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CHAPTER 1

Introduction

Math is the basic language that we use in economics. In order to understand the way people, prices,
firms and more operate we need to use basic and advanced math. The purpose of this course and book
is to give M.A. students in economics the basic tools to deal with economically relevant problems. The
knowledge of mathematics is not a privilege for economists but a duty. An economist without good
understanding of the mathematical tools will not be able to correctly model the problem he wishes to
approach at the first place, without even going into the process of solving it. Thus, every good economist
should have a good understanding of mathematics.

This book is divided into 4 parts. The first part discusses one-variable calculus, which you probably
learned in your first year of your undergraduate degree. The second part is Linear Algebra, that
(again) most of you already know. Although both parts are relatively simple, we try and give as many
economically relevant examples as we can, so they will still be interesting. The third parts concerns
mulch-variables calculus. This part is a bit more advanced and requires a good knowledge of basic
calculus. The last part discusses probability and statistics, and although it might not seem related to
the other chapters, one can still find a few good connections.

Clearly there are more subjects that we will not go over in this book, such as differential equations. This
does not mean these fields are not important. For additional information, one can use the two main

book used for this course, which are:

(1) “Mathematics for Economists” by Carl P. Simon and Lawrence Blume.
(2) “Must Have Tools for Graduate Study in Economics” by William Neilson.



Part 1

Basic Calculus



CHAPTER 2

One-variable calculus

2.1. Functions in R!

2.1.1. Sets and intervals.
We start with a few of the basic elements in math - numbers and functions. The numbers are usually

categorized into the following sets:

e R is the set of all real numbers and it contains all numbers that are not complex. That is
{1,2,7‘(,6, ﬁ} CR.

e 7 is the set of all integers, i.e., Z={...,—2,—-1,0,1,2,... }.

e N is the set of all natural numbers (which are non-negative integers) {0,1,2,3,...}.

e Q is the set off all rational numbers, that is numbers that can be represented as a fraction of
two integers when the denominator does not equal zero. For example, 1 € Q, % € Q and so

on.

Most students usually have difficulty with distinguishing between real numbers and rational numbers.
First, note that the set of rational numbers is a subset of the real numbers. Moreover, all the previously
defined sets are subsets of R. However, the latter is not a subset of the other sets. For example, v/2 is
a real number but it is not a rational number and it is not an integer. We will prove this later on. In

addition, the relations between the sets are
NCZCQCR.

There are other types of numbers and sets, but we will not require them in this course.
One specific type of commonly used sets are sets with with a continuum of numbers, referred to as
intervals. Let a,b € R be two real numbers such that a < b. The set of all real numbers between a and

b is called an interval. Any interval can be finite or infinite, and can contain the end points or not, for

example:
[a,0] = {z€eR: a<z<b},
(a,b) = {zeR: a<x<b},
(a,0) = {zeR: a<z<b},
[a,b) = {x€eR: a<z<b},
(—o0,a] = {zeR: z<a},
(byoo) = {reR: b<ua},

and there are many other examples.

2.1.2. Basic and advanced functions. After establishing the required sets of numbers, we move
on to functions. Functions are mathematical objects that transform elements from one set to elements in
another set. This is a rather vague description, therefore we limit our scope only to real-valued functions.
A real-valued function f : R — R basically takes a number z € R from the domain and transforms it
into a number f (z) € R in the co-domain. All the values f (z) define the image of f, i.e., the image of
fisgiven by {f(z) eR: z € R}H The input variable z is an independent variable, and in economic
applications is also called an ezogenous variable, and the output variable f (x) is called the dependent

IThe term range refers to either the co-domain, or the image. To avoid confusion, we will generally avoid this term.

7



2.1. FUNCTIONS IN R! 8

variable (an endogenous variable). As you are probably well aware of the concept of functions, we can

go over a few classes of commonly-used functions.

(1)

Polynomials. A polynomial p (z) is a function of the form
p(z) = apx® + arzt +--- 4+ a2

when {a; : i=0,1,...,n} C R and all indices 0 through n are natural numbers. When a,, # 0,
the function p (x) we described is also called a polynomial function of degree n. Note that the
degree relates to highest index ¢ whose weight a; is not equal to 0. The polynomials are a
wildly used class of functions. For example, every constant function f (x) = ¢ (when ¢ € R is
a constant) is a polynomial. Every linear function f () = ax 4+ b when a # 0 is a polynomial
of degree one. A function of the form ax? + bx + ¢ when a # 0 is called a parabolic function
and so on.

Rational functions. A rational function R (x) = % is a function given by a ratio of two

polynomials. For example,

1—a3 x4 22 9x5 — 2
s R@) = T Rl = 2

Trigonometric functions. The basic trigonometric functions are sin (z), cos (z) and tan (z).

R (z)

The trigonometric functions are defined through ratios between different edges of a right tri-

angle (a rectangle triangle) as described in Figure 2.1.1]

A
sin (x) =% —cos{%—x]
COS("):%:sin[gf J E*‘c

a B
< B

FIGURE 2.1.1. Definition of the sin (x)function and cos (z)function.

The definition of tan (z) is tan (z) = :)r;%i)) These functions are usually defined on the unit

circle and thus have many special properties such as periodicity, for example.

Exponential functions. For every a > 0, let f (x) = a” be an exponential function with base
a. Usually we assume that a # 1, since the function becomes a constant function, meaning a
polynomial of degree 0.

Inverse function. In many cases, given a function f (z), one can define the inverse function
of f, denoted by f~!(z). The inverse function does the opposite to what f does by taking
f (z)and transforming it to z. The inverse function is not always well-defined, as the original
function needs to be a one-to-one mapping. That is, every value f (z) that the function can
reach, must have a unique = that generates it. For example, consider the function f: D — R
where D = {1, 2,3} such that
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Such function does not have an inverse as it is not a one-to-one mapping from D to R. Namely,
the inverse could states that 7 translates to 2, but we have a problem with the value 6, as f
sends both 1 and 3 to 6.

(6) Logarithmic functions. A good example of an inverse function is the log, (). This function
is the inverse function to a®. It is defined through the exponential function such that, if a* = y,
then log, (y) = z. The logarithmic function has many properties that you should know, such
as:

a) log, (zy) = log, () + log, (y).
) log, () =log, (x) ~ log, (v)-
) log, (z¥) = ylog, ().
)
)

a10ga(37) = .

_ log,(z)
(e) log, (z) = 132y

REMARK 2.1. There is one important distinction that should be made clear. The notation we use
(z, f (z)) are general and are sometimes confused with the (x,y) notation as the value of the function
is denoted by y. The origin of this notation is in the way graphs of functions are drawn. One variable
functions are drawn on the (z,y) plain, R?, and most of the times the axes are denoted by x and .
Thus, sometimes there is a confusion between the notation of the value of the function in a specific point

and the notation of the axes.

2.1.3. Useful economic functions. There are several functions that are commonly used in eco-

nomics.

e The demand function D (x) sets the price p = D (z) charged for each unit when 2 units are
sold.

e The supply function S (x) sets the price p = S (z) for which producers will supply = units.

e The cost function C (x) determines the cost of producing x units.

e The revenue function R (x) defines the revenue from selling x units, and given by R (z) =
xD (x).

e The profit function P (x) defines the net profit for selling x units. Given by

P(zx)=R(z)—C(x)=2D(x) — C(x).
EXERCISE 2.1. The total cost of producing = units is given by C (z) = 23 — 222 + %

(1) Find the domain of C.
(2) What is the marginal cost for producing the 3rd unit?

Solution.

(1) The domain is {1,2,3,...}.
(2) The cost for producing 2 units is C'(2) = 8 — 8 + 3 = 3. The cost for producing 3 units is
C (3) =27 — 18 +2 = 11. Thus, the 3rd unit’s marginal cost is C'(3) — C (2) =11 —3 = 8.

2

EXERCISE 2.2. The total cost of producing x units is given by C (z) = 2* — 2. On every workday

x (t) = 3t — 1 units are manufactured in the first ¢ hours.
(1) How much will be spent on production by the end of the third hour?
(2) What is the minimal number of hours such that the manufacturing cost exceeds $10007
Solution.
(1) We need to observe the composition of C' and x as a function of ¢. Specifically, we get
Cl) = 20~ (@)
= 21 (3t —1)°,
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= B R R
- H

!

(a-6.a+8)

—

FIGURE 2.2.1. The limit of a function f when x — x.

Thus,

Cx@3) = 21— (9—1)*=256—64 = 192.

(2) We need to find the minimal ¢ such that 23¢=1 — (3¢t — 1)

difficult to solve accurately, we can simply check the production cost in the following hours.

> 1000. Since this inequality is

C(x(4)) =271 — (12— 1)® = 2048 — 121 = 1927,
and the answer is t = 4 hours.

2.2. Limits & continuous functions

2.2.1. Limits of one-variable functions.
The first property we consider is whether a function is continuous or not. Though this property is quite
intuitive and clear, the definition is a bit more complex. We start with the definition of a finite limit at

a finite point.

DEFINITION 2.1. Let f : R — R be a one-variable function and let z¢, L € R be real numbers (we
sometimes denote the domain of f by D and the co-domain by f (D)). L is the limit of f in the point
xg if for every ¢ > 0 there exists a § > 0 such that for every |z — x| < J, it follows that

[f (z) - L <e.

We denote this limit by lim,_,,, f (z) = L.
In simple words, L is the limit of the function f when x tends to x( if f can get sufficiently close to L

(with an infinitely small deviation of no more than ¢, for any ¢ > 0) when z is close to zy. See Figure

22T

REMARK 2.2. one can write the term |z — o] < 0, in the following manner = € (z¢ — d, 29 + 9), which

tends to be more convenient to students.

Definition [2.1] only relates to finite values of 2y and L. There are many cases that are not included in
this definition, specifically, when L and\or z( are infinite. We will give three more definitions for some
of the additional cases.

DEFINITION 2.2. Let f : R — R be a one-variable function and let g, L € RU{—00,400} be real

numbers (including infinity and minus infinity).
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e Case I - zyg = oo and L = co. We say that L is the limit of f when & — z if for every M > 0
there exists a K > 0 such that for every x > K it follows that f (z) > M.

e Case II - zg is finite and L = co. We say that L is the limit of f when z — x¢ if for every
M > 0 there exists a § > 0 such that for every |x — zo| < ¢, it follows that f (z) > M.

e Case III - x¢p = 0o and L is finite. We say that L is the limit of f when & — x¢ if for every
€ > 0 there exists a K > 0 such that for every x > K, it follows that |f (z) — L] <.

The idea behind an infinite limit is as follows. The limit of a function is infinite if its values are becoming
larger and larger and unbounded as you approach a finite xg or as  — oo. These cases do not include
all possible cases as we only considered positive values and did not relate to negative ones. You could
find additional definitions in most academic math books. For example, the limit of f (z) = 22 — 3 is oo
when z — oo and when z — —oco. In addition, although the function f (z) = 1/z is not defined when
x = 0, its limits when z — 0 is co. This is another important aspect. The limit is independent of the

value of the function in zg, hence the function is not necessarily defined in z¢, yet the limit exists.

FIGURE 2.2.2. The function f (z) = 1 and its one-sided limits when z — 0%.

REMARK 2.3. A limit does not always exist. There are cases when the definition fails and then we say
that the limit does not exist. A good, but a bit more complicated example of a limit that does not exist

the limit of the function sin (1) when z — 0. See Figure and Figure

2.2.2. Limits properties.
The arithmetic limit laws are the following: Assume that both limits converge, lim,_,,, f (z) = a,

limg 4, g () = b (including the case where xq is possibly +00), then

o lim, ., (f(2)tg(x) =atd;

(x
o lim,s, (f <)> <>>—a~b-

gEac , assuming that g (x),b # 0.

o lim, .,

6t% 45t
(t+1)%"

EXERCISE 2.3. The number of produced units per month as a function of ¢ (in months) is P (t) =

Determine what we will the the long run production level (i.e., when ¢ — c0).
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y

FIGURE 2.2.3. The limit of sm( ) when x — 0.

Solution. We need to compute the limit

6t% + 5t . 612 + 5t
11m = m ———7——
t—)oo(t+1) t—oo t2 42t +1
2 643
1111’1*'71
tooo t2 14 2 2+ 5
6+0
1+04+0

EXERCISE 2.4. The organizers of Rio-2016 estimated that if the event is announced x days in advance,
the revenue will be R(z) = 400 + 120z — 2%. The cost of advertising for x days is C(z) = 222 + 300.
What happens to the profit has z — c0? z — 107

Solution. We start with the profit function given by

P () R(z) - C(z)
= 400 + 120z — 2% — 222 — 300

= 100 + 120z — 322.

This function is a parabolic function with a global maximum point.

1 120 co-(—3)”
lim 100 + 120z — 3z? = lim z? <020 + — - 3) 9 —00.
x

T—00 T—00 €T

lim 100 + 120z — 322 = 100 + 1200 — 3 - 100 = 1000.
z—10
EXERCISE 2.5. Compute the following limits.

lim, o 23

1
limg_,5 22 — 3z + 1.
222 73$+1

(
(2
( z—1

)
)
3)
(4) limg_o @.

lim,_

Solution.

(1) By the arithmetic limit laws we get, lim, .o 2% = lim, sox-2-2=2-2-2=8.
(2) By the arithmetic limit laws we get, lim, ,52% — 32 +1=25—-15+1=11.
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(3) Note that the numerator and denominator converge to 0. Hence,

2 _ _ _
lim 20" —3r+1 lim 2z —1)(z—-1)
z—1 r—1 z—1 r—1
= lim(2z-1)=1.
rz—1

(4) We will need some algebra in this case. Specifically, we need to multiply and divide by the
conjugate of the numerator and get

Vidr —4 —=x lim Vir —4—zx Az —4+x

lim ———— =

=2 2 —4 o0h 2 —4 .\/4x—4+x

. dr — 4 — 22

= lim
=2 (22 — 4) (\/m+ x)
. —(z—2)°

= lim
e=2 (z+2) (z—2) (VAz — 4+ z)

—(x—2) 0

T MG (Vi ita) i(Vit)

EXERCISE 2.6. Compute the following limits.

Solution.

(1) This limit does not exist. To prove this, we compute the limit when z — 0% and x — 0~.

lim u = lim —= lim 1=1;
=0+t X =0+t X r—0+

. xr . - .

lim u = lim — = lim —-1=-1.
z—0— T z—0— X z—0—

(2) A direct computation shows that

I

17_$n1 ”

lim 2 .
z—0t x
(3) A direct computation shows that
. ox =175
lim = —o0.
rz—0t T

REMARK 2.4. The value of e is defined through the following limit
k/’ xr
lim (1 + > = ek,
T—00 T

EXERCISE 2.7. Prove or disprove the following statements.

(1) If limg oo 28 = 1, then lim, o (f (2) = g (x)) = 0.
(2) If limy oo (f () — g (z)) = 0, then lim,_, fe) _q

Solution.

(1) This statement is false. For instance, take f (z) =z + 1 and g () = z. Then,

1 1
i L g T g Lo
lim (f(x)—g(z)) = lm (z+1—2)= lim 1=1.

T—r00 T—r00 Tr—r00
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(2) This statement is also false. For example, take f (z) = 1 and g (z) = . Then,
lim (f(x)— li L2 =0+0=0;
Jim (f () = g(2)) Jm (= —— )= = 0;
1
lim /(@) lim - = lim z = oo.
z—oo g () T—o00

2.2.3. Continuous functions.

The definition of a continuous function is based on the limit of that function and the value of that
function in a specific point.

DEFINITION 2.3. A function f is continuous in x¢ if the limit lim,_,,, f (z) exists, f (zo) is defined, and
both values are equal, lim,_,4, f (z) = f (z0).

In contrary to the limit’s definition, a continuous function in zo must be defined in x and the continuity
depends greatly on the value f (xg).

A function does not have to be continuous. Consider for example the function

1, x>0,
f(z)=
-1, z < 0.

This function is continuous in every xy # 0, and it is also defined in xy = 0, however it is not continuous
in zg = 0. See Figure for more examples of discontinuous functions.

17y H
[} - !
L] '
[} [
[ 3
“ I'
1 o '
[} }
1 r
1 +
[} '
) ]
: ' L ;!
i+
sty B20N /
flx)= E !
icd 1 t
2 x=0 \ ki
Y 4 i
v )
1
\ 4
N 3
\\ }’
\‘ 1{jmmmmm .:’ ....................
by /
L] Ll
A ’
\\ "' "
I ! ! Sy PEX ! ! I Iy
T I 1 T 1 1 r
-3 -2 1 1 & 3
1 x>0
................................ 4 g[x) —
-1 x<0
24

FIGURE 2.2.4. Non continuous parabolic and linear functions.

REMARK 2.5. one way of proving that a function is not continuous is by computing the limit when

r — x§ and the limit when # — x;. If the limits are not the same, then the limit when z — zo does
not exist, and the function is not continuous.

EXERCISE 2.8. Find the values of A and B such that the function is continuous:

132

3,

T <l,
r=1,

B-In(2?+2) -2, z>1

Solution. For every z # 1, the function is continuous, as it is either a polynomial or a logarithmic

function, which are continuous. So we need to focus on x = 1. First, we need to make sure that the
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limit exists at x = 1.

lim [B-In(z?+2)-2] = [B-In(1*+2)-2] =BIn(3)-2

z—1+

2 _
lim {x f—l—A}: lim [z 4+ Al =1+ A.

z—1- Tr — rx—1—
Thus, for the limit to exist, we require that A + 1 = Bln(3) — 2. In addition, for the function to be
continuous, f (1) = 3 must equal the limit. To conclude,

A+1:Bm@yo:3:>A:zB:1M®.

EXERCISE 2.9. Find the values of A, B, and C such that the function

22 —2Ax +5C - cos (z), =<0,
f(z) =14 B, z =0,

tan(2z)
x )

x>0,

is continuous.

tan(2z)
z

Solution. For every x # 0, the function is continuous, as it is either a polynomial or , that are

continuous. So we need to focus on z = 0. First, we need to make sure that the limit exists in z = 0.

tan (2 2 in (2
T ) I ST oy
z—0t T z—0+ cos (2z) 2x
when we used the known limit lim,_,q S22 — 1.

x

lim 2% — 242 4 5C - cos () =0 — 0+ 5C = 5C.

r—0~

Thus, for the limit to exist, we require that 5C = 2 = C = % In addition, for the function to be

continuous, f (0) = B must equal the limit, which is 2. To conclude,

2
B=2C=: AcR.

EXERCISE 2.10. Discuss the continuity of the function

2?2 =3z, if x <2,

4+ 2z, if > 2,

flz)=
on the open interval (0,2) and on the closed interval [0, 2].

Solution. Since z2

— 3z is a continuous function and f(x) = z? — 3z in (0,2), we get the f is
continuous in the open interval. However, in the closed interval, the function is not continuous in x = 2,

since f(2) =4+2-2=8and lim,_,,- 2> —3x =4 —6 = —2.

THEOREM 2.1. (the Mean Value Theorem) If a function f is continuous on the closed interval [a,b],
where a < b, and assume that there exists some value d between f (a) and f (b), then there exists a point
¢ € (a,b) such that

fle)=d.
EXERCISE 2.11. The price p of a product is contained in the interval [0, 1]. The demand function D (p)

is given by D (p) = 1 — p?. The supply function S (p) is S (p) = 0.5 + 2p — p'/3. Determine whether

there exists an equilibrium price p. where the supply meets the demand.
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Solution. We need to find whether there exists an equilibrium price p, such that the supply function

equals the demand function. Specifically,

D) = S
D(p)-5S(p) =
1—p2—0.5—2p—|—pl/3 = 0
05—-p>—2p+p'% = 0

We can see that we got a continuous function, therefore we can use the Mean-Value theorem.
(1) When p = 0, the right hand side of the previous equation equals 0.5.
(2) When p = 1, the right hand side of the previous equation equals 0.5 —1 -2+ 1= —1.5.

By the Mean-Value Theorem, we know that a price p. € (0, 1) exists such that the right hand side equals
0, and the result follows. See figure for a sketch of the two functions.

F1GURE 2.2.5. Supply meets demand from Exercise

EXERCISE 2.12. Prove that for every 0 < a < 1, n € N, the equation
2" =a+ (2z)"
has a solution xo € (0,1).

Solution. Fix 0 < a < 1, n € N, and define f () = 2* —a— (22)". Note that f is a continuous function.
In addition, f(0) =1—a>0and f(1) =2—a—2" < —a+ 0 < 0. By the Mean Value Theorem on
(0,1), there exists a point ¢ € (0,1) such that f (¢) = 0. Hence,

2°—a—(20)" = 0
2° = a+ (20",

as needed.

