

is the de�nition of the distribution function. That gives us the �rst term on the right-hand side. For

the second term, note that we are taking the expectation of q − p, so that term is in brackets. To

�nd the conditional expectation, we multiply by the conditional density which is the density of the

random variable p divided by the probability that the conditioning event (P < q) occurs. We take the

integral over the interval [150, q] because outside of this interval the value of the bene�t is zero. When

we multiply the two terms on the right-hand side of the top line together, we �nd that the F (q) term

cancels out, leaving us with the very simple bottom line. Using it we can �nd the net bene�t of searching
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at one more store when the best price so far is $182.99:
ˆ q

150

[q − p]f(p)dp =

ˆ 182.99

150

[182.99− p] · 1

50
dp = 10.883.

12.2. Variance

The next moment we will discuss is the second moment. The variance, V (x) (or, Var (X)) of a random

variable X is V (x) = E
[
(X −E [X])

2
]
. In words, it is the expected value of the new RV (X −E (X))

2
,

which de�nes the distance between a RV and its average. Therefore, the variance is the average distance

of a random variable and its expectation. Another way to denote the variance of a random variable X

is σ2
X when σX =

√
V (X) is called the standard deviation of X.

The variance us a parameter that measures deviations of a RV from the expected value. When a RV

gets most of its value in the same area, e.g., a constant RV, then its variance would be low. For example,

assume that X = c, a constant RV. In this case, E [X] = c, and

V (X) = E
[
(X − c)2

]
= E

[
(c− c)2

]
= 0.

On the other hand, if X has a wide range of values, then its variance will grow signi�cantly.

The variance is not linear, however there are a few important properties it poses:

(1) For every random variable X and real numbers a, b ∈ R, V (aX + b) = a2V (X).

(2) If X,Y are independent, then V (X + Y ) = V (X) + V (Y ).

In most cases, the easiest way to compute the variance V (X) of a random variable X is by computing

its expected value E [X], and the expected value of X2. These two values generate the variance in the

following manner,

V (X) = E
[
(X −E [X])

2
]

= E
[
X2 − 2XE [X] + (E [X])

2
]

= E
[
X2
]
− 2E [XE [X]] + (E [X])

2

= E
[
X2
]
− 2 (E [X])

2
+ (E [X])

2

= E
[
X2
]
− (E [X])

2
,

when the forth equality follows from the fact that E [X] is a number which implies E [XE [X]] =

E [X]E [X] as the expectation is linear.

12.2.1. Variance of known distributions.

In the following table you can �nd a list of known distributions and their variances (along with other

properties we discussed). You could derive these values yourselves by straightforward computation (or

found it online, or in most probability textbooks).

Distribution Support probability \ density Expectation Variance

B (p) k = 0, 1 PX (1) = p p p (1− p)
Bin (n, p) k = 1, 2, . . . , n PX (k) =

(
n
k

)
pk (1− p)n−k np np (1− p)

G (p) k ∈ N \ {0} PX (k) = (1− p)k−1
p 1

p
1−p
p2

Pois (λ) k ∈ N ∪ {0} PX (k) = e−λ λ
k

k! λ λ

U [a, b] k ∈ a, a+ 1, . . . , b PX (k) = 1
b−a+1

b+a
2

(b−a+1)2−1
12

U (a, b) k ∈ [a, b] fX (k) = 1
b−a

b+a
2

(b−a)2

12

Exp (λ) k ∈ [0,∞) fX (k) = λe−λk 1
λ

1
λ2

N
(
µ, σ2

)
k ∈ R fX (k) = 1√

2πσ2
e
−(k−µ)2

2σ2 µ σ2
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Exercise 12.7. Suppose that the random variable X has the following distribution:

PX (k) =



−14, w.p. 0.02,

−6, w.p. 0.10,

−2, w.p. 0.15,

2, w.p. 0.40,

4, w.p. 0.23,

7, w.p. 0.10.

Find the mean and variance of X.

Solution. We can compute both values directly.

E [X] = −14 · 0.02− 6 · 0.1− 2 · 0.15

+ 2 · 0.4 + 4 · 0.23 + 7 · 0.1 = 1.24.

V [X] = E
[
(X − 1.24)

2
]

= (−14− 1.24)
2 · 0.02 + (−6− 1.24)

2 · 0.1 + (−2− 1.24)
2 · 0.15

+ (2− 1.24)
2 · 0.4 + (4− 1.24)

2 · 0.23 + (7− 1.24)
2 · 0.1 = 16.762.