2.3. Derivatives

Similarly to the concept of continuity, the idea behind the derivative of a function is intuitively simple,
but the definition tends to be complex. The basic idea behind the derivative of a function is to measure

the change in the values of that function. Specifically, the derivative is a function that states how fast
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or slow a function increases or decreases. Nevertheless, the main problem of measuring the derivative

at a certain point is not that simple.

f(x)

/(x)

/ X, X

F1GURE 2.3.1. The derivative of a function f at a point z.

The derivative f’ (z¢) of the function f (z) in ¢ is defined through the inclination\slope of the function
in that point. To define this value correctly, we consider the value of the function in two different points
xo and xo. We draw a straight line between f (z) and f (x¢) and calculate the angle of that line w.r.t.
the x axis. Then, we take xs that are closer and closer to zy and recalculate that value. by taking the

limit, we get f’ (x¢). Formally,

Pl = tim LE S0
T—xo T — T

regeo iy, @A)~ f (@)

h—0 h :

We can try to find the derivative in every point and by doing so, we get a new function f’(x), which
represents the slope of f at any point x (as long as the limit above exists). It terms of notations, we

sometime use - f (z) to denote the derivative of the function f ().

REMARK 2.6. If a function is differentiable on an interval, it is also continuous on that interval.
EXERCISE 2.13. Find the derivative of the functionf(z) = 1622 using only the definition.
Solution. Using the derivative’s definition yields

2 2
lim 16 (x + h) 162 — lm

16 (22 + 2zh + h?) — 1622

h—0 h h—0 h
. 32zh + 16h?
= hm —_—
h—0 h

= lim 32x + 16h = 32z.
h—0
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EXERCISE 2.14. Prove that f (z) = |x — 13| is differentiable anywhere but zo = 13.

Solution. We compute the derivative using the basic definition when zoy > 13, x¢g < 13, and when
Trog = 13.

o If ¢y > 13, then

. +h —13| = |zg — 13|
/ — 1 |x0
F' (@o) hli% h
. hmxo—i-h—lg—l‘o—l-l?)
o h—0 h
h
= 1. —_ = 1
hl—r% h
o If x5 < 13, then
. + h—13] — |zo — 13|
/ — 1 “"EO
f"(zo) hli% A
— lim —(xo+h—13) + (o + 13)
- h—0 h
—h
= lim — =-1
h—0 h
o If g = 13, then
, L [13+ h — 13| — |13 — 13|
_ oy |h| B +1, h—0t,
T h S hson

and the limit does not exist, hence the derivative does not exist.

2.3.1. Standard economic uses for derivatives.

e Finding extreme points (specified later on).

e Increasing or decreasing functions. The derivatives specifies whether a function is increas-
ing or decreasing. For example, if the marginal cost is positive, we know that an increase in
production will result in an increase in cost.

e Marginals estimations. In economics we usually look at the marginal cost or marginal
revenue, which means the change in cost or the change in revenue when a small change in the
production is made. Consider, for example, the cost function C (z) which defines the cost for
producing x units. The marginal cost (per unit) for producing two more units is

Cx+2)—C(x)
2
Now we can take a smaller and smaller increase and get the marginal cost as the limit
Cx+h)—-Clx
lim (z + })L (z)

2.3.2. Derivatives of basic functions.
Since we would not want to make the same computation for every function and for every z € R, we
can formulate the derivatives of certain basic functions. The following list contains the derivatives of
functions we use regularly (any other derivative could be computed directly according to the original
definition):
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The function | The derivative | The function | The derivative
f (x) [ () f (=) [ (z)
c 0 a® a”In (a)
" n#0 nz" 1 log, () ﬁ@
sin (z) cos () arcsin (x) 11_12
cos (z) —sin (x) arccos () — 1£I2
tan () m arctan () e

2.3.3. Rules of differentiation.

There are a few elementary rules of differentiation. Let f, g be two differentiable functions, then:

(1) (f (@) £g(@) = f(x) £ ¢/ ().

(2) (f(2)-g(@) = f'(2)g(x)+ [ (x)d (z).

(3) (g(z ) I’ (1’)9(9;) (Q{)(I)g'(r), when g (z) # 0.

(4) An inverse function f~! () is differentiable if and only if f’ (f~! (2)) exists and does not equal
0. The derivative is given by

df 7' (z) _ 1
dv f(f7 (@)
(5) Another important rule of differentiation is the chain rule. Define h (z) = f (g (z)) and assume
that g (z) is differentiable in = and f is differentiable in g (x), then h (z) is also differentiable
in 2 and K (z) = (9 (2)) ¢ (2).

These rules are very helpful when trying to compute the derivative of non-basic functions. For example,

fx) = \/E,g(x)zﬁ—&—l:>h(x):f(x2—|—1): 2+ 1
h'(z) = L-Qa:.
2vVx2 +1

EXERCISE 2.15. The manager of an appliance manufacturing firm determines that when blenders are
priced at p dollars apiece, the number sold each month can be modeled by D(p) = 80}%. The manager
estimates that ¢+ months from now, the unit price of the blenders will be p(t) = 0.06t*® + 22.5 dollars.
At what rate will the monthly demand for blenders D(p) be changing 25 months from now? Will it be

increasing or decreasing at this time?

Solution. We want to find how the demand D changes as a function of the time. Using the chain rule,

d _ dD(p) dp(t)
8000 6 3 s
= —— - =t0%,
p 1100 2

Thus, when ¢t = 25, we get p (25) = 0.06 - (25)"° + 22.5 = 30, and
d 720
—[D(p(t =— 2500 = 4,
dt [D (p( ))]t:25 (30)2

That is, the demand for blenders will be decreasing at a rate of 4 units per month.

2.4. Extreme points

In many economic model we try to maximize or minimize the payoff, utility, or some kind of a production
function. In order to do so, we need to thoroughly understand the methods of optimizing any given
function. For that purpose, we study extreme points of functions. We start with the basic definitions.

DEFINITION 2.4. Let f: D — R be a one-variable function with domain D C R. The point zy € D is a
global maximum (minimum) if f (z¢) > f (z) (f (o) < f (z)) for every x € D.
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In other words, a global maximum (or, a global minimum), is a point zy that maximizes (minimizes)

the value of f with respect to all the other point in D.

DEFINITION 2.5. Let f: D — R be a one-variable function with domain D C R. The point z¢g € D is
a local maximum (minimum) if there exists an open interval I containing x¢ such that f (z¢) > f ()
(f (xo) < f (x)) for every x € I.

In general, finding the extreme points of a function is not easy. Therefore, we have a few theorems
that assist with this problem. The first theorem is the Bolzano—Weierstrass theorem that gives a basic

condition for extreme points to exist.

THEOREM 2.2. (Bolzano—Weierstrass) Let f : [a,b] — R be a continuous function on [a,b]. Then f

must attain a marimum and a minimum, each at least once.

That is, there exist numbers ¢, d € [a, b] such that f(c) > f(z) > f(d) for all z € [a,b]. The theorem is
based solely on continuity of f. The next theorem, Fermat’s Theorem, relates to cases where an inner

extreme point of a differentiable function has a very unique property such that the derivative is zero.

THEOREM 2.3. (Fermat) Let f : (a,b) = R be a function and suppose that xo € (a,b) is a local extreme
point of f. If f is differentiable at xq, then f'(zo) = 0.

Note that the theorem does not mean that every point where the derivative equals zero is an extreme
point. This is not true in general. The theorem states that in cases that f is differentiable, the
derivative in the extreme points is zero. Thus, in order to find extreme point, one need to solve the
equation f’(x) = 0 and all the points that solve this equation are suspected to be extreme points.

Theorem and Theorem make the problem of finding extreme point easier, using the following

stages:

(1) Find all the point where f’(z) = 0 or f’(x) is not defined. These points are called critical
points and are suspected to be extreme points.
(2) Compute the values f (z) for each critical point.

(3) Compare the values and determine the properties of each point.

EXERCISE 2.16. A company produces a product at a cost of 5$ each. The company assumes that if the
price for each product is x, then 15 — 2 products will be sold. What is the company’s profit function?

What should it charge in order to maximize its profit?

Solution. In this exercise = is the market price, which is a choice variable for the firm. The profit

function of the firm is

Px) = z(15—x)—5(15—x)
= (I5—2z)(z—-5)
= —2” + 20z — 75.
This function is concave, and its first derivative is P’ (x) = —2z + 20. The function reaches its maximal

value at = = 10.

EXERCISE 2.17. A company produces a product at a cost of 58 each. The current price is 10$ apiece
and 10 products are sold each day. The company realizes that each dollar decrease in the price, will
increase the amount of products sold by 1 product a day. Write the demand and profit functions and

find the price that maximizes the profit.

Solution. From the information given, the demand function D (p) (as a function of the price) must be
computed. The function is linear, and the slope is —1. It goes through the point (10, 10), so the function
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must be
D(p) = -p+b
D(10) = —-10+b=10
=b = 20,
D(p) = -—-p+20.

Then the profit function (as a function of price) must be 7 (p) = (p — 5) (20 — p). A direct computation
shows that 7’ (p) = 25 — 2p, so the profit is maximized at p = 12.5.

EXERCISE 2.18. To produce x units of a particular commodity, a monopolist has a total cost of
C (z) = 22% 4 3z + 5,

and total revenue of R(x) = xp(z), where p(z) = 5 — 2z is the price at which the z units will be sold.

Find the profit function P(x). For what level of production is profit maximized?

Solution. The profit function is
P(zx) = R(z)—C(x)
= ap(x)—22% -3x -5
= br—22% 222 -3x-5

= —4d2®+22 5.
Taking the first-order condition yields
P(z) = -8r+2=0
= z= 0.25.

Thus, the profit is maximized when producing just a single unit.

EXERCISE 2.19. When interest rates are low, many homeowners take the opportunity to refinance their
mortgages. As rates start to rise, there is often a flurry of activity as latecomers rush in to refinance
while they still can do so profitably. Eventually, however, rates reach a level where refinancing begins
to wane. Suppose in a certain community, there will be M (r) thousand refinanced mortgages when the
30-year fixed mortgage rate is %, where

M () 1+ 0.05r

:W’ fOI‘lSTSS.
. T

(1) For what values of r is M (r) increasing?
(2) For what interest rate r is the number of refinanced mortgages maximized? What is this

maximum number?
Solution.

(1) Note that we have a continuous function in a closed interval, thus a maxima and a minima

exist. Taking the first-order condition, we get

0.05 (1 + 0.004r2) — 0.0087 (1 + 0.05r)
(14 0.004r2)°
0.05 4 0.0002r2 — 0.0087 — 0.000472
(14 0.004r2)°
—2r2 — 80r + 500
10000 - (1 + 0.00472)>"

M (r) =
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Thus, we see that M increases according to the sign of —2r? — 80r + 500. Finding the solution
for the equation —2r2 — 80r 4+ 500 = 0,

80 % /6400 + 4000

T2 =

—4
= —20+ 650
= —-20£25.5

r = 5.5

ro = —45.5.

Since the function we are analyzing is a parabolic function with a global maxima, we know
that M (r)is increasing when 1 < r < 5.5.
(2) The function is maximized at the very end point it stops increasing. In other words, when

r =1 we have a minima (M (1) = {2 ~ 1.05), whereas r = 5.5 is a maxima, therefore M is
maximized when r = 5.5. The maximum value is M (5.5) = % ~ 1.14. Note that the

value at the other end point r = 8 is M (8) ~ 1.1.
EXERCISE 2.20. Give an economic interpretation of the derivatives of the following functions:

q) is the revenue from producing ¢ units of output;

(

(z) is the cost of purchasing x unit of some commodity.

(p) is the amount of commodity consumed when its price is p.
(

F
G
H
C (Y) is the total consumption when national income is Y.
(5) S

Solution.

(Y) is the total savings when national income is Y.

(1) The derivative is the marginal revenue, that is, the rate at which revenue increases with
output.

(2) The derivative is the marginal cost, that is, the rate at which the cost of purchasing x units
increases with x.

(3) The derivative is the rate at which demand increases with price.

(4) The derivative is the marginal propensity to consume, that is, the rate at which aggregate
consumption increases with national income.

(5) The derivative is the marginal propensity to save, that is, the rate at which aggregate

savings increases with national income.

EXERCISE 2.21. A manufacturer estimates that when z units of a particular commodity are produced,
the total cost will be C(z) = 2% + 3z + 98 dollars, and furthermore, that all z units will be sold when
the price is p(z) = £(75 — z) dollars per unit.
(1) Use marginal cost to estimate the cost of producing the ninth unit. What is the actual cost of
producing the ninth unit?
(2) Find the marginal profit.
(3) Use marginal revenue to estimate the revenue derived from the sale of the ninth unit. What is

the actual revenue derived from the sale of the ninth unit?
Solution.

(1) The marginal cost is C'(z) = 1z + 3. The cost of producing the ninth unit is the change in
cost as x increases from 8 to 9 and can be estimated by the marginal cost

1
C'(8) = 1~8+3:$5.
The actual cost of producing the ninth unit is

C(9) — C(8) = $5.13.
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2) The revenue is given by R (z) = ap (z) = 25z — t22. The profit is
g 3

P(zx) = R(z)-C(x)
1
= 25— —z? ga:? 3x — 98
= 22z —98 U e
= T 2433,
11
P = 22— —g.
(z) 2%

(3) The revenue obtained from the sale of the ninth unit is approximated by the marginal revenue
R (8)f2577 8 = $19.67.
The actual revenue obtained from the sale of the ninth unit is
R(9) — R(8) = $19.33.
EXERCISE 2.22. Answer the following questions:
Is the function f

x) = 223 — 1222 increasing or decreasing in = = 3?

(1) f(x)

(2) Is the function f (z) = ( ) increasing or decreasing in z = 137

(3) Is the function f (x) = e ®z!® increasing or decreasing in x = 4?7

(4) Is the function f (z) =

(5) Is the function f (z) = 4‘31+ 2 increasing or decreasing in x = —1?

(6) Ts the function f (z) = Tz) increasing or decreasing in x = e?

(7) Is the function f (x) = 522 + 162 — 12 increasing or decreasing in x = —67
Solution.

(1) The derivative is f’ (z) = 622 — 24x. Thus, f'(3) = 54 — 72 = —18 < 0 and the function is

decreasing.

(2) The derivative is f'(13) = 13 > 0, and the function is increasing.

(3) The derivative is f’ (4) = 56 4 <0, and the function is decreasing.

(4) The derivative is f'(2) = 7% > 0, and the function is increasing.

(5) The derivative is f' (—1) = § > 0, and the function is increasing.

(6) The derivative is f' (¢) = —2 < 0, and the function is decreasing.

(7) The derivative is f’ (—6) = —44 < 0, and the function is decreasing.

EXERCISE 2.23. A firm can use its manufacturing facility to make either tables or chairs. Both require

labor only. The production function for tables is
A =20L%%,
and the production function for chairs is
B =30L.

The wage rate is $11 per unit of time, and the prices of tables and chairs are $9 and $3 per unit,
respectively. The manufacturing facility can accommodate 60 workers and no more. How much of each

product should the firm produce per unit of time?

Solution. Assume that the firm devotes L units of labor for tables production and 60 — L to chairs

production. The profit function is
7 (L) 9-20L"° +3-30(60 — L) — 11 - 60

= 180L%® —90L + 79 - 60.

The FOC is 7/ (L) = 90—

Vi 90 = 0, which means that L = 1. Thus, the firm produces 20 tables and
1770 chairs.
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2.4.1. Derivatives of second and higher order.
In the same manner that a function could be differentiable, its derivative (which is also a function)
could be differentiable as well. In this case, we say that f is twice differentiable and f” is the second
derivative of f. The same is also true for the second derivative and so on. When a function is k
times differentiable and the k'* derivative is continuous, we say that the original function is k times

continuously differentiable and denote this set of functions by C*. The k derivative of f is denoted by
f® (@).

2.5. Convex & concave functions

Convexity and concavity are important properties of functions, specifically in Economics. These at-
tributes help us with determining the number of extreme points (or equilibrium) and their nature. But

first, let us define the two properties.

DEFINITION 2.6. (Convex and Concave functions) A function f is called convex on an interval I if
and only if f((1—t)a+1tb) < (1—1¢) f(a)+tf () for every a,b € I and all ¢ € [0, 1].

A function f is called concave on an interval I if and only if f ((1 —t)a+1tb) > (1 —1t) f (a) +tf (b) for
every a,b e I and all t € [0,1].

For example, f (z) = 22

and f (z) = 1/z are convex functions, whereas f (z) = v/x and f (z) = In(z)
are concave functions. When function change from concavity to convexity, or otherwise, that point is
called an inflection point. As previously stated, convexity or concavity are very helpful properties when

trying to determine whether an extreme point is either a unique maximum, or a unique minimum.

PROPOSITION 2.1. Let f be a function with an extreme point xo. If f is concave (convex), then xq is

the unique mazima (minima, resp.) of f.

One way to characterize functions by these properties is through the Second-Order Condition (SOC),

relating to the second-order derivative.

PROPOSITION 2.2. When a function is twice differentiable, the second derivative determines whether
the function is convex or concave. Specifically, if " (z) > 0 (f” (z) <0), then the function is convex

(concave).

EXERCISE 2.24. Optimize the following functions and tell whether the optimum is a local maximum or

a local minimum

(1) f(z) = —42% + 10x.

(2) f(z)=1202%7 — 6x.

(3) f(z) =4z —3In(z).

Solution.

(1) The FOC is f/(z) = =82z +10 = 0. So, z* = 5. The SOC is f” (2) = —8 < 0, and this is a
local maximum.

(2) The FOC is f' (z) = &% — 6 = 0. So, zx = 141/%-3. The SOC is f” (141/°3) < 0, and this is a
local maximum.

(3) The FOC is f'(z) =4 — 2 = 0. So, x = 3. The SOC is f”(2) > 0, and this is a local

minimum.

EXERCISE 2.25. During a recession, Congress decides to stimulate the economy by providing funds to
hire unemployed workers for government projects. Suppose that ¢ years after the stimulus program

begins, there are N(t) thousand people unemployed, where

1
N (t) = gt?’ — 3t2 + 37 where 0 <t < 10.
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(1) What is the maximum number of unemployed workers? When does the maximum level of
unemployment occur?

(2) In order to avoid overstimulating the economy (and inducing inflation), a decision is made to
terminate the stimulus program as soon as the decrease in the unemployment rate begins to

weaken. When does this occur? At this time, how many people are unemployed?
Solution. To solve this problem we need to find the first and second derivatives of N.
N'(t) = t*—6t,
N"(t) = 2t—6.
(1) Note that N (t) — oo as t — oo, and the function is continuous. Thus, there is a global maxima
and a global minima. We need to identify critical point first. We have two simple solutions:

t; = 0 and t3 = 6. In addition, we can see that the function is decreasing when 0 < ¢ < 6, and

increasing otherwise. Hence,

f() = 37,
f(6) = T2-108+37=1,

1 1
F(10) = 3335 —300+37 =705

Thus, the maximal level of unemployment occurs when ¢ = 10, and it is 70.33%.

(2) Now, we need to analyze the change in the unemployment rate. We sew that there is a decrease
in unemployment when 0 < ¢ < 6. But we are asked when the decrease starts to weaken, that
is when N’ (¢) starts to increase. By analyzing the second derivative we see that t = 3 is an
inflection point of N and the derivative of N starts to increase. At that stage, unemployment
is N(3) =9— 27437 = 19%.

EXERCISE 2.26. Determine when the following functions are convex or concave.

f(x) =2 +4z —17.

x4+ 2, T < —1,
f(I): iw"’_%a xe[_1a1]7

7
5—23: x> 1.

Solution.

(1) We know this is a parabolic function. It is differentiable infinitely many times. Thus

f@) = 2z+4,
() = 2>0

and the function is convex.
(2) The function is defined for every « > 0. It is differentiable, thus

f/(x) =
f,/(x) = _;<07

and the function is concave for every = > 0.
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(3) The function is defined for every x # 0. It is differentiable, thus
1
f/ (.TL') = T35

22
[ w) =

2
3’

This means that it is convex for every & > 0 and the function is concave for every = < 0.

(4) Note that the function is defined by three linear functions. Although the derivatives do not
exist when x = —1,1, we can use the basic definition of concave and convex functions and see
that this function is concave. Note that a linear function is both concave and convex, so when
x is restricted to a specific linear function (x < 1, or € [—1,1], or & > 1 ), then the function

is both convex and concave.

2.6. Derivatives Theorems

There are several major theorems concerning derivatives. In many cases, we use them, even without

knowing, because they are so intuitive.

THEOREM 2.4. (Rolle) If a real-valued function f is continuous on a closed interval [a,b], differentiable
on the open interval (a,b), and f(a) = f(b), then there exists at least one ¢ in the open interval (a,b)
such that f'(c) = 0.

In simple terms, Rolle’s Theorem states that when a function is differentiable and when it reaches the

same value at twice, say in = a and in = = b, then there exists a point ¢ € (a, b) such that the derivative

£(¢)is 0.

THEOREM 2.5. (Lagrange) If a function f is continuous on the closed interval [a,b], where a < b, and
differentiable on the open interval (a,b), then there exists a point ¢ € (a,b) such that

fb) = f(a)

o =01

Lagrange’s Theorem was generalized by Cauchy in the following manner.

THEOREM 2.6. (Cauchy’s Theorem) If functions f and g are both continuous on the closed interval

[a,b], and differentiable on the open interval (a,b), then there exists some ¢ € (a,b), such that

Of course, if g(a) # g(b) and if g/(c) # 0, this is equivalent to

f'e) _ fb) = fla).

g'(c)  g(b) —g(a)

EXERCISE 2.27. An airline company estimates that when a round-trip ticket between Los Angeles and

San Francisco costs z dollars, the daily supply for tickets would be S () = x°. In addition, the daily
demand for tickets as a function of the price is D (z) = n — ma where m > 0. Prove there exists a

unique equilibrium price.

PROOF. An equilibrium is reached whenever supply meets demand. Thus, > = n — ma. Define
f (z) = 2° + mz — n. Note that

. 5 . 5 m n
lim z° +mz—n = lim 2’ (14— — =) =o00;
xT—00 T— 00 X i
. . m n
lim 2°4+mez—n = lim 2° (1—1——4——5):—00,
T——00 T——00 €T T

and by the fact that every polynomial is a continuous function it follows from the Mean Value Theorem,
Theorem that there exists a point d such that f (d) = 0. Now we can prove, by contradiction, that
this value is unique. Assume, to the contrary, there exists d; # d such that f(d;) = 0. By Rolle’s
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Theorem, Theorem [2.4] we know that there exists ¢ between d and d; such that f’(¢) = 0. Note that
f'(z) = b5z* + m. Since m > 0, it follows that f’ (z) > 0 for every x € R. Contradiction. O

EXERCISE 2.28. An airline company estimates that when a round-trip ticket between Los Angeles and
San Francisco costs x dollars, the daily supply for tickets would be S (z) = z° + 222. In addition, the
daily demand for tickets as a function of the price is D () = 18 — 2*. Prove there exists exactly two

equilibrium prices.

PRrROOF. An equilibrium is reached whenever supply meets demand. Thus, ' + 222 = 18 — 2.
Define f (z) = 20 + 2% + 222 — 18. Note that

1 2 18
lim 20 +2* +222-18 = lim 20 (1+ =4 = - — ) =oc;
T— 00 T—00 26 8 210
1 2 18
lim z%42*+2:2-18 = lim 2 (14 =+ = - — ) =00,
T——00 T——00 26 8 210
and note that f(0) = —18. This means that there is at least two points di < 0 < dy such that

f(d1) = f(d2) = 0. Now, assume, to the contrary, that there are at least three different solution.
Denote them by di, do, and d3. Without loss of generality, assume that dy < do < d3. By Rolle’s
Theorem, Theorem [2.4] it follows that there exists c¢i,co such that di < ¢; < dy < ¢ < d3 and
f'(c1) = f' (c2) = 0. Let us compute f’ (z) explicitly. f’ () = 102° + 423 + 42 and we can use Theorem
again and get that there exists a point c¢3 such that ¢; < ¢3 < c2 and f”(c3) = 0. However,
" (x) = 9028 + 1222 4+ 4 > 0 for every = € R. Contradiction. O

2.6.1. L’Hopital’s rule.
There are limits that are complicated to compute. Usually, limits of fractions when both the denominator
and the numerator converge to 0 or +oo. In these case, we can use L’Hopital’s rule:

THEOREM 2.7. (L’Hopital’s rule) Consider two functions f and g which are differentiable on an open

interval I except possibly at a point ¢ contained in I. If

lim f(z) = lim g(z) =0 or % oo,

r—c Tr—c

and lim,_, . f,/ég exists, and g'(x) # 0 for all x in I with x # ¢, then
fl@) . f'(=)
g

Q

A g(e) g )

The theorem also holds when ¢ = +00 and I = R.

EXERCISE 2.29. Compute the following limits:

lim, o0 (x — sin (z)).
. 2

sin(x)

—

sin(w?‘)
1—cos(z)
2 )
In(1+x)
—

limg 0

limgz 0

hma:%()

a®—1
x

limg 0

)
)
)
4) lim, g
)
)
)
)

limg, _,q 2%.

9) limg_ o0 /T,
Solution.

(1) We can use the fact that sin (z) is bounded and get

lim (z —sin(z)) = lim z <1 — sm(:c)) =700-1" = 0.

r—00 r—00 xT
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(2) Dividing the numerator and the denominator by 37 yields

x 2)\*
lim 27 = lim (3) _ Y

(3) Using L’Hopital’s rule yields

: » 0
ligg S0 (z) 3" jig €O (2)
x—0 X L x—0 1

=1

(4) Using the previous limits, we get

. sin (x3) .
lim ———~% = lim z
x—0 €T x—0 ;L'?’

2sin(x3) —0-1=0.

(5) Using L’Hopital’s rule and a previous limit,
lim 1 — cos (z) " lim sin () _ }
0 2 L -0 2x 2

(6) By L’Hopital’s rule, we see that

In (1 50 1
711( +2) lim 12 =
z—0 1

lim =
x—0 x L

(7) By L’Hopital’s rule, we see that
a®—178" . a”In(a)

lim = lim ———= =1n(a).
x—0 xX L x—0 1

(8) Using the laws of exponential and logarithmic functions

lim 2° = lim ™"
r—0+ z—0t
=  lim e*®)
z—0+

Now we can compute directly the limit lim,_,o zIn (z) and then use the continuity of e*.
In

(z)

lim zln(z) = lim —
z—0t z—0t >
50 1
o : z
T lim T

+ L
z—0 22

lim —x =0,
z—0t

and by continuity we get that lim, o+ 2% = lim,_,o+ *"(®) = 0 = 1.

(9) Similarly to the previous exercise,

. i . 1/«
lim z= = lim eln(’c )
Tr—r 00 xT—r00
. In(x)
= lime =
&Tr—r 00

In(x)

Now we can compute directly the limit lim, and then use the continuity of e®.

In (2 » o0 » 1
lim (z) = lim £ =0,
T—00 x€X L rz—o00 |
and by continuity we get that lim, . rr =¥ = 1.

EXERCISE 2.30. Compute the following limits:

o dimyo (1 gy) =7

20 _

o lim, o <o=1 =7

x —x
e
o lim, o 2 =7
x2 2
o lim, o€ =l=2 =7
1n(1—x)+;c+%a:2+%w3 _o
sin?(z) -

o . hmz_w
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Solution.
) (1 1 > (sm ) »0»
lim | — — — =
z—0 \z  sin(z) x sin (
cos(z) — 1 i
wao sin ( + x cos (x)
—sin (z)
= lm - =
-0 \ cos (z) + cos () — xsin (x)
—0
= =0
1+41-0
2z _ 1 » 0 2 2x
lim 2 gim =9
z—0 T z—0 1
) et — =% ,,%w ) er + e~ % 1 + 1
Jim ———— = lim = =2
=0 sin (z) =0 cos () 1
T » oo 2% 1 (2
im 2R gy G
z—o00 I T—00 1
2 2 $2 _ 1
) ex —1—1’2 11%77 i rl\e
}:ILI%J JU4 a :cli% 41‘3 -
612 — 1 »o»
= lim =
x—0 2.’E2
t
-1
= % lim ¢ =
t=q2 t—0 ¢
1
= — 1 = —
S ()

_ In(l-2)+z+ 322+ 18 . In(l—2)+z+ 12?4+ a8 x?
lim — = lim T v
z—0 sin (q;) x—0 x Sin (l‘)

We know how to compute the limit of the second term, therefore we now focus on the first term.
. ln(l—x)-i—x-l— 122 4 ac non —ﬁ+1+x+x2 »0»
lim = lim =
x—0 ;C4 x—0 4x3
FESE +14+2% »o»
= lim 2
z—0 12%2
+2 »o»
= lim (1-2)” =
z—0 24x
6_ !
= lim —&2 ==
z—0 24
Hence,

. In(1—2)+z+ 322+ 1a® . In(1—2)+z+ 522 + 1a® z*
lim — = lim 1 C—3 =
z—0 sin (1’) z—0 X sin (CC)

1 1
= _— ]_ = ——
4 4

EXERCISE 2.31. Suppose that in a certain community, there will be M (r) thousand new houses built
when the 30-year fixed mortgage rate is r%, where
1—e", r <0,

MEy=4
r+re, r > 0.

Find the interest rate r,,;, such that the number of new houses built is minimized. Is the function

differentiable in r,,;,7
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Solution. One can see that the function is strictly positive whenever r # 0. When r > 0, the function is
an increasing function, since M’(r) = 2r+1, and when r < 0 the function is a decreasing as M'(r) = —e”.
Thus, the minimum should be in r,,;, = 0. We can see that M (0) = 0, which implies it is minimal. The

function is continuous in 7,,;, = 0 as

lim1—-¢" = 1-1=0;
r—0+
lim r+r% = 0.
r—0—
Using the definition for differentiation we get
M(r)— M(0 M
tim MO = MOy, M)
r—0 r r—0 r
Taking the two sides separately,
M 2
im MO T 1o
r—0t T r—0+t r r—0t
. M T’) . 1—e¢€" 0%*_
lim = lim = o0;
r—0— T r—0t T

therefore, the derivative does not exist.
EXERCISE 2.32. Determine whether the following function is differentiable at z¢ = 0,

1+sin(z), x>0,

T — a2, x < 0.

f(x) =

Solution. One can see that the function is not continuous in zg = 0 as

lim 1+sin(z) = 1,
x—0+F
lim z—2%2 = 0,
z—0~

and the limit does not exists. Therefore, the function cannot be differentiable.
EXERCISE 2.33. Determine whether the following function is differentiable at x¢ = 0,
1+sin(z), x>0,

f(@)=

l+z—2%2, =x<0.

Solution. In contrast to the previous exercise, this function is continuous everywhere. Let us compute
it derivative through the basic definition. Note that f (0) = 1 + sin (0) = 1, thus

Cf@ O Ldsing) -1
o0+ x—0 z—0+ x—0
— lim 22 (2) =1
r—0t X
_p2
lim w = lim 1tz-z !
z—0— x—0 z—0— rz—0
. x—a?
= lim
r—0— X

= lm 1l—-2x=1,
z—0~

and the function is differentiable everywhere with a derivative of f’ (0) = 1.

2

EXERCISE 2.34. Consider the function f (z) = 122In(z) — 122

= 1
2 a

(1) Prove that f’ (x) > 0 for every z > 1.

(2) Assume that f (z)is revertible when z > 1. compute zo = f~1 (0).

(3) Compute (f~1)"(0).

Solution.
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(1) A direct computation shows that

1
’ _ 1 Z2. 2 2
' (x) zln(z) + -z i
= zln(z) >0,
as x> 1.
(2) We wish to find xg such that f (xq) = 0.
1 1
§x2 In(x) — Zzz = 0
22°In(z) —2* = 0
22(2In(z) —1) = 0
I = 0
2In(z2) = 1
T2 = 61/2.

Clearly, the function f (z) is not defined when x = 0, thus the answer is o = e'/2.

(3) Using the formula for the derivative of an inverse function yields
/ 1
I e Ol
U) o)
p— 1 j—
1 (61/2) -
B 1 2
051n (e05) — \Je'
2.7. Graphs of functions
In many cases, we can better understand the way a function acts by drawing its graph. Specifically, for
every point z € R, we draw the value of the function f (z) on a two-dimensional space R?, when the
axes are z and y. Note that the graph is only a graphic representation of the function. Figure
present a few graphs of the previously-mentioned functions.

tan (x) g /

sin (x)

—

arccos(x) ]; arcsin (x)
3

4

N arctan (x)

FiGURE 2.7.1. Graphs of commonly-used functions.
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2.7.1. Asymptotes.

In order to sketch a graph of a function correctly, we first need to know how to identify asymptotes.
There are two types of asymptotes: vertical and non-vertical. A vertical asymptote exists in z( if and
only if hmm_m; f(z)=+oocor limw_mg f (z) = £o00. A non-vertical asymptote is of the form y = az+b,
and it exists if lim,_,o (f () — (az + b)) = 0. Since finding a vertical asymptotes is relatively easy, we
focus on the non-vertical ones.

(1) @, and b = lim,_, (f (z) — ax).
(2)

(3) Otherwise, there is no non-vertical asymptote.
(4)

4

Define a = lim,_,

If both limits exists and finite then y = ax + b is the non-vertical asymptote.

The same computation should be made when x — —oc.

2.7.2. The stages of sketching the graph of a function.
The final product of all the analysis so far is the graph of a function. Given all the properties we
discussed, one should be able to get a good understanding of the graph of a function f. The stages of

sketching a graph of a function f are as follows:

1
2

(1) Domain D of f.
(2)
(3) Asymptotes.
(4)
(5)

Intersections with the axis.

4
)

Extreme points and intervals on which the function is increasing or decreasing.

Convexity and concavity.

EXERCISE 2.35. A business manager determines that ¢ months after production begins on a new product,

the number of units produced will be P (¢) million per month. Sketch the graph of P and see

__t
TotH?
what happens to production in the long run (as t — o0).

Solution.

(1) The function is defined for all real ¢ # —1.
(2) The only intersection point is when ¢t = 0, and we get the point (0, 0).

(3) The function is continuous everywhere except t = —1, thus we need to check for an asymptote
int=-1.
. t
lim 5 = —09;
t——1+ (t + 1)
t

lim 5
t—==17 (t 4+ 1)

For non-vertical asymptotes, we compute

ay = lim —— = lim =0,

a_. = lim ——= = lim 5 = 0.
t——oco t——oo (t + 1)
And
. . t L 1
by = t—lzgloop(t) B t—lggloo (t+ 1)2 B t—;I:Eloo 2(t+ 1) =0

Thus, t = —1 and y = 0 are the two asymptotes.
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FIGURE 2.7.2. The graph of the function in Exercise [2.35

(4) We need to find the first and second derivatives of the function.

(t+1)° —2t(t+1)
(1+1)"
(t+1)—2t
(1+1)°
1—t
(1+t)*
—(14+1)® =301 —t)(1+1t)
(1+1)°
—(1+t)—=3(1—1)
1+
2t —4
(1+6)*
The critical point are given by P’ (t) = 0, hence
l;t?) =0 =>t=1.
(1+1)

The value of the function at ¢ = 1is P (1) = ;. So, we have an extreme point (1,3). Note

P(t) =

P'(t) =

that the function is increasing for every
1—¢t>0 and t+1>0,

hence when t € (—1,1). Otherwise, Either the denominator is negative or the numerator is
positive, or the other way around, such that, overall, the derivative is negative and the function

is decreasing.
(5) The second derivative is given by P” (t) = (?;;}4‘ This means that the function is concave

when 2t — 4 < 0, or equivalently ¢ < 2. That is, the function is convex when ¢ > 2, and (1, 1)

is a maximum point. There is an inflection pint in (2, %)

e "—e

l1—x

EXERCISE 2.36. The total cost of producing z units of a particular commodity is C (z) =
thousand dollars. Sketch the graph of C (x). (No need to analyze the second derivative).

Solution.

(1) The function is defined for all real x # 1.
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= e, meaning * = —1, and we get the point (—1,0).

x
Another intersection point is when z = 0, and we get (0,e —1). Note that the function is
e—e ”

(2) One intersection point is when e~
= | Tz—1

-1<z<1,

e—e ”

always positive, so we can represent it as follows C ()

Cx)=4 177
£ _—¢ otherwise.

1—z 7
(3) The function is continuous everywhere except = 1, thus we need to check for an asymptote

inzx=1.
. e T —e 0
lm |— = 0.
z—1t| 1—x
For non-vertical asymptotes, we compute
e “—e
) C(x) ) ’ Tz |72
ar = lim = lim = 0,
x—00 xX T—00 X
e e e T—e _
. C (ZL‘) . —x 3 i . e T —¢
a_ = lim = lim — = lim = lim
r—r—00 xr r—r—00 xr r—r—00 X r——00 Jr — 1'2
. el—e 1 . L
= lim = lim ——— = lim — = oo.
t—oco —t — t2 t—oo —1 — 2t t—o0 —2
—X
—e
=0

And
. e
b= A=t e T

Thus, z =1 and y = 0 (when & — o0) are the only two asymptotes.
(4) We need to find the first derivative of the function. We cannot use simple differentiation in

x = %1, but we can differentiate separately each interval.
-l<z<l,

e "(1—z)+e—e "
Cl ({E) _ - v(lfz)z B ’
- (21__92;;6 ¢ xz>lorx< -1,
B ﬁ —l<z<1,
”Eij;;f, z>1orx < —1.

T
ze P —e=0& — —e=0.
el‘

When z < 0, the right-hand side is negative as well. When z > 1, 22 <1 < e, and the RHS

The critical point are given by C’ (z) = 0, hence
is still negative. When x € (0, 1), then z — e®™! < 0 and the RHS is still negative. Thus, the

* — e is always negative. This implies that
-1l<z<l,

function xe™
>0
z>lorxz<—1,

C' () =
<0,
and the function is increasing if and only if z € (—1,1). Note that the function is not differen-
tiable in = —1, as the derivative from the right is negative whereas the derivative from the

1

4 3,3
IT 5T + 3.

left is positive.
EXERCISE 2.37. Sketch the graph of the function f (z) =

Solution.
(2) We need to solve the equation
1 3
Z:c4—5x3+3:0.

(1) Since this a polynomial the domain is every z € R.
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Y

FI1GURE 2.7.3. The graph of the function in Exercise [2.36

Since this is a problematic equation, we will get to that later. However, we do know that
f(0) = 3, which means that there is an intersection in , (0, 3).
Taking the FOC

9
fl(x) = 2°- 5:32 =0
ry = O,
9
To = 5

We can plug in ;3 and z9 in f and get the exact coordinates of the extreme points. When
T < %, the derivative is negative and the function is decreasing. When x > %, the function is

increasing. The second derivative is

" (z) = 32% — 9.

Thus, x = 0 is neither a maximum nor a minimum, and z = 2 is a local minimum.
) ? 2

When z < 0, f () > 0 which means that the function is convex and the same holds for 2 > 3.
Otherwise, the function is concave.
As this is a polynomial, there are no vertical asymptotes. We can see that there are no non-

vertical asymptotes as well, because lim,_, %r) =0

EXERCISE 2.38. Sketch the graph of the function f (z) = z2l

2z

Solution.

(1)
(2)

The function is defined for every real-valued = # 0.
We need to solve the equation
2241
2x
We can see that 22 4+ 1 > 0 for every z, and this means that the equation does not have a
solution.

=0.




(3)
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FIGURE 2.7.4. The graph of the function in Exercise 2.37]

Taking the FOC

, 42 — 222 -2
fix) = 4z
-2 -1
N 212
_ 22 -1
222
T2 22
Ty = 1,
To = —1.

We can plug in z; and x5 in f and get the exact coordinates of the extreme points. When
x € (—1,1), the derivative is negative and the function is decreasing. When = > 1 or z < —1,
the function is increasing. The second derivative is
" (x) =a73.
Thus, z = 1 is a local minimum, and x = —1 is a local maximum.
When = < 0, f” (x) < 0 which means that the function is concave. Otherwise, the function is
convex.
We know that we have a vertical asymptote in = 0 because
T 1
li = lim - + — = oo.
SR PR TR

In addition, there is a non-vertical asymptote as

. f(x) 1 1 71
= Jm e s im ot oE T
b = lim (f(x) —az)= lim 11 =0
0= T \2 Ty T2 T
and
o f@ 111
o = Jm == lm ot 5T
b= i —am (42 li)—o
b= x_lrzloo(f(x)—ax)—x_}r_noo 5 T35, 5% =0

This implies that y = z is an asymptote.
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FIGURE 2.7.5. The graph of the function in Exercise [2.3§

EXERCISE 2.39. Sketch the graph of the function

J@)y=va2+1-

x.