Exercise 12.8. Consider a random variable X with PDF fX (k) = 2k on [0, 1].

(1) Find the CDF of X, and prove that it is a CDF.

(2) Find the mean and variance of X.

Solution.

(1) We can �nd the CDF by integrating the density function.

FX (k) =

ˆ k

−∞
fX (t) dt

=


´ k
−∞ 0dt, if k < 0,´ k
0

2tdt, if k ∈ [0, 1] ,´ 1

0
2tdt, if k > 1,

= =


0, if k < 0,

k2, if k ∈ [0, 1] ,

1, if k > 1.

We can see the it follows the required properties as limk→∞ Fx (k) = 1, limk→−∞ Fx (k) = 0,

and Fx (·) is a continuous, monotone, non-decreasing function.

(2) A direct computation yields

E [X] =

ˆ 1

0

k · 2kdk

= 2

ˆ 1

0

k2dk

=
2

3
,
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E
[
X2
]

=

ˆ 1

0

k2 · 2kdk

= 2

ˆ 1

0

k3dk

=
1

2
,

and so

V [X] = E
[
X2
]
− (E [X])

2

=
1

2
− 4

9

=
1

18
.

Exercise 12.9. Prove that for every random variable X and real numbers a, b ∈ R,

V (aX + b) = a2V (X) .

Solution. Fix a random variable X and real numbers a, b ∈ R. Note that E [ax+ b] = aE [X] + b, thus

V (aX + b) = E
[
(aX + b−E [ax+ b])

2
]

= E
[
(aX + b− aE [X]− b)2

]
= E

[
a2 (X −E [X])

2
]

= a2E
[
(X −E [X])

2
]

= a2V (X) .

Exercise 12.10. Suppose that the random variable X takes the values 6 and y with equal probabilities

(and only these values). Find the derivative dV(X)
dy .

Solution. First we need to compute the variance V (X).

E [X] =
6 + y

2
,

E
[
X2
]

=
36 + y2

2
,

V [X] = E
[
X2
]
− (E [X])

2

=
36 + y2

2
− 36 + 12y + y2

4

=
72 + 2y2 − 36− 12y − y2

4

=
36 + y2 − 12y

4

=

(
y − 6

2

)2

.

Thus,
dV (X)

dy
= 2

(
y − 6

2

)
· 1

2
=
y − 6

2
.

12.2.2. Covariance.

The covariance of two random variables X,Y is de�ned by

Cov (X,Y ) = E [XY ]−E [X]E [Y ] .
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The covariance is signi�cant when trying to compute the variance of a sum of RVs. Consider the random

variables X1, . . . , Xn, then

V

(
n∑
i=1

Xi

)
=

n∑
i=1

V (Xi) +

n∑
i=1

∑
j 6=i

Cov (XiXj)

=

n∑
i=1

V (Xi) + 2

n∑
i=1

∑
j<i

Cov (XiXj) .

The covariance has the following properties. Fix two random variables X,Y .

(1) For every real numbers a, b ∈ R, it holds that Cov (aX + b, Y ) = aCov (X,Y ).

(2) Cov (X,Y ) = Cov (Y,X).

(3) Cov (X,X) = V (X).

Definition 12.1. (Correlation) Two random variables X,Y are uncorrelated if Cov (X,Y ) = 0.

In other words, two RVs are uncorrelated if E [XY ] = E [X]E [Y ]. Note that two uncorrelated RVs,

does not mean they are independent. Nevertheless, as the following lemma states, the converse is true.

Lemma 12.1. If X,Y are independent, then they are also uncorrelated.

12.2.3. The correlation coe�cient.

One of the main uses of the covariance is the �Pearson's correlation coe�cient�, also know as "the

correlation coe�cient", ρ. This coe�cient is de�ned for any two non-constant RVs as follows. Fix two

random variables X,Y , the correlation coe�cient ρ (X,Y ) is given by

ρ (X,Y ) =
Cov (X,Y )√
V (X)V (Y )

=
Cov (X,Y )

σXσY
.

The Pearson correlation coe�cient is de�ned only if both of the standard deviations are �nite and

nonzero. One simple property, derived from the Cauchy�Schwarz inequality, is that |ρ (X,Y )| ≤ 1. In

addition, since the covariance is symmetric, it follows that the correlation coe�cient is symmetric. The

Pearson correlation coe�cient is a kind of measurement for the linear relation between two random

variables:

• The Pearson correlation equals +1 in the case of a perfect direct (increasing) linear relationship

(correlation). That is, in case Y = aX + b, when a, b ∈ R and a > 0.

• The Pearson correlation equals −1 in the case of a perfect decreasing (inverse) linear relation-

ship (anti-correlation). That is, in case Y = aX + b, when a, b ∈ R and a < 0.

• The Pearson correlation equals some value between −1 and +1 in all other cases, indicating

the degree of linear dependence between the variables. As it approaches zero there is less of a

relationship (closer to uncorrelated). The closer the coe�cient is to either =1 or 1, the stronger

the correlation between the variables.

If the variables are independent, Pearson's correlation coe�cient is 0, but the converse is not true because

the correlation coe�cient detects only linear dependencies between two variables. For example, suppose

the random variable X is symmetrically distributed about zero, and Y = X2. Then Y is completely

determined by X, but their correlation is zero, meaning they are uncorrelated.

Exercise 12.11. There are two random variables X,Y with a joint probability distribution given in the

following table.

Pr (X = k, Y = l) l = 6 l = 8 l = 10

k = 1 0.2 0 0.2

k = 2 0 0.2 0

k = 3 0.2 0 0.2

Determine whether the RVs are independent? Correlated? Are these results consistent?
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Solution. The RVs are dependent since Pr (X = 1) Pr (Y = 8) > 0 = Pr (X = 1, Y = 8). However, they

are uncorrelated as

E [X] = 0.4 · 1 + 0.2 · 2 + 0.4 · 3 = 2,

E [Y ] = 0.4 · 6 + 0.2 · 8 + 0.4 · 10 = 8,

E [XY ] = 0.2 (6 + 10 + 16 + 18 + 30) = 0.2 · 80 = 16

⇓

Cov (X,Y ) = E [XY ]−E [X]E [Y ]

= 16− 16 = 0.

The two result are consistent, as a Pearson's correlation coe�cient of 0, does not imply independence.

Exercise 12.12. Assume you got 5 cards in your hands, number from 1 to 5, in a random order. Let

X be the number of the top card and Y be the number of the bottom one.

(1) Find the correlation coe�cient between X and Y .

(2) Let W = X + Y . Compute the correlation coe�cient between X and W .

Solution. We start with the �rst question. By symmetry both RVs have the same distribution, namely

a uniform distribution such that X ∼ Y ∼ U [1, 5]. Also, using symmetry, we can describe the joint

distribution of these RVs as follows
X \ Y Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 Marginal of X

X = 1 0 1
20

1
20

1
20

1
20

1
5

X = 2 1
20 0 1

20
1
20

1
20

1
5

X = 3 1
20

1
20 0 1

20
1
20

1
5

X = 4 1
20

1
20

1
20 0 1

20
1
5

X = 5 1
20

1
20

1
20

1
20 0 1

5

Marginal of Y 1
5

1
5

1
5

1
5

1
5

Clearly, the probability Pr (X = k, Y = k) equals zero as the tom card and bottom card cannot be the

same. And, e.g., the probability of Pr (X = 1, Y = 2) is computed as follows:

Pr (X = 1, Y = 2) = Pr (Y = 2|X = 1) Pr (X = 1)

=
1

4
· 1

5
=

1

20
,

when the second line holds since the probability of Y = 2 when the top card is one, is 0.25, by symmetry.

In order to compute ρ (X,Y ) we need to �nd the variances of both RVs and the covariance. The variance

is given by the know formula

(b− a+ 1)
2 − 1

12
=

(5− 1 + 1)
2 − 1

12

=
24

12
= 2 = Var (X) = Var (Y ) .

The covariance could be computed directly.

E [XY ] = [2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 15 + 20] · 1

10
= 8.5,

E [X] = E [Y ] =
5 + 1

2
= 3,

⇒ Cov (X,Y ) = 8.5− 3 · 3 = −0.5.

Thus,

ρ (X,Y ) =
−0.5√

2 · 2
= −0.25.
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Now we can use this result to answer the second question.

Cov (X,W ) = Cov (X,X + Y )

= Cov (X,X) + Cov (X,Y )

= V (X) + Cov (X,Y )

= 2− 0.5 = 1.5.

In addition,

V (W ) = V (X + Y )

= V (X) + V (Y ) + 2Cov (X,Y )

= 2 + 2 + 2 (−0.5)

= 4− 1 = 3.