Sl

Solution.

37

Note that 2241 > 0 for every x hence the function is defined for every = € R. The function has a single

intersection with the y axis and it is (0,1), There are no other intersections with the axis. Computing

the derivatives of the function yields ,

ro= v

z 1 }’_ 1 a? 1
VaZ +1 (x2+1)% (22 +1)

o

Let us compare the first derivative to0 in order to find extreme points,

T 1
fi (@) = N R 0
V2r =
22> =
2?2 = 1
T12 ==+ 1

We got 2 critical points where the derivative is zero. After plugging in the values we can see that the

derivative is only 0 when z = 1. When = < 1 the derivative is negative and the function is decreasing.

Otherwise the function is increasing. Let’s sum this up in a table.

’ ‘decreasing local minimum | increasing

[ (@) - 0

Jr

x r<l1 r=1

z>1

We now try to find whether the function is convex or concave using the second derivative. We can see

that - f” () > 0 always and the function is convex.
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We do not have any vertical asymptotes since the function is continuous. Computing the limits for

non-vertical asymptotes yields

} . V22 +2—x ) 2?42
lim f(z) = lim ——pe—— =

= lim =

. 1+ 3
= lim = £ =00
T—00 2 (\/2524-2 + %)
V2x2+2—x
lim f(x)= lim = o0
T——00 T——00 \/i
\/2wf/-g2—:v 2+ ?22 1 1
a = lim =lim ——=1—- —

V2 V2
. (m—ﬂx> . <2x2+2—2x2 1 >:

b= lim (f(z)— ax) = lim (M(11>x>

V2 V2 '\/21‘2—1—2—&-\/5:3

T—r 00 T—r 00

. 2 -
- wli%o(ﬁ(\/m+m)> =0

We found that y = (1 — %) x is a non-vertical asymptote of the function. Computing the same limit

when z — —oo gives out the answer

V2x242—x /24 2 -1
a = lim V2 lim — 1

T——00 xT T——00 \@ \/§
, b =  lim (f(x)—az)= lim (W—(—l—l)x>:

T—r—00 r—r—00

i V222 + 24+ 2z i (2952 + 2 — 222 1 >
= 11m = 1m . =
V2 V2 V2r2 +2 -2z

T—r—00

. 2 -
- mﬂ?oo<\/5(\/W+\/§x>> -0

and y = (—1 — %) x is another non-vertical asymptote. We can now sketch the graph of the function.

FIGURE 2.7.6. The graph of the function from Exercise [2.39
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2.8. Integrals

There are two types of integrals: indefinite integral and definite integral. Although they share a similar

name, there definitions are very different. We start with the simpler notion of indefinite integral.

2.8.1. The indefinite integral.
The indefinite integral is basically the inverse of differentiation. That is, if f(x) = F’(x), then

[ f (z) dz =F(z)+ ¢, when ¢ is some constant number. F () is sometimes called the anti-derivative of f

E| There are a few helpful rules when considering indefinite integration. Assume that F (z) = [ f (x
and G (z) = [ g (z) dx, then:
e Linearity implies that [ (f (z) £g(z))dz =F (z ) + G , and fcf Yde =c [ f(z)dz
e Integration by parts states that [ f(z)G(z)dx = —[F(z
e Exchanging the integrating variable x to h (y) such that f f )dx = f f B (y)dy. As-

sume that x = h(y), Then, taking the derivative with respect to y yields § @ = h’( ). Thus,
dx = 1’ (y) dy, and we get the previously stated formula. (Don’t forget to return to the original
variable z after you finish the computation involving y!)

e Integration and differentiation cancel out each other: - [[ f(z)dz] = f (2), and [ L [F ()] dz

REMARK 2.7. Using Substitution of variables. In some cases, it is better the change the variables before
integrating to simplify the computation. Assume you wish compute [ f (z)dz. For simplicity, you can
use a different variable = h (y) such that f (z)dz = f (h(y))u' (y)dy. Note that we used the three
following steps: (i) Choose a substitution x = h(y) that transforms the term f(z)dx into something
simpler; (ii) express the entire integral in terms of y and dy. This means that all terms involving z
and dx must be transformed to terms involving y and dy; and, (iii) compute the new integral and then
return to the original variable x. It is important to return to the original variable, since we are looking

for a function whose derivative w.r.t. x, is f, and not with respect to a different variable.

EXERCISE 2.40. Compute the following integrals:

(1) fa: 201 gy,
(2) [ze ** dz.
(3) [xe"dx

(4) [In (x—f— 1) dz.
(5) fa2+z2 Z.

(6) [tan(z)dx.
) fmdx
®) [ sr=rars 4z+8dx
(9) f(ln(l)) dz.
(10) [ 1=

Solution. We compute these integrals using the previously-mentioned rules and theorems.

(1)

oo

| 1
/de - /x+2+—dx:
X x

22
= ?+2x+ln(:c)+0.

2Every indefinite integral is determined up to a constant, thus we need to add c after integrating a function.
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1
/xefﬁdz = /fefydy:
y=z2, dy=2zdz 2

/xemdaz = xez—/emdazz

/ln(x—i—l)dm

1
/7(12 pe dzr

/ tan (z) dz

/1-ln(x+1)dx:

x

xln(z+1) /ac—&—ldx
1
= 1 1)— [ 1- =
xln(z+1) / m—i—ldx

= zln(z+1)—z+In(z+1)+C.

1 1
— S dr=
/a2 1+ (2)°

T
a
1 1
T=a :dw—ad 0,72 ay 2ady:
S Ty
a 1
= _— 7d =
a2 | 1+92 Y

1
—arctan (y) + C =
a

1
= — arctan (E) + C.
a

a

sin (z
- / cos ((:c; du =
_ sin (x) dy
cos(z)=y, dy—— sin(z)dz / y <_ sin ()
_ dy _
= e
= —Inly|+C =

= —1In|cos (z)| + C.

40
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/ V1 — 22dz = / \/1 —sin (¢)? cos (t) dt =

x = sin (¢)

dx = cos (t) dt

= /0052 (t)dt =

= %/(cos (2t)+1)dt =

1 1
= — — S 2 =
2t+2/005( t) dt

1 1 .
= §t+181n(2t)+0—
1 , 1 .
= 5 aresin (z) + i 2sin (t) cos (t) + C =

1 1
= iarcsin (x) + 595\/1 —z2+C.

(8)
1 1
——d = I — -
/x2—4x+8x /x2—4x+4—|—4m
1
(r—2)"+4
1 1
- Z/ z—2)2 dr =
(552)" +1
1 1
= — 7d =
y:%&,dz:2dy 2/y2+1 Y
1
= §arctan (y)+C =
-2
= arctan(z2 )—I—C
(9)
2
X u=ln(z), $=1 lgz=du
1
= §U3+C
1 3
- S (@) +C
(10)

1 xr
/ dx = / 'e dx
14+e® e+ 1

u=e”, idw:du / 1 du
u+1

= Inju+1|+C

= In|e® + 1] + C.

2.8.2. The definite integral. The definite integral is a way of calculating the area between a
curve and the x axis. The formal method is based on dividing an interval to many small intervals and
computing the area between each interval and the function. The idea behind this formula is simple, yet
applying it might be complicated.

The basic areas we know how to compute are rectangles. We can always take the product of the height

with the base to get the area. Consider a function f and assume we wish to evaluate the area below
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b

FIGURE 2.8.1. The approximation of the area under a curve using rectangles.

this function bounded by the interval [a,b]. That is, when = € [a,b]. Since the function might be a
complicated one, we can divide the interval into small sub intervals and compute the area of a rectangle
bounded by the lowest value of the function in that sub interval and the height of the highest value.
Denote the number of interval by n, where each is of the uniform length h = "’T“, and denote the highest

and lowest values by M; and m; respectively, considering the sub interval ¢ = 1,... n.

We can now produce two sums

n—1 n—1 n—1 n—1

=0

such that the true value of the area S is bounded by S, < S < S, for every natural n. Thus, in case
limy, 00 S = limy 00 S, we say that the definite integral exists and the required area equals the limit.
Nevertheless, this method tends to be very complicated and therefore, we commonly use the Newton-
Leibniz formula which combines between indefinite integration and the definite one. This formula is also

called the fundamental theorem of calculus:

THEOREM 2.8. (The Newton-Leibniz formula) Let f be a continuous integrable function over the

interval [a,b] and assume that F is an anti-derivative of the function f, then:

b
/ f(@)dax = F(b) — F(a).
The definite integral also has a few assisting rules. Let f (z),g(x) be two integrable function on the
interval [a, b].
(1) Linearity - f: (f(x)+g(x))de = fab f@)yde+ ["g
(2) For every k € R, it holds that f; kf (x)de =k [, f(x)dx
(3) For every c € [a, b] it follows that f; f(x)de= ["f
(4) If f(z) < g(x), then ff f(x)dx < f;g (x)dx.
(5) if f(x) <0in [a,b],then f(ff (x)dr = —S.
(6) |[, f (@)da| < [}1f (@) da.
(1) Jy f (@) dz =~ [ () do.

EXERCISE 2.41. A manufacturer has found that marginal cost is 322 — 60z + 400 dollars per unit when
z units have been produced. The total cost of producing the first two units is $900. What is the total
cost of producing the first 5 units?

Solution. Recall that the marginal cost is the derivative of the total cost function C(z). Thus,

dcC
— =322 — 60z + 400,
dx
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and
C(z) = /3”32 — 60z + 400 = 2° — 302° + 400z + K.

Trying to estimate K, we get C (2) = 900 = 23 — 30 - 22 +400 - 2 + K, therefore K = 212. Now, we can
use the formula to get
O (5) = 5% — 3052 + 400 - 5 + 212 = $1587.

Similarly to the previous mean value theorem we discussed, there is a mean value theorem for integrals.

THEOREM 2.9. (The Mean Value Theorem for integrals) Let f be a continuous function on [a,b].
Then there exists a point ¢ € (a,b) such that

b
o= [ 1@

EXERCISE 2.42. Suppose that ¢ years from now, one investment will be generating profit at the rate of
P (t) = 50 + t? hundred dollars per year, while a second investment will be generating profit at the rate
of Pj(t) = 200 + 5¢ hundred dollars per year.

(1) For how many years does the rate of profitability of the second investment exceed that of the
first?

(2) Compute the net excess profit for the time period determined in the previous question.
Solution.

(1) The rate of profitability of the second investment exceeds that of the first until

Pl(t) = P(t)
50 +t* = 200+ 5t
t2—5t—150 = 0
(t—15)(t+10) = 0
tp=—10 , ty=15.

So the answer is ¢ = 15 years.
(2) We need to compute the net excess profit of one investment over the other.
15 15 15
[P~ [Paa = [pp0-rioa
0 0

0
15

/ [150 + 5t — t°] dt
0

15
= |150¢ + §t2 — Et?’
2 31,
1687.5.

Thus, the net excess profit is $168, 750.
EXERCISE 2.43. Compute the following integrals:

(1) 4 fl x arctan (x) dx.
(2) _as6 fﬂ/6 cos (z) In (sin (z) + 1) dz.
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Solution. Using the Newton-Leibniz formula, Theorem [2.8] we solve every integral separately.

/ x? ! 1x2 1
1. /xarctan (z)dxe = |— arctan(x) f/—~7d:r:
2 » 2 14 a2
—1 —1
1 1 1 [a?4+1-1
= Earctan(l)—garctan(—l)—5/%dm:
1
1 1 1 [ a2 1 1 h 1
™ - x° +
= —_ . — — - — = = 7d — 7d =
24 214 2/1+x2x+2/1—|—$2x
1 1
1 / 1
7r
= 1—5/1~dx+§arctan(a:)|1_1:
21
™ 1 4 1
= 7~ §x|71 + 3 (arctan (1) — arctan (—1)) =
T 1 1 (m —m
R A ))+2(4 4)
- T 1
2
s 3
6 2
2. /cos(x)ln(sin(x)—!—l) dx = /ln(t)dt:
A t=sin(z)+1 4
¢ 3

dt = cos (x) dz

_T _ 3
r=—-=t=-
T 1
x————6:>t——72

|
ol \
[V

—_
—

[=}
—~
~
~—
U
=

Il

= 1.5In(1.5) — 0.51n (0.5) — t|3:2 =
= 1.5In(1.5) = 0.5In (0.5) — 1.5 4+ 0.5 =

EXERCISE 2.44. Prove that .
1 SO/ esin(ln(EQ—i-l))d'r S 3.

PrOOF. We will use the Main Value Theorem, Theorem [2.9] in this proof. Note that for every
0<x<1,
’1 S esin(ln(:c2+1)) S e < 3
as 2 + 1 is a monotone increasing function, 0 < In (x2 + 1) < 0.7 is also monotonically increasing when
0 <z <1andso0 <sin(In(z?+ 1)) < 0.65 is monotonically increasing when 0 < < 1. From the

mean value theorem for integrals there exists 0 < ¢ <1 such that

1
L)) _ 1 / esin(1n(*+1)) g,
1-0
0
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-

f(x)=x"-4x

FIGURE 2.8.2. The area between y = z® — 4z and the x axis is highlighted in red.

Thusl < esin(in(c*+1)) < e and the result follows. |
EXERCISE 2.45. Compute the area between the curves y = 2® — 4z, y =0, z = 0, and z = 2.

Solution. First we sketch the graphs of the functions and the points where they intersect, see Figure
2.8.2)

It is easy to see that for every x € [0,2] the function f (z) = 23 — 4z is negative and so

2
4 422
5= / — 2t da)de = |- 4 | =4
1T,
0

EXERCISE 2.46. Compute the following improper integrals:

Solution. We will solve every integral separately and then use limits to compute the improper integrals.

oo b
1 1
zln (z) b—oo J xln(x)
2 2
b ) In(b) .
xIn (x) t=In(x),dt="1da t
2 In(2)

In(In (b)) —In(In (2)).

And so we get that

8

[\

lim
b—o0

b
/ml%(m)dm = ZHOOQ/
[In

(In () = In (In (2))] = o0,
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which means that the integral diverges.

00 b
1 1
2, / ————dx = lim [ —5—
) xIn” (z) b—><x> zn? (z)
b ln(b)

1
/ e / L=
z1In (x) t=In(z), dt—ld.L
2

In(2)

|: 1:|ln(b) B
tlin(2)

dx

1 1
RroAsTell
so, we see that
oo b
/%dm = lim %dw
x1n” (x) b—>oo2 z1n® (z)
= lim [— ! + ! }:
b—oo | In(b) In(2)
_ 1
 In(2)’

and the integral converges.

Concerning the third exercise, we first compute the following integral

; 1 2 1
3. /71dx = lim [ ——=d2x=
(x — 1)5 a—1+ (3;‘— 1)3
2
3 2
= 1l —(z—-1)3| =
a—lgl‘*' |:2 (il' ) :|a
— 2w 2o 1)} 1)3
N iaigl*[( B ) _(CL— )j|
3 2 3
— L _ _ 3| — —
Pt [1 (e—1) } 2

Now, we get

46



2.9. TAYLOR SERIES 47

1 1
4, /eildz = lm [ —5 dr=
, (61_1)5 a~>0+a (61—1)5
111
— i [2 T _q 5} -
al}g‘*' (e ) a
1 1
= 20im [(e' = 1) = ("= 1)F] =
Jon |(f =17 = (e =D

= 2(e 1)%—211111 [e —1)%}

a—0t

— 2(e—1)°

2.8.3. Lorentz curves and the Gini index.

Area also plays an important role in the study of Lorentz curves, a device used by both economists
and sociologists to measure the percentage of a society’s wealth that is possessed by a given percentage
of its people. To be more specific, the Lorentz curve for a particular society’s economy is the graph of
the function L(x), which denotes the fraction of total annual national income earned by the lowest-paid
1002% of the wage-earners in the society, for 0 < x < 1. For instance, if the lowest-paid 30% of all
wage-earners receive 23% of the society’s total income, then L(0.3) = 0.23.

The Curve has the basic property where 0 < L (z) < 1 because L(x) is a percentage and L (1) = 1 while
L(0) = 0. Another important property is L (z) < x because the lowest-paid 1002% of wage-earners
cannot receive more than 1002% of total income. When L () = x, we have total equality (wage-earners
with the lowest 1002% of income receive 1002% of the society’s wealth).

The Lorentz curve defines a very important economic index called the Gint index. Formally, take the
area between y = x and L (x) (this area measures how far a society is from perfect equality), and divide

it by the area below the line y = x. The ratio is called the Gini index. That is,

1 1
—L d
G do @ . (@) de :2/(:1:—L(x))dx.
2 0
The smaller the index is, the higher the equality in the society it represents.

EXERCISE 2.47. A governmental agency determines that the Lorentz curves for the distribution of income
for dentists and contractors in a certain state are given by the functions Li(z) = 27 and Lo(z) =

0.8z2 4 0.2z respectively. For which profession is the distribution of income more fairly distributed?

Solution. The respective Gini indices are

L p 22 227 1
Gy = 2/(x—L1 :2/ x—azt r=2———] =0.2593,
2 2.7/,
0 0
x? 23\
Gy, = 2/(3: — Lo (x))dx = 2/ (x —0.822% — 0.23:) dr =2 (().82 — O.83> = 0.2667.
0

0
Since the Gini index for dentists is smaller, it follows that in this state, the incomes of dentists are more

evenly distributed than those of contractors.

2.9. Taylor series

Need another example to understand why derivatives are so important? one example is the use of the
first derivative to approximate the function in a small interval.

Let f be a differentiable function and fix a value z( such that f (xg) = yo. We want to know y = f ()
when z is close to zg. Denote der = Az = & — x¢ and dy = Ay = y — yo. When dx < 1 is small enough,

we can use the following approximation:
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dy is referred to as the differential of f at xy. In other words,

y=[(x)~ f(xo) + ' (w0) (x — x0).-

This approximation is called - first-order approzimation. The name comes from the fact that we use

only the first-order derivative to approximate f in xg.

EXERCISE 2.48. Approximate (65)1/ 3 using first-order derivative approximation.

Solution. Define f (z) = z!/%.Note that f (64) =4, and f’ (z) = 3475 Thus, f'(64) = 33z = £, and

1
653 ~ 4 + i 4.020833,

when 651/3 = 4.020726.

ExaMPLE 2.1. Consider a production function F' (x) = %\/E Suppose that the firm is currently using
100 units of labor input z, so that its output is F (100) = 5. Now, assume we want to know how
much additional output can be achieved by adding one more unit of labor, i.e., we want to compute the
marginal product of labor. One way is by computing F (101) — F (100) = 0.02494..., which is a bit more

complicated to compute. But, there is another way, with the derivative of F' in x = 100.
1
= F'(100) = 0= 0.025 =~ 0.02494.

We got a good approximation of the marginal contribution of one more unit of labor.

EXERCISE 2.49. Consider a firm with a demand function D (z) = 1/z. Estimate the change in output

when the firm cuts its labor force from 900 to 896 using first-order derivative approximation.

Solution. Let us begin by using the notations we previously established. xzy = 900, yo = D (900) = 15,
x =896 , and y = D (896). Denote Ax = x — zg and Ay =y — yo. Thus,

Q

Ay D' (z0) Ax

1
- =
1

307
1
~ 15— — = 14.96667
y 30 )
while y = 14.96663.

ExERCISE 2.50. Consider the cost function C (z) = 222 + 6x + 12 for manufacturing = units. Use
first-order approximation to approximate the cost of producing the 21°¢ unit. Compare this with the

actual cost.

Solution. Note xg = 20, C (z¢) = 932, = = 21. Clearly, C' (z) = 4x + 6, thus
AC = C(z)-C(x0)

C' (z0) Az

420+ 6 = 86,

Q

while C (21) — C (20) = 1020 — 932 = 88.

EXERCISE 2.51. Consider the cost function C' () = x® — 22 + 300z + 100. Use first-order approximation

to approximate the effect on the total cost when increasing the production level from 6 to 6.1.
Solution. Denote 7o = 6, C (zg) = 2080, z = 6.1. Clearly, C’ () = 322 — 22 + 300, thus
AC =~ (' (z0)Ax
= (396)-0.1 = 39.6.
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_8

13- Use first-order approxi-

EXERCISE 2.52. In t years, the population of Gotham will be F' (t) = 40 —

mation to approximate the increase during the next 6 months.

Solution. A direct computation shows that F” () = ﬁ when we need to remember that ¢ is taken
in years. Hence, F’(0) = 2 and the population increases in the next half a year by approximately
F'(0)-0.5 =1.