Thus,

ρ (X,W ) =
Cov (X,W )√
V (X)V (W )

=
3
2√
2 · 3

=
1

2
·
√

3

2
.

Exercise 12.13. There are two random variables X,Y with a joint probability distribution given in the

following table.

Pr (X = k, Y = l) l = 10 l = 20 l = 30

k = 1 0.04 0 0.20

k = 2 0.07 0 0.18

k = 3 0.02 0.11 0.07

k = 4 0.01 0.12 0.18

(1) Construct a table of the joint CDF.

(2) Find the marginals of both RVs.

(3) Find the conditional distribution PrX|Y (k|20).

(4) Find the mean of Y and the conditional mean of X given Y = 20.

(5) Are these RVS independent?

(6) Verify the law of iterated expectation for the mean of X.

Solution.

(1) The joint CDF could be computed directly by summing up the relevant cells in the previous

table. Thus,

Pr (X = k, Y = l) l = 10 l = 20 l = 30

k = 1 0.04 0.04 0.24

k = 2 0.11 0.11 0.49

k = 3 0.13 0.24 0.69

k = 4 0.14 0.37 1.00

(2) The marginals are:

Pr (X = k) =



0.24, k = 1,

0.25, k = 2,

0.20, k = 3,

0.31, k = 4.
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Pr (Y = l) =


0.14, l = 10,

0.23, l = 20,

0.63, l = 30.

(3) We use the de�nition of conditional probability in order to compute PrX|Y (k|20).

PrX|Y (k|20) = Pr (X = k|Y = 20)

=
Pr (X = k, Y = 20)

Pr (Y = 20)

=



0
0.23 , k = 1,

0
0.23 , k = 2,

0.11
0.23 , k = 3,

0.12
0.23 , k = 4,

=



0, k = 1,

0, k = 2,

11
23 , k = 3,

12
23 , k = 4.

(4) Using the marginal of Y we get

E [Y ] = 0.14 · 10 + 0.23 · 20 + 0.63 · 30 = 24.9.

Using the previous question we get

E [X|Y = 20] = 0 · 1 + 0 · 2 +
11

23
· 3 +

12

23
· 4

=
81

23
.

(5) No, they are dependent as

Pr (X = 2, Y = 20) = 0 6= 0.25 · 0.23 = Pr (X = 2) · Pr (Y = 20) .

(6) First we compute the mean of X directly.

E [X] = 1 · 0.24 + 2 · 0.25 + 3 · 0.20 + 4 · 0.31 = 2.58.

Now we need to compute E [X|Y = l] where l = 10, 20, 30.

E [X|Y = 10] =
1 · 0.04 + 2 · 0.07 + 3 · 0.02 + 4 · 0.01

0.14
= 2,

E [X|Y = 20] =
1 · 0 + 2 · 0 + 3 · 0.11 + 4 · 0.12

0.23
= 3.52,

E [X|Y = 30] =
1 · 0.2 + 2 · 0.18 + 3 · 0.07 + 4 · 0.18

0.63
= 2.36,

hence

E [X] = E [E [X|Y ]]

= 0.14 · 2 + 0.23 · 3.52 + 0.63 · 2.36 = 2.58,

and it works.

Exercise 12.14. There are two random variables X,Y with a joint probability distribution given in the

following table.
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Pr (X = k, Y = l) l = 3 l = 8 l = 10

k = 1 0.03 0.02 0.20

k = 2 0.02 0.12 0.05

k = 3 0.05 0.01 0.21

k = 4 0.07 0.11 0.11

(1) Find the marginals of both RVs.

(2) Find the conditional distribution Y |X = 3.

(3) Find the means and variances of both RVs.

(4) Find the covariance Cov (X,Y ).

(5) Find the correlation coe�cient of both RVs.

(6) Use the law of iterated expectation to compute the mean of X.

Solution.

(1) The marginals are

Pr (X = k) =



0.25, k = 1,

0.19, k = 2,

0.27, k = 3,

0.29, k = 4.

Pr (Y = l) =


0.17, k = 3,

0.26, k = 8,

0.57, k = 10.

(2) The conditional distribution is

Pr (Y = l|X = 3) =
Pr (X = 3, Y = l)

Pr (X = 3)

=


0.05
0.27 l = 3,

0.01
0.27 l = 8,

0.21
0.27 l = 10.

(3) The means are E [X] = 2.6, E [Y ] = 8.29. The variances are V (X) = 1.32, V (Y ) = 6.45.

(4) The covariance is Cov (X,Y ) = −0.514.

(5) The correlation coe�cient is −0.176.

(6) We need to compute E [X|Y = l] where l = 3, 8, 10.

E [X|Y = 3] =
1 · 0.03 + 2 · 0.02 + 3 · 0.05 + 4 · 0.07

0.17
= 2.94,

E [X|Y = 8] =
1 · 0.02 + 2 · 0.12 + 3 · 0.01 + 4 · 0.11

0.26
= 2.81,

E [X|Y = 10] =
1 · 0.2 + 2 · 0.05 + 3 · 0.21 + 4 · 0.11

0.57
= 2.40,

hence

E [X] = E [E [X|Y ]]

= 0.17 · 2.94 + 0.26 · 2.81 + 0.57 · 2.4 = 2.6,

and it works.

Exercise 12.15. Let FX (t) be the uniform distribution on [a, b] and let c ∈ (a, b). Show that FX (t|X ≤ c)
is the uniform distribution on [a, c].
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Solution. We can use the de�nition of conditional distribution such that

FX (t|X ≤ c) = Pr (X ≤ t|X ≤ c)

=
Pr (X ≤ t,X ≤ c)

Pr (X ≤ c)

=


0, t < a,

Pr(X≤t)
Pr(X≤c) , a ≤ t ≤ c,
Pr(X≤c)
Pr(X≤c) t > c,

=


0, t < a,
t−a
b−a
c−a
b−a

= t−a
c−a , a ≤ t ≤ c,

1 t > c,

and we got a uniform distribution on [a, c].

Exercise 12.16. Consider the tables of probabilities

Pr (X = k, Y = l) l = 10 l = 20

k = −1 0.1 a

k = +1 0.3 b

What values a, b must take such that X,Y are independent?

Solution. In order for these RVs to be independent, we need to make sure that

Pr (X = k, Y = l) = Pr (X = k) Pr (Y = l)

for every k = ±1 and for every l = 10, 20. Therefore, we get the following equalities.

Pr (X = −1, Y = 10) = Pr (X = −1) Pr (Y = 10)

0.1 = (0.1 + a) · 0.4.

Pr (X = +1, Y = 10) = Pr (X = +1) Pr (Y = 10)

0.3 = (0.3 + b) · 0.4.

Pr (X = −1, Y = 20) = Pr (X = −1) Pr (Y = 20)

a = (0.1 + a) · (a+ b) .

Pr (X = +1, Y = 20) = Pr (X = +1) Pr (Y = 20)

b = (0.3 + b) · (a+ b) .

Which implies that

0.25 = 0.1 + a,

0.75 = 0.3 + b,

a = 0.15,

b = 0.45.

We can verify that the other two equalities hold given these values. Note that the sum of probabilities

is 1.



CHAPTER 13

The Central Limit Theorem (CLT)

The central limit theorem (CLT) is probably the most popular and commonly-used theorem in proba-

bility theory. Its strength and signi�cance comes from the fact that we can make very few assumptions

on a set of RVs, and still get a very good approximation of their average.

13.1. Laws of large numbers

Before we discuss the CLT, we start we a simpler theorem, called the law of large numbers.

Let {Xn}n∈N be a sequence of independent and identically distributed (i.i.d.) RVs. We sample each

random variable Xn, and get a number xn. Denote by x̄n the average of the �rst n samples. Assume

that the expected value of every RV is µ. Since the RVs are i.i.d., the expected value of the average n

RVs is also µ. The basic law of large numbers states that x̄n → µ as n→∞ with probability 1.

Theorem 13.1. (The Weak Law of large numbers) For every ε > 0,

lim
n→∞

Pr (|x̄n − µ| < ε) = 1.

The weak law states that no matter how small ε is, eventually the average sample is close toµ by no more

than ε. Basically, we see that, independently of the distribution of the RVs, their average converges to

the expectation.

13.2. Central Limit Theorem

The CLT improves the result of the weak law of large numbers, in the sense that it tells us how the

average of the RVs is distributed.

First, we de�ne the standard normal distribution. Let Z ∼ N (0, 1) be a normally distributed RV, with

mean µ = 0 and standard deviation σ = 1. Denote its CDF by Φ. That is, for every t ∈ R,

Pr (Z ≤ t) = Φ (t) .