2.9.1. Taylor approximation. A Taylor expansion of a function f is a method of taking a complex
function and approximating its value in a certain set through its derivatives. Let f : [a,b] — R be an
infinitely differentiable function at x¢ € [a,b]. Its Taylor series Ty () in x is defined by

0 4(n) (4
Ty @) = S L0 (g,

n!

The next element we define is the Taylor polynomial T of degree N of the function f by

N n
Ty (2) :Z%u—xo)”.
n=0
The polynomial Ty (x) is similar to the Taylor series of f when the sum goes to N instead of co. Define
the Taylor reminder of degree N by Ry (z) = f (z) — Tn (z). So, if we could bound Ry () is some way,
we could calculate f (x) through Ty (z), which is a polynomial and therefore, easily computed. For that

purpose, we have the Lagrange Reminder Theorem.

THEOREM 2.10. Fiz an interval I = [a,b] such that xo € I. Let f : R — R be N + 1 times differentiable
on the open interval (a,b) with fO)(z) continuous on the closed interval. Then
f(N+1)(C)

Ry(x) = m(z — zo) N

for some real number ¢ € (a, b).
2.9.2. Taylor series of basic functions.

There are a few basic functions whose Taylor series around xg = 0 are usually-used and therefore, are

worth remembering.

X ..n
1. e = Z% Vz € R
n=0
2. sin(z) = i%x%“ vz € R
n:O( n+ )
o0 71 n
3. cos(z) = Z((Qn))' ?" Yr € R
n=0 :
4 m@+1) = S ()" vee(-1,1
n=1 n
5. arctan(x) = iQ(_l)nlm%H Vo e [—-1,1]
n=0 n+
1 —
6 T, = Zx Vo e (—1,1).
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2.9.3. A few more words about Taylor series. The first thing you should remember about

Taylor series is the definition of the Taylor series, The Taylor polynomial, and the Taylor reminder:

n=0 n'
N f(n)
Ty () = Z / nsxo) (x —x0)",
n=0 '

Ry (z) = f(z)=Tn(2).

These are the definitions. Note that none of them are the same as the function f (x) itself!!! That is, the
Taylor series Ty (z) is an infinite sum that depends on the variable z, and in some cases when we plug in
specific values of x we get the same value as f (x). This does not mean that its the same representation.
In cases that f(z) =) " % (x — x0)", it means that the value of the function f () in z, equals
the value we get when we plug the same x in T (), which is an infinite sum. You can think of the
Taylor series as a different way to represent the function, that hold for any = in (2o — R, zo + R).
We defined the Taylor polynomial and the Reminder because we cannot actually compute the infinite
sum. What we can do is approximate it by using a finite sum. This is the Taylor polynomial Ty ().
How good is the approximation? Well, for that we have the reminder Ry (x). The reminder gives us
the error in our assessment. The theorem we saw states that

f(N +1)(C)

RN(x) - (N+1)' )N+1'

(x — x9

In words, the reminder depends on the N + 1 derivative f(N+1)(c) taken at a point ¢ € [a,b] where the

interval [a, b] contains x, .

2.9.4. Exercises.

EXERCISE 2.53. Find the Taylor expansion of f (z) = 22 around x¢ = 0. Prove that the function equals
the Taylor expansion in every z € R.

2

Solution. In order to find the Taylor series of f (z) = 2* we need to compute its derivatives.

£ () =22 = fO(zy) = O (0) =0.
V@) =20 = fI () =rY(0)=0.
fP@) =2 = @) =r?0) =2
fP @) =0 = (o) =r%(0)=0.
fP @) =0 = ™ (x0)=f"(0)=0

Thus, the Taylor series is

= n!
e f(n) (0) N
= > o @=0)
n=0 ’
(2)
— o0+4041 2'( Ja? yo+
= zx2 = x?
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We can see that sum is finite and always well-defined and the reminder is zero as

(N+1) (.
Ry(x) = JEN n 1()') (z —0)NH!
0 -
= g @0t =0

when N + 1 > 3. Thus,
fla)=a® =Ty (2).

EXERCISE 2.54. Find the Taylor expansion of f (z) = 22 around x¢ = 1. Prove that the function equals

the Taylor expansion in every x € R.

2

Solution. In order to find the Taylor series of f (z) = x* we need to compute its derivatives.

f(O) (J?) — $2 = f(O) (xO) — f(O) (1) —1.
fO@ =2 = fO@)=r"01)=2
fO@=0 = &)= f®1)=0.
FP @) =0 = f(x) =™ (1) =0
Thus, the Taylor series is
> f(n)
Ty (z) = z_:ofnfx‘)) (z — x0)"
IR ALY n
= g @ =1)
(0) (1) (2)
_ O e SV IO g
1 2 2
= G-+ 5@-D +5@-1)’

= 142(@—-1)+(z—1)

We can see that sum is finite and always well-defined and the reminder is zero as

(N+1) (.
Ry(z) = w(x_o)Nﬂ
0 1
= o @m0t =0

when N + 1 > 3. Thus,
f@)=22=142(@—1)+ (x—-1)> =Ty (z).

EXERCISE 2.55. Find the Taylor expansion of f (z) = e” around x = 0. Prove that the function equals
the Taylor expansion in every = € R.
Solution. In order to find the Taylor series of f (x) = e we need to compute its derivatives.
fOw=e = fO)=Ff0=1
f @) =e" = () =fP(0)=1.

[ @) =e" = [ (o) = (0) =1
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Thus, the Taylor series is

We can see that sum well-defined for every z, because a,, = % and

L = lim

Thus, R = oo. The reminder is zero since

f(N-i-l)(c)
(N +1)!
€C$N+1

= m—)OaSN—)oo.

Ry (z) (2 = 0)M*!

Thus,
T - 1 n
fx)=e :Zﬁx =Ty (z).
n=0
EXERCISE 2.56. Compute /e with an error of no more than 1075.

Solution. Define f (x) = e®. We use the Taylor approximation around zy = 0. Consider the interval

I =[0,1] when z = 0.5 € I. The Taylor reminder is Ry (%) = %(% — 0)N+! when ¢ € (0,1).

1 e 1\ V! 3
Ry(z)=—-—" (= § . A
2 (N+1)!'\2 (N + 1)12N+1

We require that Ry (%) < 107®, which occurs when N > 6 . Thus we can take N = 6 and get

“=3a(s)

Therefore,

EXERCISE 2.57. Compute the Taylor polynomial T5 () for the function f (z) = z'/® around z, = 27.
Compute 27.1'/3 using the polynomial and give an upper bound on the Taylor reminder.

Solution. We need to compute the derivatives of the function, up to the forth order.

fO@) =23 = §O@1)=3;

0@ = = IVED= o
W=y = fOED=-2
fO@ = = 190D =g

FO@) = = SO =
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Therefore,
f(n) (0) "
T3 ( Z o (x—27)" =
n=0
3 1 5
:a(a:—27)0+—(33—27)1—§(x 27)24—3?(3: 27)% =
1 1 2 5 3
And,
1 1 s 5 5
T3 (27.1) = — (0.1) — = (0.1 — (0.1)" =
3yt 1
N 270 37-100 = 3'2.200’
with a reminder of
(4)
Ry (271)] = |L 4'(0) (27.1 - 27)%| =
80 1
= . <
81 -4lcs 10000 —
1

< — - _~235.1071
—  24-311.10000 351077,

when ¢ € [27,27.1].

2.9.5. Convergence of power series.
Clearly, f (z) = Ty (x) if and only if limy_,. Ry (z) = 0. However, we should point out that T (z)
does not always converge, meaning that T () may not even be well-defined in certain parts of R. Thus,
we have a few methods of assuring of knowing when 7' (z)converges.

(n)
Consider s Taylor series Y.~ ! n(!Eo) (x —x)". Let R be a non-negative real number, such that

for every x € (zg — R,xo + R) the series converges. In order to compute R, known as the radius of

convergence, we can use the two following methods:

1 (n)
(1) The root formula that states that R = 1 and L = lim,,_,o |a,| ’11, where a,, = £ n(‘”")

.
(n)
(2) The ratio formula that states thatR = + and L = lim,, ’agil , where a,, = £ n(!wo).

EXERCISE 2.58. Compute the Taylor series of f (x) = ﬁ around zo = 1. Find its radius of conver-

gence.

Solution. Note that
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when we used the formula of the geometric series. We know that the geometric series > ™ converges
in every t € (—1,1), thus

—-1< t <1
1< 2zl o
5 < -1 < >
2 2
3. T T
2 2’
that is xtg — R = —% and xg + R = % Thus, the radius of convergence is R = %

REMARK 2.8. The differentiation and integration of a Taylor series is done just as any other polyno-
mial of a finite degree. That is, we differentiate and integrate point-wise, such that|a, (z — z0)"] =

1 .
na, (x — )"~ for every term of the series.

EXERCISE 2.59. Prove using Taylor series that lim,_,q Sinx(x) =1.

Solution. Plug-in the Taylor series and compute the limit term-by-term to get

0o —-1)" n 0o n
lim > n=o (ém-)l)!a”2 i _ limz (=" o
=0 x 220 £ (2n +1)!
D o, (5D, ()
= 1
S or 0" Terp” turg® T
= lm[1+0+0+---]
z—0
= 1.

EXERCISE 2.60. Expand each of the following functions as a Taylor series around zg and find its interval

of convergence.

(V) f (@) = 5 0=0;
(2) f () = 57z 70 =0;
(3) f (o) =22, =2

(4) f ()= g2 w0 =0

Solution.



(1)

2.9. TAYLOR SERIES

We wish to use the Taylor series of ﬁ, SO

We know that the geometric series > ° ™ converges in every ¢t € (—1,1), thus

-1< t <1

-1< =3z <1

4 < < 4
_Z . z
3 3
and the interval of convergence is [—3, .

Again, doing the same transitions as in the previous exercise

o5 g o wgl()] S Ee

We know that the geometric series Y t™ converges in every ¢ € (—1,1), thus

-1< t <1
1< —(&)° <1
-2< T <2,

and the interval of convergence is [—2, 2].
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We wish to use the same formula as before, however now we need to make sure that t = z — 2,

such that we get the correct value for 2. In other words, we want to reach a term that includes

1
1+(z—2)
1 B 1 B 1 1
1—x B 1—(z—-2+2) —1—(x—-2) 1+(z—-2)
t——(2—2) 1 > n > % n
e i) DI GV CERIAED DI VR CEPl
t=0 t=0

We know that the geometric series > - ™ converges in every ¢ € (—1,1), thus
-1< t <1
-1< —z+2 <1
1< T <3,

and the interval of convergence is [1, 3].

First, we have

o 1.2 t**fv Ztn Z n $2n.

t=0
The interval of convergence is [—1, 1]. Now we can differentiate and get

1 /
— ) n 2n 1
[1+x2} 1+x2 Z n ’

and f (z) = 30, {( )n+12n~x2"71}.
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Linear algebra



CHAPTER 3

Linear models and matrix algebra

3.1. Examples of linear models in economics

3.1.1. Tax benefits for charitable contributions.
We start with a basic example of a linear model in economics, which exemplify the need to know linear
algebraﬂ

EXAMPLE 3.1. Assume the a company with a before-tax annual profits of $100, 000 decides to contribute
10% of its after-tax profits to the Red Cross. It must pay 5% state tax (after the donation), and a federal
tax of 40% (after the state tax and donation).

EXERCISE 3.1. How much does the company pay in state taxes, federal taxes, and the Red-Cross

donation?

Solution. First define the variables C, S, and F' as the charity contribution, the state tax, and the federal
tax, respectively. We need to write down all the relevant relations between the different variables. The
after-tax profits are 100,000 — S — F, so

C = 0.1(100,000— S —F)
C+015+01F = 10,000.
The fact that the state tax is 5% taken from the net profit (without the donation) means that

S 0.05 (100,000 — C)
5+40.05C = 5,000.

The federal tax is 40% for the profit, without the donation and state tax. Hence,

F

0.4 (100,000 — C — 5)
F+04C +0.4S = 40,000.

We can see that we got a system of three equations

C+0.1S+0.1F = 10,000
0.05C+S+0-F = 5,000
04C +04S+F = 40,000,

that we can solve plunging-in one relation into the others. The results are C' = 5,956, S = 4,702, and
F =35,737.

EXERCISE 3.2. Assuming that the company decided not to make any contribution to the Red-Cross.
Find the net cost of its $5,956 contribution.

Solution. We need to write down the equations again, when now the value of C is zero. Therefore,

S = 5,000
04S+F = 40,000,

I These examples are taken from the book Mathematics for Economists by Carl P. Simon and Lawrence Blume.

57
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hence , S = 5,000 and F' = 40,000 — 0.4 - 5,000 = 38,000. The net profit is 100,000 — 38,000 — 5000 =
57,000 instead of 100,000 — 5,956 — 4, 702 — 35, 737 = 53,605, and the contribution of $5,956 cost was

$57,000 — $53,605 = $3, 395.

This means that 57% of the contribution came from the company and 43% came from the state \ other
tax-payers.

EXERCISE 3.3. In New-York federal income taxes are deducted from the state taxes (meaning, you do
not pay a state tax on the federal taxes). Solve the previous example in case the company is based in
New-York.

Solution. Using the previously-defined notations C, F', and S, the new system of linear equations is
updated according to the new equation S = 0.05 (100,000 — C' — F'), which implies

C+015+0.1F = 10,000
0.06C' + 5 +0.05F = 5,000
04C +04S+F = 40,000.

The solution for this system is C'= 6,070, S = 2,875, and F = 36,422.

3.1.2. The Leontief model.
There are many other economic models that yield systems of linear equations, sometimes more com-
plicated to analyze than the previous example. In such cases, finding an easy way to solve systems
of linear equations becomes necessary, and this is another reason for us to study Linear Algebra. We
continue with another economic example, which is the Lenotief linear-production model. The Leontief
model, named after Wassily Leontief who won the Nobel prize in economics in 1973, is a model for the
economics of a whole country or region. The model has two variations, one for closed economies and

one for open economies. We deal with each separately.

e The closed Leontief model. Consider an economy with n sectors. Each sector ¢ produces

x; units of a single homogeneous good. Assume that the j*" sector, in order to produce 1 unit,
must use a;; units from sector i. Furthermore, assume that each sector sells some of its output

to other sectors. Then we might write
Ti = ain%1 + a2 + ... + Qinn,

and the same equations could be written for each good 4. In simple terms, if an economy needs
to produce x; units of good j, it will need a;jz; units of good ¢. Now we have a system a
linear equations, and its solution dictates the amount that every sector needs to produce in
equilibrium, such that the supply will equal the demand.

e The open Leontief model. In addition to the closed model, assume that each sector sells

some of its output to other sectors (intermediate output) and some of its output to consumers

(final output, or final demand). Call final demand in the i*" sector d;. Then we might write
T = ain®1 + apZe + ...+ Ainty + d,

or total output equals intermediate output plus final output. Again we can write the same
equation for every good 7, and the solution will dictate the amount of goods each sector needs
to produce such that the market balances.

EXERCISE 3.4. The economy of a country produces only grapes and wine. The production of 1 kg of
grapes requires 0.5 kg of grapes, 1 worker, and no wine. The production of 1 liter of wine requires 0.5
kg grapes, 1 worker, and 0.25 liter of wine. The country has 10 workers that demand 1 kg of grapes and

3 liters of wine, overall. Write the relevant input-output system and solve it.
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Solution. We need to write down the relevant equations. Let x; and z2 be the produced amounts of
grapes and wine, respectively. Since we do not produce workers, we need to verify, eventually, that there
are enough worker to produce the required amounts. The system of equations is

r, = O5SU1 + 05%2 + ].7

Ty = 0961 + 025%2 + 3.

You can see the demand on the right-hand side (RHS) and the supply on the left-hand side (LHS).
Hence,

I == 67 i) =4.

We can see that the numbers of workers needed is exactly 10.

EXERCISE 3.5. Suppose now that the production of grapes requires 7/8 liter of wine. Write down the
updated system and solve it.

Solution. The new system of equations is

r1 = 0.5z1+0.529 + 1,
ro = 0.875x1 +0.25z5 + 3.
And the solution is
Ty = X242
6ry = Txy1+24
4
TG = x9+2
6y = T(x2+2)+24
4
To = —38, 1 = —36,

which is clearly infeasible.

In general we want to know how many solutions are there (if any)? and we wish to find them. The basic
ways to solve these systems, that we already know from high school, are substitution and elimination
of variables. In other words, we use algebraic manipulation to find the value of each variable, one by
one, and by doing so, we solve the equation. Consider for example the following three-good economy

summarized in the following table:

a1 ai2 ais 0 0.4 0.3
a21 Q22 A23 = 0.2 0.12 0.14
asy a3z ass3 0.5 0.2 0.05

Remember that, for example, as; = 0.2 is the amount of units of good 2, it takes to produce one unit
of good 1 (along with a;; = 0 units of good 1 and az; = 0.5 units of good 3). Now assume that there is
an exogenous demand for 130 units of good 1 (that is, d; = 130), 74 units of good 2 (that is,ds = 74),
and 95 units of good 3 (d3 = 95). We can write down the system of linear equations as follows:

X1 = Oxl —+ 04582 —+ 031’3 —+ 130

z3 = 0.521+0.229 + 0.05z3 4+ 95
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and this is equivalent to

Ty — 0.4%‘2 — 0.3$3 = 130
—0.221 + 0.88z9 — 0.1423 = 74
70.51’1 — 021‘2 + 0951’3 = 95.

We now try to solve these equations by using a few basic operations:

e multiplying both side of an equation with a non-zero, real number;
e add a multiple of one equation to another equation;

e interchanging the order of equations.

These three operations are called elementary equation operations and they are all reversible. Therefore,
we can use them to solve the system above. First thing we can do is to add 0.2 times of the first
equation to the second, such that x; is eliminated from the second equation, and add 0.5 times of the

first equation to the third equation. Then we get

T, — 0.4&32 — 031‘3 = 130
0.81‘2 - 021’3 = 100
—0.4{EQ + 081’3 = 160.

Now we can add 0.5 times the second equation to the third and get

1 — 04%2 - 031’3 = 130
0.8{E2 - 0.2{133 = 100
0.7z3 = 210.

We can see that z3 = 300, which means that x5 = 200 and x; = 300. Note that we wasted some time
on rewriting the name of the variables and the signs over and over again and therefore a more efficient
method is needed. In addition, though these techniques are simple, they might not be sufficient when

the number of variables is high. For these reasons, we have the matriz methods.

3.1.3. Matrix methods.
Let us consider the following system of linear equations that is quite similar to a system describing an

open Leontief model,

ani +aips + -+ a1y = b
(3.1.1) 911 + aooxo + -+ + aspx, = bs
Am1T1 + Gm2Z2 + -+ + AmpTn = bm

The system given in could be abbreviated using the following table

aiy a2 - G by
a21 a22 aon by

)
Gmi1 Gm2 - Gmn bm

when we omit the plus signs, the names of the variables, and the equality signs. We can preform the
same elementary operations on this table, and reach a similar result as we did before. That is, assume

that the table is
1 -04 —-0.3 130

-0.2 088 -0.14 74 ],
-05 —-02 09 9
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just as we had with the previous input-output model. We can use the three elementary operations we
discussed and reach the same result as we did before. This table is called the augmented matriz, and
a similar table without the b; column is called the coefficient matriz. The term matriz relates to every
such table that includes numbers. The process of eliminating variables from equations (transforming

coefficients to zero) is called The Gauss-Jordan elimination process. Its optimal final result is a matrix

of the form
1 0 0 ¢
0 1 0 C2 5
0 0 1 c3

which gives us the solution for the system of linear equations. It is done by the three basic operation of:
(1) Multiplying a row with a non-zero, real number;
(2) Add a multiple of one row to another row;

(3) Interchanging the order of rows.

Our main goal is to reach a row echelon form, defined as follows.

DEFINITION 3.1. A row of a matrix is said to have k leading zeros if the first k elements of the row are
all zeros and the k£ + 1 element of the row is not zero. A matrix is in row echelon form if each row has

more leading zeros than the previous row.

ExaMPLE 3.2. Let us solve the following system by the Gauss-Jordan elimination process.

w4+r+3y—2z = 0
W43z +7y—2z = 9
Jw+dr+13y—9z = 1

—2w+4+zrz—2z = 0

Solution. We begin by writing down the augmented matrix and explaining every operation we make
when row i is denoted by L;.