For every set {Xn}n∈N of i.i.d. RVs with �nite expectation E [Xn] = µ and �nite variance V (Xn) =

σ2 > 0, de�ne the standardized RV Zn as Zn := X̄n−µ
σ/
√
n

when Xn = 1
n

∑n
i=1Xi.

Theorem 13.2. (The Central Limit Theorem) If {Xn}n∈N is a sequence of i.i.d. RVs with �nite

expectation E [Xn] = µ and �nite variance V (Xn) = σ2, then

lim
n→∞

Pr (Zn ≤ t) = Φ (t) .

In words, the distribution of the standardized RV converges to the standard normal distribution. Or,

equivalently, Zn ∼ Z as n→∞. Note that this result is also independent of the distribution of Xn.

Remark 13.1. Usually, we cannot make an in�nite number of samples. Therefore, we use the CLT's

approximation when n ≥ 30. When the number of samples is at least 30, the approximation is su�ciently

accurate.

Exercise 13.1. A �nancial tool gives any investor the following returns (per day) for each dollar invested

Xi =

10, w.p. 0.4,

0.1, w.p. 0.6.

179
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That is, after a day, the investor either gets back $10 for every dollar invested (w.p. 0.4), or just 10

cents for every dollar invested (w.p. 0.6). John invests $10, 000. What is the probability that after 150

days he will have more than $1?

Solution. Denote by X the amount of money John has after 150 days. Let Xi be the return on day

i = 1, . . . , 150. Thus,

X = 104
150∏
i=1

Xi.

Taking log10 (·) on both sides gives

log10 (X) = log10

(
104

150∏
i=1

Xi

)

= log10

(
104
)

+ log10

(
150∏
i=1

Xi

)

= 4 +

150∑
i=1

log10 (Xi) .

Computing the expected value and variance of log10 (Xi) yields

E [log10 (Xi)] = 1 · 0.4 + (−1) · 0.6 = −0.2,

E
[
log2

10 (Xi)
]

= 1 · 0.4 + 1 · 0.6 = 1,

Var [log10 (Xi)] = E
[
log2

10 (Xi)
]
− (E [log10 (Xi)])

2
= 0.96.

Thus,

Pr (X > 1) = Pr (log10 (X) > log10 (1))

= Pr

(
4 +

150∑
i=1

log10 (Xi) > 0

)

= Pr

(
150∑
i=1

log10 (Xi) > −4

)

= Pr

(
1

150

150∑
i=1

log10 (Xi)− (−0.2) > − 4

150
− (−0.2)

)

= Pr

 1
150

∑150
i=1 log10 (Xi) + 0.2

√
0.96√
150

>
− 2

75 + 0.2
√

0.96√
150


≈ Pr (Z150 > 2.17)

= 1− Φ (2.17) = 0.015.

Exercise 13.2. On a roulette in a casino there are 38 numbers: 18 reds, 18 blacks, and 2 greens. You

can only bet $1 on either back or red, and in case you choose correctly (a color is randomly drawn), you

get an additional dollar back. What is the numbers of rounds needed such that the casino wins (positive

gains) with probability of at least 0.95?

Solution. Denote the number of rounds by n. Let Xi be the pro�t of the casino in round i. We wish

to �nd n such that Pr (
∑n
i=1Xi > 0) ≥ 0.95. Note that

Xi =

−1, w.p. 9
19 ,

1, w.p. 10
19 .
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Thus, E [Xi] = −1 · 9
19 + 1 · 10

19 = 1
19 , and

Var (Xi) = E
[
X2
i

]
− (E [Xi])

2

= 1− 1

192
=

360

361
.

The CLT yields

Pr

(
n∑
i=1

Xi > 0

)
= Pr

(
1

n

n∑
i=1

Xi >
1

n
· 0

)

= Pr

(
X̄n −

1

19
> 0− 1

19

)
= Pr

(
X̄n − 1

19√
360
361/
√
n
>

− 1
19√

360
361/
√
n

)

≈ Pr

(
Zn > −

√
n

6
√

10

)
= 1− Φ

(
−
√
n

6
√

10

)
.

We wish that the last term will be greater than 0.95, or equivalently,

1− Φ

(
−
√
n

6
√

10

)
≥ 0.95

m

1−
(

1− Φ

( √
n

6
√

10

))
≥ 0.95

m

Φ

( √
n

6
√

10

)
≥ 0.95

Using the normal distribution table, we can see that this holds if
√
n

6
√

10
≥ 1.645

n ≥ 593.
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