1 1 3 -2 0 1 1 3 -2 0
2 3 7 -2 9 01 1 2 9
Ly —2Ly — L L3 —3L = L
3 5 13 -9 1| 2173 5 13 —9 1| 2>
21 0 -1 0 21 0 -1 0
1 13 -2 0 113 -2 0
0 11 2 9 011 2 9
Li+20, — L Li—Ly — L
0 2 4 -3 1 AT T 2 4 -3 1 S =4
210 -1 0 036 —5 0
10 2 —4 -9 113 -2 0
011 2 9 011 2 9
L3 —2Ly — L Ly—3Ly — L
02 4 —3 1| Z2=—"2"310g 0 2 —7 17| 2222
036 -5 0 036 -5 0
113 —2 0 113 -2 0
011 2 9 011 2 9
i1Ls— Ly ; 7 Li—3Ls— L
00 2 -7 —17 22 " o 01 -3 -u R B
0 0 3 —11 —27 0 0 3 —11 —27
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1 1 3 -2 0 11 3 -2 0
01 1 2 9 01 1 2 9
—2Ly — L Ly +2Ly = L
7 7 7 Z1 T akd T
001 -1 -u —— o 01 -7 -u
1
000 -+ -2 000 1 3
11 3 0 6 11 3 0 6
01 1 2 9 01 1 0 3 7
Ly—2Ly — L L3+ —-Ls— L
7 7 2T e TR 7 17 3 4 3
001 -2 -4 001 —% % 2
00 0 1 3 0 00 1 3
1 1 3 0 6 1 1.0 00
01 10 3 01 10 3
Li—3Ls — L Lo—Ls3— L
0 01 0 2 2 300001 0 2 R
0 00 1 3 0 001 3
110 00 10 0 0 -1
01 0 01 01 00 1
Li—Ly — L
0 01 0 2 BRI 0 010
00 0 1 3 0 0 01

And the solution is w = -1, x =2, y =2, z = 3.

EXERCISE 3.6. Write the augmented matrices and solve the systems with elementary rows operations

for the following systems:

T, — 2o+ 23 = 1
201+ 2x3 = 1
1 — 3rg +4x3 = 2
(2)
T, — 29+ 2x3 = 1
201 —4x9 + 63 = 3
T, —3rg +4x3 = 2
(3)
Ty —To+2x3 = 1
21 —4dxo + 63 = 2
T, —3xg +4x3 = 2
Solution.
(1) The augmented matrix is
1 -1 2 1
2 0 21
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Its solution is

1 -1 21 1 -1 2 1
2 0 21 L272L1%L% 0 2 -2 -1 LgleﬁLg
1 -3 4 2 1 -3 4 2

1 -1 2 1 1 -1 2 1

0 2 -2 -1 sLy—=Ly|0 1 -1 -1 L3+2L2—>Lg

0o -2 2 1 0 —2 2 1

1 -1 2 1 1o 1 3

0 1 -1 —5| LitL—=Li|0 1 -1 —3

0 0 0 0 00 0 0

This means that 21 = 1 — 23 and x5 = —§ + x3, where z3 € R.

(2) In the following answer we present only the augmented matrix and final solution.

-1 2 1
-4 6 3
-3 4 2

1
. 1 1
A=12 = 1‘1:§—$3,$2:—§+$3,$3€R.
1

We got the same solution as before.

(3) The augmented matrix is

1 -1 2 1
A= |2 -4 6 2
1 -3 4 2
By the Gauss-elimination process we get
1 -1 2 1 1 -1 2 1
2 -4 6 2 L2—2L1—>L§ 0 -2 2 0 L3—L1—>L§
1 -3 4 2 1 -3 4 2
1 -1 2 1 1 -1 2
0 -2 2 0| —3Lo—Lf0 1 -1 0 Ly + 2Ly — Ly
I
0 -2 2 1 0o -2 2 1
1 -1 2 1
0 1 -1 0
0o 0 0 1

We got to a point where we know that a solution does not exists as 0x; + 0zs + 0zz = 1, and
this cannot hold.

REMARK 3.1. Henceforth and unless stated otherwise, we will present the full elimination process.

However, we will present the relevant matrices and final results.

EXERCISE 3.7. Use the Gauss-Jordan elimination process to solve

=4
= 10.

3z + 3y

—x—vy
What happens?

Solution. By the Gauss-Jordan elimination process we get to the matrix

3 3 4 1 33 4
Lo+ 201~ L :
<—1 -1 10) T3 2(0 0 11;)

which means that a solution does not exist as 0 £ 11%.
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EXERCISE 3.8. Solve the system
—4dr+6y+4z =4
20 —y + 2 =1

-5

Solution. The solution is given by the following set {(x, Y,2) x =5 — 52, Y= % — %z, z € ]R}.

Sl

EXERCISE 3.9. Use the Gauss-Jordan elimination process to determine for what values of the parameter

k the system

r+y =1
z—ky =1

has no solutions, one solutions, and more than one solution.

Solution. The augmented matrix and elimination process yield
1 1 1 1 1 1
Lo—11— L .
1 -k 1) 22— 0 —k—1 0
If K = —1, than we have infinitely many solutions, as z = 1 — y and y € R. Otherwise,

111 Ly
0 —k—1 0] 277 1o 1 0

1 01
Li—Ly— L s
R 010
and we have a unique solution x = 1,y = 0.

EXERCISE 3.10. Which of the following equations are linear?

3x1 — 4xs + 923 = 17.
T1T2T3 = .
2 +9y = 6.
z1 +4%%29 + V3Bxg = 17%21.

(.131 - .132) Tr3 — 5.

Solution. Equations 1 and 4 are linear, all other are not.

EXERCISE 3.11. Solve the following systems by the Gauss-Jordan elimination process.

(1)

r—3y+6z = -1
2z —by+10z = 0
3 —8y+172 = 1;
(2)
r+y+z = 0
122 +2y—32z = 5

r+4y+z = —4
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3r+3y = 4
r—y = 10;
(4)
dr+2y—3z = 1
6xr+3y—5z = 0
r+y+2z = 9
(5)
20 4+2y—2z = 2
r+y+z = -2
2z —4y+3z = 0.

Solution. The augmented matrices and solutions are

(1)

EXERCISE 3.12. Use the Gauss-Jordan elimination process to determine for what values of the parameter
k the system

6x +y =7
3z +y =4
—6x—2y =k

has a solution.
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Solution. The reduced echelon form of the system is

1 0 1
0 1 1 ,
0 0 8+k
which means that for £k = —8, the system has the unique solution x =y = 1. If £ # —8, a solution does

not exist.

3.2. Matrix algebra

A known fact is that a system of linear equations must have either no solution, one solution, or infinitely
many solutions. An important question about these systems is when a solution exists and how many

solutions are there? We start with a few basic definitions regarding a systems of linear equations, denoted

(3.2.1) Ax = b,
when
a1l a2 Q1n x1 by
a21 a2 -+ Q2n X2 bo
A= , X = , b=
Am1 Am?2 T Amn Tn bm

That is, A is the coefficient matrix, and x, b are called vectors (these are basically matrices with a single
column)ﬂ

3.2.1. Basic operations.
Before we continue with the problems of solving systems of linear equations, we need to elaborate on
matrices. A matriz is a rectangular array of numbers, so any table of data is a matrix. Its size is
indicated by the number of rows and its number of columns. In other words, a matrix with m rows and
n columns is called a “m x n matrix”. The entry (i.e., the number) in the i*® row and j* column is
called the “(i, j)-th entry”.
There are basic operations we can preform on matrices. The basic ones are addition and scalar multi-

plication.

o Scalar multiplication. A scalar is an ordinary real-number. The product of a scalar r and a

m X n matrix A is

a1 ai2 o A1n raii rai2 o TQ1n

a1 Q22 - Q2p raz1 ragz - Ta2p
rA=r ] . ) =

am1 aAm2 °  Amn Tami1 Tam2 - Tamn

In words, the scalar » multiplies every entry in the matrix.

2Equality 1} will be explained later on. In simple terms, it is an equability between two vectors, which means that
every coordinate of the vector on the RHS equals every coordinate of the vector on the LHS.
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e Addition. The addition of two matrices is defined if and only if the two matrices are of the

same size. Let A and B be two matrices of size m x n. Then,

a1 ai2 A1n b1 bz - bin

a1 Q- Q2 bor  bay --- b2y
A+B = . . . +

Am1 Am2 tee Amn bml bm2 tee bmn

ai1 + b1y a2 +biz - aip +biy

a1 + ba1 azz +baa -+ agy + boy

Am1 + bml Am?2 + bm2 e Amn + bmn

Using these two operations, we can define the subtraction A — B as the addition of two matrices, when
the latter is multiplied by the scalar (—1) such that A — B = A+ (—B).

The next operation is multiplication of matrices. The multiplication of two matrices A, C' is defined if
and only if the number of columns in A equals then umber of rows in C. Therefore, assume that A is a

m X n matrix and C' is an n X k matrix. The product AC is defined by

ail @12 - Qlp i1 Ci2 -+ Cig
a1 Qg2 - G2p C21 C22 -+  C2k
AC =
Am1 Am?2 e Amn Cnl Cn2 e Cnk
n n n
Doim1 Q1CiT D i G1iCi2 e S a1iCik

n n n
Doim1@2iCi Yy G2iCi2 e 2 izt A2iCik

n
Zm:l aimcmj

Z;L:l AmiCil Z?:l AmiCi2 e 2?21 AmiCik
Or, in simpler terms, the (4,7)-th entry of AC is >."" | ajm¢m;- That is, we sum the products of the

entries of the i*" row in A with the entries of the 5" column in C.

EXERCISE 3.13. Define the matrices

Compute A+ B, A— B, 3A—2B, AB, and BA.

Solution.
A+B - 6 —1 n 3 4 _ 9 37
4 3 -2 4 2 7
A-B - 6 —1 - 3 4 _ 3 —57
4 3 -2 4 6 -1
3A_98 —3 6 —1 _q 3 4 _ 12 —-11 ’
4 3 -2 4 16 1
AB - 6 —1 3 4 _ 20 20,
4 3 -2 4 6 28
BA - 3 4 6 -1 _ 34 9 .
-2 4 4 3 4 14
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EXERCISE 3.14. Perform the following computations:
—4 2 1
a. 4 0 -5 0 6 .
3 3 9 2 3 -5
b 2 1\ (3 -2 -1
' -1 4)\4 4 1)

2 2 1

21 00
3 -3 0

c. 13 2 10
7T 2 -1

110 7
-4 -5 0
3 1 -1 5
d<211>211—1
1 2 2 -1

Solution.

| ]
S v 1) (i )
' 2 ;

2 2 1
210 0
3 -3 0
c. 13210 =
72 -1
110 7 —23 36 1
4 -5 0
31 -1\ (5
. (21 1) f2 1 1| |-1] =39
12 2) \~

3.2.1.1. Laws of matriz algebra.
The basic arithmetic of matrix algebra is not so different than the algebra of real numbers. Let A, B,

and C be three matrices such that the following operations are well defined.

(1) (A+B)+C =A+(B+C).
(2) (AB)C = A(BO).

(3) A+B=DB+A.

(4) A(B+C) = AB + AC.

However, we should point out that some operations are not similar to commonly-used algebra. For
example, for any two numbers rq, 75, we know that r1 - ro = r5 - r1. But the same does not hold when
matrices are involved. In fact, the operations might not even be well defined when reversing the order
of matrices.

3.2.1.2. The representation of basic operations by matrices.
The three elementary operations can be represented by matrices, such that each basic operation on a
matrix A, it equivalent to left multiplication with the relevant matrix. For example. if one wants to

interchange the i*" and j'" row of a matrix A, one can left multiply A by the matrix B with entries

1, k=1#1,],

1, k=1i,l=7],
b =

1 k=jl=1i

0, otherwise.
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This matrix B is a matrix where almost all entries are 0, except for the diagonal where all entries are
1 (excluding b; and b;;), and b;; = bj; = 1. If one wants to multiply the i*® row with a number r, one
can left multiply A by a matrix B with entries
1, k=1#1,
bu=3r, k=1=i,
0, otherwise.
And one can also use left multiplication to add r times row ¢ to row j by using the matrix B where
1, k=l
buu=<qr k=jl=1i,
0, otherwise.
For example, consider the generic 3 x 3 matrix
ail @12 a13
A= a2 ax a3
aszr azz2 ass

Say we want to multiply the second raw by 5. We can use the following left multiplication

1 00 ai1 a2 a3 a1 a2 a3
BA={[0 5 0 a1 a2 a3 | = | 5azr bdazx BHass |,
0 0 1 as1 asz ass az1  azz  ass

as required. Now assume we want to add 5 times the second row to the third row. Then

1 0 0 ai] aie ais aiy ai2 a3
BA=1]0 1 0 as| Q9o aGo3 | = az1 a22 a23
0 5 1 azr asz ass dag1 +az1  Sasge +azz  Sassz + ass

3.2.2. Special matrices.

o The Identity matriz I is a square matrix, which means that then umber of rows equals then
umber of columns, such that

00 --- 1
All the non-diagonal entries are 0, and all the entries along the diagonal are 1. The most basic
and important property of this matrix is, that for every matrix A, it follows that Al = A
(assuming that the multiplication is well defined). We will usually denoted the n x n identity
matrix by I, to state its dimensions. For any n X n matrix A, we get AI = [ A.

e The identity matrix is a special form of the Diagonal matriz where all non-diagonal entries are
0,
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The interesting property of diagonal matrices is their form when multiplying by themselves.

For example,

ab, 0 - 0

k
Dk:DDD: 0 a'22 0
0 0 ak

This property will prove useful later on.
e In addition, we have the Upper-Triangular matriz (and, Lower- Triangular matriz) where every
entry a;; = 01if 4 > j (if ¢ < j). That is, all entries above (below) the diagonal are zeros. Note

that there product remains a triangular matrix.

aip aiz2 -+ Qip
0 a2 - a2
An Upper — Triangular matrix = ) . ) ] ,
0 0 Ann
0o 2 17 3
0 -1 9 0
for example,
0 0 5 =5
0 0 0 1
ail 0
az1  a22
A Lower — Triangular matrix = . . ) . ,
anp1  QAp2 - Ann
0 0 O
0 -1 0 O
for example,
8 3 5 0
0 4 7 —6

EXERCISE 3.15. Let

(1) Compute A+ B, A— D, 3B, CE, EC, —D.
(2) Verify that CD # DC.

Solution.
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(1) A direct computation shows that

2 4
A+B = 0 .
4 -2 4
A—D = undefined.
3B — 0 3 -3
12 -3 6
-1
4
EC undefined.

)
D =
-1 -1
4 3 5 3
co-(2)4 ¢ ) e

EXERCISE 3.16. Show that if B is a scalar multiple of the 2 x 2 identity matrix, then AB = BA for all

CE

(2) We can see that

2 x 2 matrices A.

Solution. Fix B = rI when r is a real number. Using the laws of matrix algebra yields

BA=(r)A=r(IA) =rA= Ar = Alr = AB.
EXERCISE 3.17.

(1) Prove that (AB)" = A*B¥ if AB = BA.
(2) Show that (AB)" # A*B* in general.
(3) Conclude that (A + B)*does not equal A2 4+ 2AB + B2 unless AB = BA.

Solution.

(1) Proof by induction. Clearly the statement hold for £k = 1. assume it holds for k. That is,
(AB)k*1 = AF=1BF=1 Applying AB = BA and using the induction hypothesis, we easily find

(AB)" = (AB)*"'(4B)
= AM!'B* 1 (BA)
= AF1Bkipa
= Ak-1BkA
Now we can apply AB = BA for k times on B¥A = AB* and get
(AB)F = A*=1BkA = AF—1AB* = AFBF.

(2) Take, for example,

For k = 2, we get

N
=
I
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IR

while

2
B (3 1)(3 1>:<3 3>’
0 0/\o o 0 0
ore (1 0\ (3 3\ (33 15 5\ )
AB = (2 0)(0 O>_<6 6>#<30 10>_(B)

(3) By the previous answers we can say that

(A + B)? (A+ B) (A + B)
= A’+ AB+ BA + B2,

And unless AB = BA, then (A + B)? # A2 + 2AB + B2,

3.3. Transpose and invariability

3.3.1. The transpose matrix.

Let A be a m x n matrix, such that

a1 a2 - Qin

azi a22 o azn
A=

Am1 aAm?2 T Amn

The transpose of A, denoted AT, is a n x m matrix such that

a1 a1 - Gml
AT Q12 a22 - Am2
A1p  Q2n e Amn

In words, we reversing the order of values of A, such that the rows became the columns of A7 and vice
versa.

There are a few basic rules for the transpose matrix. that one could easily prove by a direct computation.
Assume that A and B are two matrices such that the following operations are well defined.

(1) (A+B)" = AT + BT.

(2) (A7) =4

(3) (rAT) =rAT for every real number r.
(4) (AB)T = BT AT.

EXERCISE 3.18. Let
2 _
A= 3 1 . B- 0 1 1 o= 1 2 ,
0 -1 2 4 -1 2 3 -1
2 1 1
D= , and E= .
1 1 -1

(1) Compute BT, ATCT, (CA)", (CE)", ETCT.
(2) Verify that (DA)" = ATDT.

Solution.
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(1) A direct computation and usage of the definitions shows:

0 4
BT = 1 -1,
-1 2
6
(cAT =ATcT = |1 10
5 1
ETCT = (B = (-1 4)

(2) First compute DA.
2 1 2
1 1 0 -1 2 2 2 3

2 0 5 1
ATDT:3—1< >:

11
1 2

Now, see that

= O

2

2| =(DA)".

3

The transpose operations enables us to define a few more special matrices. A matrix A is called symmetric
if AT = A, and it is called anti-symmetric if AT = —A.

3.3.2. Invertible matrices.

Denoted the class of n x n matrices by M,.

DEFINITION 3.2. (Inverse matrix) Fix A € M,,. If there exists a matrix B € M,, such that AB =
BA =1, then B is the inverse of A and both matrices are invertible.

We denote that inverse matrix of A by A~!. In general, a matrix A € M,, could have a right inverse
matriz B where AB = I. It could also have a left inverse matriz B where BA = I. If the matrix A has

a left inverse and a right inverse then it is invertible.

LEMMA 3.1. A matriz A € M,, can have at most one inverse matriz.

There are several properties of inverse matrices presented in the following claim.
CrAmM 3.1. Let A, B € M,, be two invertible matrices. Then

e (A =4
T\~ 1 -1\T
o (A7) T =(ATY)".
e AB is invertible and (AB)"' = B~1A~L,
e For every real number r # 0, it follows that (rA)™" = 1a4-1

Invertible matrices are very useful when trying to find a solution to a system of linear equations. The

L) ()

Solution. We can verify this easily by the definition of an inverse matrix.
-2 1 1 2 1 0
(3 ) (3 4) ) (o 1)’

-2 1 1 0

(z ) ) (0 1)'

following theorem explains this.

EXERCISE 3.19. Prove that
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EXERCISE 3.20. Check that

1 0 05 0 -0.5
0 1 1 = 05 0 05
-1 1 0 -05 1 —-05

Solution. Using the definition of an inverse matrix we see that

L6660

1 10 05 0 -0.5 100 05 0 0.5 1 10
0 1 1 05 0 05 = 01 0f=1]105 0 05 0 11
-1 1 0 -05 1 —0.5 0 0 1 -05 1 =05 -1 1 0

3.3.3. Finding the inverse matrix.
Although the inverse matrices are quite useful, finding them is not always an easy task. for that case, we
have the Gauss-Jordan elimination process. An identity matrix I is placed along side a matrix A that
is to be inverted. Then, the same elementary row operations are performed on both matrices until A
has been reduced to an identity matrix. The identity matrix upon which the elementary row operations

have been performed will then become the inverse matrix we seek.

EXAMPLE 3.3. Assume we wish to inverse the matrix
1 2
A= .
3 4
First, we write this matrix augmented with the identity matrix,
121 10
[Al1] = :
3 4] 01

Then we preform the row operations on this matrix to reduce A to its row echelon form.
1 2 1 0 1 2 1 0
| L2 — 3L1 — L |
34 ] 01 2o TR 0 -2 | -3 1

12 10 . 1
—§L2—>L2
0 -2 | -3 1) 2277 o 1 |

0 1
1) Ly —2Ly — L (
1) === \g

2

On the RHS we got the inverse of A as we already shown.

[\
lw =
| o
[N
\—/

= O
I
Nl DN
[C][ey—
v

01 |

-~
—
[\
Ml =

EXERCISE 3.21. Invert the following matrices:

11 2 5 1
2 3 -4 1
, , 10 1 11,10 2 1
-2 1 2 -4
1 10 01 3
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Solution. Use the method we sew, one gets

—1
-4 1 1 (-4 4
2 -4 - 14 \—92 -4’
—1
1 1 2 11—21
01 1 = 51 2 1
1 10 1 0 -1
-1
5 1 —1 15—43
0 2 1 = 5 15 =5
01 3 -5 10

a

b
EXERCISE 3.22. Assume that ad — be # 0 and fix a matrix A = ( d> . Find A1,

c
Solution. Note that if a = ¢ = 0, then the matrix is singular and therefore not invertible. Thus, we
can assume that a # 0 (otherwise we can just exchange the rows). If we divide the first row by a and

add —c times the first row to the second row, we get

a b | 10\ (a 2 | L 0
c d | 01 0 da=cb | _c

Multiply the second row by —%- to get

b 1 1 cb )

@ g | a 0 Li— %Ly > I, a 0 | a (1 + ad—bc) ad—bc
01 | —=2 “ a 0 1 | __c _a__
ad—bc ad—bc ad—bc ad—bc

d —b

— (a 0 | ad—be adbc>
c a
0 1 | ~ ad—bc ad—bc

Thus,

1 d —b
A7l = .
ad — be (—c a )

EXERCISE 3.23. What is the inverse of the n x n diagonal matrix

d 0 0 --- 0
0 do 0 --- 0
D= ) |7
0 0 O dp,
Solution. The inverse is
+ 0 0 0
1
1
Dol 0 a 0 0
0 0 0 - 4

Clearly we need to assume that d; # 0 otherwise the rank is smaller than n, and the matrix is not

invertible.

3.4. The rank of a matrix

The concept of a rank of a matrix is important when considering the number of solutions a system might

have.
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DEFINITION 3.3. (Rank) The rank of a matrix is the number of nonzero rows in its row echelon form.

A few simple properties of rank:
(1) let A be the coefficient matrix and A be the corresponding augmented matrix. Then,
rank (A) < min {rank A, # {columns in fl} e {rows in /1}} .
(2) For any two matrices A, B such that AB is well defined, it follows that
rank (AB) < min (rank (4) ,rank (B)),
(3) rank (A) = rank (A”) = rank (AA”) = rank (ATA).

EXERCISE 3.24. Compute the rank of the following matrices:

1 6 =7 3
2 -4 2 -4 2
; ; 19 —6 4
-1 2 -1 2 1
1 3 -8 4
16 -7 3 5
1 6 -7 3 1
19 -6 4 9
, |1 9 -6 4 2
1 3 -8 4 2
1 3 -8 4 5
2 15 —-13 11 16

Solution. We find the row echelon form of each matrix and derive the rank from it.

2 —4 2 —4 . .
= so its rank is 1.
-1 2 0 O

2 -4 2 2 —4 2 . .
— = g0 its rank is 2.
-1 2 1 0o 0 2
1 6 -7 3 1 6 -7 3
1 9 -6 4 — 0 3 1 1] = soitsrankis3.
1 3 -8 4 00 0 2
1 6 -7 3 5 1 6 -7 3 5
1 9 -6 4 9 03 1 1 4 . .
— = g0 its rank is 3.
1 3 —8 4 2 00 0 21
2 15 —13 11 16 00 0 00O
1 6 -7 3 1 1 6 -7 3 1
1 9 -6 4 2 — 0 3 1 1 1| = soitsrankis 3.
1 3 -8 4 5 00 0 2 5
EXERCISE 3.25. Find the rank of the following matrices:
1 1 1 1 2 1
A=12 -1 1|,B=]2 1 0 1
1 3 -1 0 2 1

Solution. The rank of A is 2, and the rank of B is 3.
Now we can use the concept of rank to determine then number of solutions to a system. In case a
solution exists, the next question that arises is whether it is unique. For that matter we define the

concept of non-singularity.

DEFINITION 3.4. (Non-singular matrix) A coefficient matrix A is called non-singular if for every
choice of the RHS by, bo, ..., b, its corresponding system Ax = b of linear equations has exactly one

solution.
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The following theorem characterizes systems of linear equations that have a solution using the concept

of rank.

THEOREM 3.1. A system of linear equations with coefficient matriz A and augmented matrix A has a

solution if and only if rank(zzl) = rank (A). Moreover, a coefficient matriz A is non-singular if and only
if

number of rows of A = number of columns of A =rank (A).
An important type of systems in this context are homogeneous ones where b; = 0 for every i.
DEFINITION 3.5. (Homogeneous system) If b; = 0 for every 4, then system Ax = b is homogeneous.

One can verify that every homogeneous system always has at least one solution, which is the trivial
solution where x; = 0 for every unknown 7. On the other hand, a non-homogeneous system may not

have a solution. For example, in Exercise [3.12| we sew that for every k # —8, the system

6x +y =7
3z +y =4
—6x—2y =k

did not have a solution, as its reduced echelon form is

1 0 1
0 1 1
0 0 8+k

THEOREM 3.2. For every A € M, the following statements are equivalent:

(1) A is invertible.

(2) The homogeneous system Ax = 0 has only the trivial solution, which is x = 0.

(3) For every vector b, the system Ax = b has exactly one solution, which is x = A~ 1b.
(4) A is non-singular.

(5) rank (A) = n.

EXERCISE 3.26. Fix a triangular matrix A. Prove that A is invertible if and only if all its diagonal

entries are non zero.

SoLUTION. Note that we can restrict attention to upper triangular matrices, since rank and diagonal
entries do not change when taking the transpose of a matrix. Assume that all diagonal entries are non
zero. Thus, the row-echelon form of A is with n non-zero rows. Thus implies that rank (A) = n, hence
the matrix in invertible. On the other hand, if there exists a zero diagonal entry, then we can perform
the G-J elimination process and eliminate at least one row (if not other rows, than the row with the

zero diagonal entry). Thus, rank (A) < n, and the matrix is in invertible.
EXERCISE 3.27.

(1) Show that the inverse of a 2 x 2 lower-triangular matrix is a lower-triangular matrix.

(2) Show that the inverse of a 2 x 2 upper-triangular matrix is a upper-triangular matrix.

Solution.

0
(1) Fix a lower-triangular matrix A = (Z > . Denote A™! = <w x)
c y oz

a 0 wox) aw azr
b ¢ Yy oz - bw+cy br+cz)’
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We require that

aw = 1,
ar = 0,
bw + cy 0,
br+cz = 1.

Clearly, x = 0 as a # 0. Since the inverse is unique and exists, the result follows.

b
(2) Fix an upper-triangular matrix A = (g ) . Denote A~ = (w x)
c

Yy oz
a b\ (fw =z aw~+by ax+cz
(0 c)(y z>:< cy cz )
We require that
aw+by = 1,
ar +cz = 0,
cy = 0,
cz 1.

Clearly, y = 0 as ¢ # 0. Since the inverse is unique and exists, the result follows.

3.4.1. Number of solutions - a short review. Since there are numerous theorems and corollaries
about the number of solutions of systems of linear equations, we give the short survey in the following
table. Let m be the number of equations in Ax = b (this is basically the number of rows of A), let n be
the number of unknowns x1,xs, ..., x,. The following table presents the number of solutions a system

has, as a function of the relations between m and n and the conditions given in the LHS column.

‘m<n‘m:n‘m>n‘

If b; = 0 for every 1, 0 1,00 1,00

For every b, 0,00 [0,1,000,1,00
For every b, if rank (A) = m, 00 1 ok
For every b, if rank (A) = n, Hoxk 1 0,1

TABLE 1. Number of solutions in different systems of linear equations.
EXERCISE 3.28. The following five matrices are coefficient matrices of systems of linear equations. For
each matrix, what can you say about the number of solutions of the corresponding system when:

(1) The system is homogeneous.

(2) The system is not homogeneous.

Il
 ~
[

—_

\
wﬂk
N~
W
Il
/-~
[N R
—
S W
~—___—
Q
|
S =N
W = =

1 4 3 4 3
D=(2 1 0], E=[2 10
1 11 7 6

Solution. We start with the case where the system is homogeneous.
(1) rank (A) = #rows = #columns, thus there is a unique solution (0, 0).
(2) rank (B) = #rows < #columns, thus there are infinitely many solutions.
(3) rank (C) = #columns, thus there is a unique solution (0, 0).
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(4) rank (D) = #rows = #columns, thus there is a unique solution (0, 0).

(5) rank (E) < #rows = #columns, thus there are infinitely many solutions.

In case the system is not homogeneous:

rank (A) = #rows = #columns, thus there is a unique solution.
rank (B) = #rows < #columus, thus there are infinitely many solutions.
C)

)

)

(
(

rank (D) = #rows = #columns, thus there is a unique solution (0, 0).
(

rank #columns, thus there either zero solutions or one solution.

rank (E) < #rows = #columns, thus either zero solutions or infinitely many solution..



CHAPTER 4

Determinants

4.1. Defining the determinant

The determinant of a matrix A € M, is a value attached to each square matrix. The computation of
this value tends to be complex but it has great significance. The determinant is a value that enables us
to know whether a square matrix is non-singular. More specifically, if the determinant of a matrix A
is not 0, then we know that it is invertible, non-singular, and thus the system Ax = b has exactly one
solution, which is x = A~ 'b.

The determinant is defined inductively. We first define the determinant for a 1 x 1 matrix, and then
we use this definition to find the determinant of a 2 x 2 matrix and so on. In order to do so, for every
matrix A € M, let A;; be the (n — 1) x (n — 1) sub-matrix obtained from A by deleting its i*® row and

4t column. For example, if

s

Il
N &~ =
o Ot N
o O W

then

5 6 1 2 1 3 4 5
An = , Agg = , Azg = , and A3 = )
. (8 9> . (7 8) » <4 6) . (7 8)

In case of a 1 x 1 matrix , the determinant of A € M; (which is basically a number, A = (a)) is
det (A) = a. The determinant of any A € M, is

det (A) = i (71)i+j - a; - det (Ay5)

Jj=1

for any 1 <14 < n. That is, we can choose i = 1,2,...,n and compute the determinants of all A;;s and

ail a2
A= ,
az1 Aa22

(—1)2+j . agj - det (AQJ‘)

use these values to compute det (A).

For example, fix

then

M

det (4) =

1
—1)2+1 a9y det (Agl) + (—1)2+2 - ag9 - det (AQQ)

|
—_~

= —a21012 + G22011.

One can see that even if we were to choose ¢ = 1, the result remains the same as

det (A) = (—1)1+j -ay; - det (Ay )

M

1
—1)1+1 a1 -det (A11) + (—1)1+2 -ayz - det (A12)

I
—~ .

= a1i1a22 — ai20a21.

80
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Therefore, the determinant is well defined. In case A € M3, we get

3
det (A) = > (=1)'* - ay; - det (Ay))

j=1

= ajidet (AH) + ajodet (Alg) + ai3det (AL;) =
= a1 (a22a33 — a32a23) — a12 (a21a33 — az3asi) + a1z (a21a32 — azas),

and we used the previous result for 2 x 2 matrices.

4.2. Properties of determinants

Determinant are not easily computable, therefore we have a set of properties that assist with this
computation. Let A, B € M,, be two square matrices.
o det (AB) = det (A )det (B).
o det (AT) =det (4
o det (A + B) # det (A) + det (B), in general.
e det (A) = +det (R), when R is the row echelon form of A. If no row interchange was used,
then det (A) = det (R).
e det (A) = k - det (R), when R is reached by taking A and multiplying one row by the real
number k.
e det (A) = tdet (R), when R is reached by interchanging any two rows (columns) of A.
o det (A) = det (R), when R is reached by adding a multiple of any row to another row.
e The determinant of any diagonal matrix, lower-triangular matrix, or upper-triangular matrix
is the product of its diagonal entries.
e det (A) =0 if A has two identical rows.

EXERCISE 4.1. Find the determinants of the matrices:

3 1 0 2 0 -1

2 1 3 6
) s -2 7 =2(, 11 3 0

-4 5 -4 -1
2 0 6 0 6 -1

Solution. The determinants are:

det 3 6 = 21.
—4 -1

3.1 0
det | =2 7 —2| = 134,
2 0 6

2 0 -1

det |1 3 0| = -12.
06 -1

4.2.1. Determinants: applications.
The following theorem, combing with Theorem shows how the determinant assists with solving
systems of linear equations and finding the inverse of a matrix.

4.2.1.1. Computing the inverse.

THEOREM 4.1. For every A € M,,. The matriz A is invertible if and only if det (A) # 0.

Thus, we can use the equivalences given in Theorem also when det (A) # 0. Moreover, the deter-
minant is not only useful to determine whether a matrix A is invertible, it is also helpful with finding
AL
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DEFINITION 4.1. (Co-factor and adjoint matrix) Fix a matrix A € M,. The co-factor C;; =
(=1)"*7 det (A;;) is the determinant of the matrix A after deleting the i*" row and j™ column. The
adjoint matriz adj (A) of A is

T
Cii Ci2 -+ Cip
' Cor Coy -+ (o
adj (4) = | . . .
Cnl CnQ e Cnn

That is, the (i,7)™ entry of adj (A) is Cj; (note that the indices are switched by the transpose).
As the following theorem states, the adjoint matrix is the inverse of the original matrix, up to a factor.

THEOREM 4.2. If A is an invertible matriz, then A~! = ﬁm) -adj (A).

4.2.1.2. Cramer’s rule for solving a system of linear equations. The following theorem is known by

the name: Cramer’s rule.

THEOREM 4.3. (Cramer’s Rule) Fix an invertible matric A € M, . The unique solution x =
(x1,29,...,2,) to the system Ax =D is
det (Bz)
oy = — 20
" det(A)
for every i =1,2,...,n, where B; is the matriz A with the vector b replacing the i*® column of A.

EXERCISE 4.2. Use Cramer’s rule to solve the following systems of equations:

(1)

6r—2y—3z = 1
2x4+4y+z = -2
3r—2z = 8.
(2)
Sr —2y+z2z = 9
3r—y = 9
Jy+2z = 15.
Solution.
(1) Using Cramer’s rule we get
6 —2 -3 x 1
4 1 yl=1-21,
0o -1 z 8
and
1 -2 -3
det | -2 4 1
8§ 0 -1
T = = 40,
6 —2 -3

det |2 4 1
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6 1 -3
det |2 -2 1
3 8 -1 —97
- 6 —2 -3\ 2
det |2 4 1
3 0 -1
6 -2 1
det |2 4 -2
3 8
7= =112.
6 -2 -3
det | 2 1
3 -1
(2) Using Cramer’s rule we get
-2 1 x 9
-1 yl=19]
3 2 z 5
and
9 -2 1
det |9 -1 0
5 3 2 60
T o) U
det |3 -1 0
0 2

o

@D

=+
~
S W ot
g O © W
N O =
~_
|
0]
=

o 5 —2 1\ 11
det (3 -1 0
0 3 2
5 —2 9
det |3 -1 9
0 3 5 39
z= = ——.
5 —2 1 11
det |3 -1 0
0 3 2

EXERCISE 4.3. For each of the following matrices, compute the row echelon form and verify that
det (A) = #det (R), when R is the row echelon form of A. Remember that if no row interchange
was used, then det (A) = det (R).

11 2 4 0 0 1 2 1 11 1
( ) ) 4 6 3,3 4 5,1 4 2(,]0
0 7 8 1 4 3 1

-6 —-10 0

© A
S Ot =
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Solution.
1 1 1
det = det =-1
2 1 -1
2 4 0 2 4 0
det | 4 6 3 = det|{0 -8 3 |=-12
-6 —-10 O 0 0 3/4
01 2 3 4 5
det |3 4 5 = —det|0 1 2 | =18
0 7 8 0 0 -6
1 1 1 1 1 1
det |1 4 2 = det|0 3 1]|=3
1 4 3 0 0 1
1 1 1 1 1
det |0 4 5 = det{0 4 5 | =-20
1 9 6 0 0 -5
4.3. Linear independence
Let v1,vo,...,v, be n vectors in R™. A convex combination of vq,...,v, is the sum Z?:l o;v; when
a; € R for every i = 1,...,n. We say that the vectors vy, ..., v, are linearly dependent if there exists
n numbers ar, ..., a, (not all of them are zeros) such that Y., a;v; = 0. If such n do not exist, then

the vectors are linearly independent.

Linear independence of vectors has a strong connection to the rank of a matrix, and thus to its determi-
nant, and the number of solution a system of linear equations might have. In Definition [3.3] we defined
the rank as the number of nonzero rows in its row echelon form. The following lemma gives present

some equivalences for this value.

LEMMA 4.1. The rank of a matriz A, denoted rank (A) , equals the mazimal number of linearly inde-

pendent rows (and also, columns).
THEOREM 4.4. If k > n, any set of k vectors in R™ are linearly dependent.

In Theorem [3.2] we presented a few equivalent properties of a matrix. In Theorem (1] we added another
equivalent property. The following theorem presents all the equivalent properties, including indepen-

dence.
THEOREM 4.5. For every A € M,,, the following statements are equivalent:

1
2) det (A) #£0
3

(1) A is invertible.

(2)

(3)

(4) For every vector b, the system Ax = b has exactly one solution, which is x = A~ 1b.
(5)

(6)

(7)

The homogeneous system Ax = 0 has only the trivial solution, which is x = 0.

5) A is non-singular.
6) rank (A) = n.
7

In case, one of the previous statements does not hold, and specifically in case that det (A) = 0, then we

The n vectors that are the n columns of A are linearly independent.

use Theorem [3.I] The theorem states that for every system of linear equations with coefficient matrix

A and augmented matrix A, a solution exits if and only if rank(A) = rank (4).

EXERCISE 4.4. Which of the following pairs or triplets of vectors are linearly independent?

(1)
(2,1),(1,2).
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(2)
(2,1),(—4,-2).
(3)
(1,1,0),(0,1,1).
(4)
(1,1,0),(0,1,1),(1,0,1).
Solution.

(1) We can write down the equations

c1(2,1) + 2 (1,2) = (0,0).

() ()=

The only solution is (0,0), and the vectors are linearly independent.

In the matrix form, we get

(2) Writing down the equations in the matrix form

[ ))-C)

There is a solution (—2,1), and the vectors are linearly dependent.

1 0 0
1

1 1 =101,
C2

0 1 0

and the only solution is (0,0) . Linearly independent.

(3) The equations are

(4) The equations are

1 01 c1 0
1 1 0 C2 - 0
011 c3 0

Again, the trivial solution is the only solution, and the vectors are linearly independent.

EXERCISE 4.5. Which of the following triplets of vectors are linearly independent?

(1)
(17 O’ 17 O) b (1’ O’ 0) 1) b (0’ 0’ ]‘) 1) *
(2)
(1,0,1,0),(1,0,-1,0),(1,0,0,0).
Solution.

(1) The coefficient matrix is

_— O =
_ o O =
— = O O

o

The rank of this matrix is 3, so the homogeneous system has only the trivial solution. Thus,

the vectors are independent.
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(2) The coefficient matrix is

1 1 1
0 0 O
1 -1 0
0 0 O

The rank of this matrix is 2, so the homogeneous system has infinitely many solutions. Thus,

the vectors are dependent.

EXERCISE 4.6. Prove that any collection of vectors that includes the zero-vector cannot be linearly

independent.

Solution. Let {vy,...,vx} be a collection of vector where vy is the zero-vector. Then
1-v140-v3+---+0-v,=(0,0,...,0),

and the vectors are linearly dependent.

4.4. General exercises

EXERCISE 4.7. Use the adjoint matrix to find A=! of
A [ b
\e d)’

Solution. We know that det (4) = ad — bc # 0.

where det (4) # 0.

adj(A);; =d , adj(A)y, =a,
adj(A);, =—-b, , adj(4), = —c
Thus,
A= L g
det (A)

1 d —b
o ad — be —C a '

EXERCISE 4.8. Determine the number of solution the following systems have:
4
8 |.
—10
160
200
40
-3 0 x 6
0 5 Y 15
6 10 z 18
4 -1 8 x 30
3 0 2 y| =120
5 1 =2 z 40

(1)

o
o
|
3
SIS
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6 -1 -1 x 3
5 2 =2 =110
0 1 =2 z 4
Solution.
(1) The determinant is
3 6 0
det[2 0 —5|=-33,
1 -1 -1

thus the solution is unique.
The determinant of the matrix is 0 so we need to find whether there are an infinite number of

solutions, or no solution at all. The row echelon form of the augmented matrix is

4 -1 8 160
0 —15/4 —24 | —480 |,
0 0 0 0

so there are infinitely many solutions.
The determinant of the matrix is 0, and the row echelon form

2 -3 0 | 6
3.0 5 | 15/,
0 0 0 0

suggest that there are infinitely many solutions.
The determinant of the matrix is 0. The row echelon form of the augmented matrix is

4 -1 8 | 30
3.0 2| 2/,
0 0 0 | 10

suggest that there are no solutions.
(5) The determinant of the matrix is —27, so there is a unique solution.

EXERCISE 4.9. Find the values of a for which the following matrices do not have an inverse.

M
6 -1
)

(2)
5 a 0
4 21
-1 3 1
(3)
5 3
-3 a)
(4)
-1 3 1
0 5 a
6 2 1
Solution.

(1) There is no inverse if the determinant is 0, which leads to the equation

6a +2=0.
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Thus, a = —%.
(2) Setting the determinant equal to zero and solving for a yields a = —1.

(3) There is no inverse if the determinant is 0, which leads to the equation

5a+9=0.

Thus, a = —2.
. . . . _ 7
(4) Setting the determinant equal to zero and solving for a yields a = 7.

EXERCISE 4.10. Use the adjoint matrix the find the inverse of the following matrices:
1 2 3
4 3
, 10 5 6
1 1
1 0 8

)00

-1

Solution.

1 2 3 40 -16 -3
0 5 6 = 37 6 5 —6
1 0 8 -5 -2 5

EXERCISE 4.11. Use Cramer’s rule so solve the following systems:

(1)

S5r1+x2 = 3
2r1 —x9 = 4.
(2)
201 — 319 = 2
dxy —6x0+23 = 7
1+ 102y = 1

Solution.
(1) T = 1, T = —2.
(2) 21 =1, 22 =0, z3 =3.



CHAPTER 5

Eigenvalues and Eigenvectors

In this chapter we are going to learn a different aspect of matrices which is crucial in the study of linear
and nonlinear system of equations. This aspect is the eigenvalues and eigenvectors of square matrices.
This chapter contains two parts combined together. The first is dedicated to the basic definition and
properties of eigenvalues and eigenvectors, and the second is dedicated to way they are used. Throughout

this chapter we will give economically-relevant examples to motivate the mathematical aspects.

5.1. Definition

Let A be an n x n matrix and let x € R™ be a non-zero vector. We say that x is an eigenvector of A
if there exists a value A € R such that Ax = Ax. Similarly, we say that A € R is an eigenvector of A if
there exists a non-zero vector x € R™ such that Ax = Ax.

The equation Ax = Ax could be rewritten as follows:

Ax = Mx
Ax—)XIx = O
(A-XH)x = 0.

We will usually use the form (A — AI) x = 0, for reasons that will later be explained. Let us begin with
a basic example.

2 0
ExAMPLE 5.1. Fix A = <0 3). We can see that by taking A = 2, we get

o800

And we can take x = (1,0) that yields the required result. Thus, A = 2 is an eigenvalue with eigenvector
x = (1,0). The same holds for the eigenvalue A = 3 with eigenvector x = (0,1). Note that the

eigenvector is determined up to a constant.

Example presents a general notion when it comes to the theory of eigenvalues and diagonal matrices.

This notion is presented in the following theorem.

THEOREM 5.1. The diagonal entries of a diagonal matriz are its eigenvalues.

5.2. Properties of eigenvalues and matrices
The first use of eigenvalues is to determine whether a matrix is singular or not.
THEOREM 5.2. A matriz A € M, is singular if and only if A = 0 is an eigenvalue of A.

That is, we can use eigenvalues to determine the number of solutions a system of linear equations has.
Getting back to the previous representation of the eigenvalues problem, we can see that (A — AI)x =0
is basically a system of linear equations with the matrix A — AI. Therefore, we already know that it
has a non-trivial solution x if and only if det (A — AI) = 0. In this case, A — AI is singular and not

invertible. The following theorem summarizes these conclusions.

THEOREM 5.3. Let A € M,, be an n x n matriz, and let X\ be a scalar. The following statements are

equivalent:

89
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1
2
3
4

A — A is singular.
det (A — M) =0.

(1)
(2)
(3) Ax = Ax for some non zero vector x.
(4)

A is an eigenvalue of A.

COROLLARY 5.1. A matriz is invertible if and only if all its eigenvalues are non zero. In addition, if a

matriz, with eigenvalues A1, ..., \,, is invertible, then the eigenvalues of A~' are )\%, cee )\1 .
LEMMA 5.1. Let A be a matriz with eigenvalues A1, ..., \,. Then, the eigenvalues of A* are \¥ ... \F

for any positive integer k.

These statements show us how closely related are eigenvalues to everything we learned until now. How-
ever, the question that still remains unanswered is how to find the eigenvalues of a matrix A? To answer
this question, we have the characteristic polynomial of A, which is det (A — AI) = 0. This is a polyno-
mial of degree n in A. Thus, the zeros of this polynomial are the eigenvalues of A. After finding the

eigenvalues, we can use the matrix A — Al to compute the eigenvectors.

THEOREM 5.4. Let Aq,..., A, be k distinct eigenvalues of A € M, with corresponding eigenvectors

V1,...,V. Then , vi,...,vr are linearly independent.

To conclude, we can summarize previous results and properties in the following manner:

e There exists a non-zero eigenvector x, that is Ax = Ax, if and only if det (A — AI) = 0.

e A matrix is invertible if and only if all its eigenvalues are non zero.

o If a matrix with eigenvalues A1, ..., A, is invertible, then the eigenvalues of A" are %1, el ﬁ

If A1, ..., Ak be k distinct eigenvalues with corresponding eigenvectors vy, . .., v, then , vy, ..., v

are linearly independent.

We now turn to compute eigenvalues and eigenvectors using the first equivalence statement.
EXERCISE 5.1. Find the eigenvalues and eigenvectors of
-1 3
A= .
2 0

Solution. We start with the characteristic polynomial of A.

-1-X 3
det (A—XI) = det( ) )

-\
= A+M -6
= A+3)(A—2)
M2 = 2,-3.

)

We wish to compute v, the eigenvector of \; = 2.
-3 3 z\ (0
2 —2)\y) \o)
We can solve this system as any other system of linear equations and get
-3 3 1 -1
—%Ll — L1
2 =2 _— 2 =2

1 -1 1 -1
Lo—201 — L
2 =2 LT 0 0
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1
and we get x — y = 0. Thus we can choose v; = (1) . Similarly, for vowe get

)00

3
which means that x = —%y. Thus, vo = ( >
-2

EXERCISE 5.2. Find the eigenvalues and eigenvectors of

3 -1 0
A=1]1-1 3 0
0 0 5

Solution. The eigenvalues are A\; 23 = 5,4,2. The eigenvectors are

0 -1 1
vn=10],ve=1[1|,v3=
1 0 0

EXERCISE 5.3. Find the eigenvalues and eigenvectors of

1 0 2
A=10 5 0
3 0 2

Solution. The eigenvalues are Aj 23 = 5,4, —1. The eigenvectors are

0 2
v1 = 1 , Vg = O , U3 = 0
0 3 -1

EXERCISE 5.4. Find the eigenvalues and eigenvectors of the following matrices

o (3 0>,
45
1 3

B = ,

o (0 2)7
1 -3

0 0 -2
D = 0 7 0
1 0 -3

Solution. The eigenvalues and eigenvectors of the matrices are:

e A: The eigenvalues are A\; 2 = 3,5. The eigenvectors are

() o)

e B: The eigenvalues are Aj 2 = 2,1. The eigenvectors are

() =-()

e (C: The eigenvalues are A\; = —1, —2. The eigenvectors are

() o-()
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o A: The eigenvalues are A 23 =7, —1,—2. The eigenvectors are

0 2 1
v = 1 , V2 = 0 , U3 = O
0 1 1

EXERCISE 5.5. Prove that the eigenvalues of a triangular matrix are its diagonal entries.

Solution. Writing down the characteristic polynomial of a triangular matrix D gives

—.

det (D*)\I): (diifT):O.

=1

The only solution in this case is A\; = d;; for every ¢, as required.

5.2.1. Trace of a matrix.

The trace of a matrix A is the sum of its diagonal entries. That is,
n
trace (A) = Z aj;-
i=1

The following theorem shows that the trace and the determinant are directly related to the sum of the

eigenvalues of its matrix.
THEOREM 5.5. Let A € M,, be a matriz with n distinct eigenvalues A1, ..., \,. Then,

trace (A) = Z)\i, det (A) = A - A+ Ay
i=1

This theorem is very useful when trying to find the determinant of a matrix, and even when trying to

verify the computation of the eigenvalues or determinant.

5.3. Applications

5.3.1. Difference equations.
Eigenvalues and eigenvectors are very useful when it comes to solving dynamical problems modeled
through linear difference equation. We begin with a very simple example that illustrates what a linear
difference equations are. Assume you have zy dollars deposit that gain an interest rate of r each year.
How much money will you have after n years? Denote this amount by z,. The amount increases by a

factor of 1 + r on an annual basis. The difference equation in this case is
Tpe1 = (14 ’I“) L.
Thus, as you probably have guessed, the solution is z,, = (1 + )" z.
This is basically a very simple example. Now what happens if we have two variable x,y; such that
their dynamics are connected. That is,
Tpr1 = axg+ byk
Y1 = CTp+ dyg.
How do we solve this problem? Since they both depend on each other, we need to solve them simulta-
neously, which could be quite difficult. Remember, our goal is to find a formula
Ln = f (:I:an07n7aa b7 & d)
Yn = g(l’o,yo,ﬂ,LL,b,C,d).

In the case that b = ¢ = 0, then the equations are uncoupled and we can solve them separately. For

that purpose, we use eigenvalues and eigenvectors. Let us present the coupled equations in the following



5.3. APPLICATIONS 93

Tkl a b Tk
zk+1 = = = Azk
Yk+1 ¢ d) \yk

Zigy1 = Azk.

form:

We are going to survey to ways to deal with this problem. Both are quite similar and are based on
eigenvalues and eigenvectors.

5.3.1.1. The powers of a matriz.
We wish to solve the difference equations zx+1 = Azj given the initial conditions zg. Therefore, we
know that

z; — AZO

Zy = AZ1 = AAZ() = A220
zZ3 = ASZO

7z, = APz

In general, it is difficult to calculate A* unless it is diagonal. If it is diagonal, then A* is similar to A

when all the diagonal entries are taken with the power k. That is, if

A O 0
0 X 0 0
D=|: 0 01,
: 0
0 0 0 0 M\,
then
Mo 0
0 X 0 - 0
DF=1: 0 0
0

0 0 0 0 A\
clearly, A is not a diagonal matrix (if it was, we would have uncoupled difference equations). However,
if we could find a non-singular matrix P such that P~'AP = D when D is the matrix described above,
then

A¥ = (pDpP7 ') (PDP')---(PDP)
= PD(P'P)D(P'P)D(P'P)D---(P'P)DP!
= PDIDIDID---IDP~!
= PDFPTL
Hence, if D is a diagonal matrix and P is invertible, then A* is easily computable. The following theorem

explains how P and D are found.

THEOREM 5.6. Let A € M, be an n X n matriz with eigenvalues A\1,..., A\, and the corresponding
eigenvectors vy, ..., v,. Define

P=lvy vy - vy.
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If P~ exists, then

A0 0
0 X O 0
A=P 0 o|P1,
: 0
0 0 0 0 X\
and
AE0 0
0 X o0 0
Ak =p 0 0Pt
0

0 0 0 0 X
Thus, the solution of the corresponding system of difference equations zy11 = Azj with initial vector zg

18

Moo 0
0 X o0 0

Zp = P 0 O P_lzo
0

0O 0 0 0 A

3

DEFINITION 5.1. Let A € M, be a square matrix.

e A is diagonalizable if there exists a non-singular matrix P such that P"'AP = D when D is a
diagonal matrix.
e A is orthogonal if A=! = AT,

PROPOSITION 5.1. If A € M, is a symmetric matrixz with distinct eigenvalues A1, ..., A, and the corre-
sponding normalizecﬂ etgenvectors vi,...,V,, there exists an orthogonal matriz P such that
M O - o0
0 X O 0
PlAP=1|: o0 01,
0

when P = [v1 va -+ vy

LEMMA 5.2. If a matrix A € M,, has n distinct eigenvalues, then it is diagonalizable. Moreover, A is

diagonalizable if and only if it has n independent eigenvectors.

EXERCISE 5.6. For each matrix, find an orthogonal matrix that diagonalizes it.

(1)
2 4
[+ 3)
4 2
2 1)’
0.6 0.4
04 06)°

Lywe say that a vector v is normalized if vTv = 1. That is, the sum of its squared coordinates equals 1.

(2)

3)



5.3. APPLICATIONS

211
11 0],
1 01
(5)
2 -1 -1
-1 2 -1/,
-1 -1 2
(6)
2 0 -1
0 4 0
-1 0 2
Solution.
(1) Eigenvalues are A = —2,6. Normalized eigenvectors are

1 (1 11
"=l T e
1 (1 1
P\/§<—1 1)'

(2) Eigenvalues are A = 0,5. Normalized eigenvectors are

The orthogonal matrix is

The orthogonal matrix is
(3) The orthogonal matrix is

(4) The orthogonal matrix is

0 1 2
V3 V6
P = 4 1 1
V2 V3 Ve
1 1 1
2 3 V6
(5) The orthogonal matrix is
1 1 1
V3 V2 6
_ |2 -2
P=|% o =2
4 1 1
V3 V2 V6
(6) The orthogonal matrix is
1 9 L
V2 V2
P=]10 1 0
1 1
VR

(1)

95
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o3

2 -1 -1
-1 2 -1
-1 -1 2

Solution.

(1) The orthogonal matrix is

11
P= (VE V2 ) :
V2 V2
(2) The orthogonal matrix is
-(E %)
V2 V2

(3) The orthogonal matrix is

11 1
V3 V2 V6
1 0 =2
V3 V6
1 1 1
V3 V2 Ve

Let us discuss a concrete example, and then go over to the next method.

EXAMPLE 5.2. The Leslie Population model.

The mathematical demographer P.H. Leslie, introduced the model named after him in 1945, to describe
how the population evolves (either grows or shrinks).

Consider an organism that lives for two years. The organism can reproduce in the first year and the

second year as well. In addition, the organism can die in the first year. Define the following parameters:

e b; where i = 1,2, is the birth rate of individuals in their i*" year.

e d; is the death rate of first year individuals.

® Iy, yr are the number of first-year individuals and second-year individuals on year k, respec-
tively.

The dynamics of this population are described in the following difference equations:
Tp+1 = bixp + bayn
ypr1 = (1 —dq)x.
Our main goal is to solve this problem. For simplicity, we will use specific numbers.
Tp+1 = T+ 4Yk

Ynk+1 — 0.5:Uk,

() - (s o) ()

or, in its matrix form,
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1 4
Fix A= (O . 0) and let us find the eigenvalues and eigenvectors of A.
1-X 4
det (A—1)) = det
0.5 =X
= =A(1-X)-2=0
M—-A-2 =0
A=2)(A+1) = 0
Ao = 2,—1.
The eigenvector v;is
1 4 T T
= 2

-2 4 -2
and vy = ( ) ) . Define P = (1 ) ) Its inverse

that

as required. Thus,

()
Z, =
Yk
2k 0 .
= P(O (_1)k>P Zg
4 -2\ (2k 0 1
11 0 (—1)F

1
6
2k+1+(_1)k 2k+2+4( 1)k+1
3
2k+(71)k+1 2k+2 l)k
6

[=2]

~—
7N
e 8
(=) [e=}
~

W Wl

v

and the problem is solved.

REMARK 5.1. One can notice an interesting situation when |A;| < 1 for every ¢ = 1,...,

Wit Wi

97

) (verify this!). Note

n. If that is

indeed the case, then A\ — 0 as n — oo. This implies, that whenever the absolute value of all the

eigenvalues is less than 1, the general solution tends to 0. This situation is called as asymptotically

stable, since the system will remain in 0 once it is reached.

5.3.1.2. Coordinates transformations.

The second method aims at transforming the coordinates of the problem. Assume that we can transform

the coordinates of zj, to different coordinates, denoted Zj, by the matrices P and P~ such that

VA sz, Zk = P_lzk.
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In that case,
Ziy1w = Pz
= p! (AZk)
(PilA) Z
= (P'4) PZ,
(P'AP) Zy,
and if P"1AP is a diagonal matrix, then we get a system of uncoupled equations, where we can solve

each separately. However, how could we find such matrices? The answer is as before, use eigenvectors!

Note that we have the following equivalent problem

P 'AP =D,
or equivalently,
AP =PD,
when we require D to be a diagonal matrix. Let A1,..., A, be the eigenvalues of the n x n matrix A,
whose eigenvectors are vy, . .., v,. Define the matrix P to be a matrix whose columns are the eigenvectors
V1,..., Uy, such that
P=[vy vy - - vy,
and define D to be a diagonal matrix whose diagonal entries are the respected eigenvalues Aq,..., A\,
such that
A O 0
0 X O 0
D=1|: 0 . .. 0
: 0
0 0 0 0 A

n

Now, we can see that

AP = A[Ul Vg -+ vn]
= [Avy Avy -+ Avy,]

= [Mo1 Ave - Apuy]
= [Ao1 Ave - Apog],
and
A O 0
0 X O 0
PD = [vivy---w]| : 0 0
0

0 0 0 0 A
= [)\1’01 )\21}2 R )\n’l)n] = AP7

3

and we get the required result. Therefore, we can use the eigenvectors and eigenvalues to create P and

D such that the problem becomes uncoupled.

EXAMPLE 5.3. The Leslie Population model (revisited). We use the second method to solve again
the same problem. Remember that the dynamics of the problem are given by

() = (o) ()
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4 -2 11
Using the previously defined matrices: P = (1 . > and its inverse P~! = ( 6 g) and the new
6 3
coordinates are
Xn+1 _ % % Tn41
Yn+1 _% % Tn+1
Thus, we get
XnJrl _ % % Tn+41
Yn+l *% % xn+l
11
-+ 2)\05 0/ \yn
- 12
-5 3 05 0 1 1 Y,
11
102
-5 3 2 -1 Y,
B 2 0 Xy
o\ -1\ )’
and we got the equations uncoupled.
We can solve each and get
Xn+1 = 2X,
Yn—i—l = Y,
.
X, = 2"X,
Y, = (-1)"XY,
when Xy, Y, are values that we can get from the initial conditions. Hence,
Tn _ 4 -2 Xn
w) 1 1)\ Y.
B 4 -2 2" X
o\ 1\~ )
when
Xo _ p1 (%o
Yo Yo
_ (5 5 [m
—5 3/ \w
The following theorems summarize these conclusions and observations.
THEOREM 5.7. Let A € M,, be a matrix with eigenvalues A1, ..., A\, and the corresponding eigenvectors

V1,...,Un- Define

P=lvy vg - vy.
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If P~ exists, then

MO 0
0 X O 0
PtAP=1|: 0 0
0

0 0 0 0 M
Conversely, if P"YAP == D when D is a diagonal matriz, then the columns of P are the eigenvectors
of A and the diagonal entries of D are the eigenvalues of A.

The following theorem gives the general solution for general difference equations.

THEOREM 5.8. Let A € M,, be a matriz with eigenvalues \1, ..., A, and the corresponding eigenvectors

V1,...,Un. The general solution for the system of difference equations z, 11 = Az, is

n
n
Zy = E Ci’/‘i Vi,
=1

where ¢; are given by the initial conditions.

EXERCISE 5.8. For each of the following matrices, find a non-singular matrix P and a diagonal matrix
D so that D = P~1AP.

(1)

(2)

Solution.

(1)

(2)

11 30
P= ~1 2,D(04
-1 1 1 0
(4)
0 1 2 100
P=|1 00|,D=f0 2 0
-1 1 1 00 3

EXERCISE 5.9. Find the general solution of the following systems of difference equations:
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Tpy1 = 3T,
Yn+l = Tnt 2yn;
(2)
In+l = Yn
Ynt1 = —Tn + OYn;
(3)
In+1 = Tn —Yn
Ynt1l = 2Tn + 4Yn.

Solution.

(1)

) Y R IR
n 0 lyo A




CHAPTER 6

Quadratic forms

6.1. Introduction to quadratic forms

The natural point to start discussing optimization problems is linear problems. Since we know how to
solve linear problems relatively easily, we can now move forward with the next step, which is quadratic
forms. The simplest case is taught in high school through the quadratic formula. But what happens
when we have more than one variable? In that case, we need to generalize our technique, and matrices
we be much handy for that.

First, let us present the problem. A quadratic form Q (z1,...,z,) in n variables z1,29,...,2, is a
polynomial expression in which each component term has a degree two (i.e. each term is a product of

zj and x; , where i,j = 1,2,---,n). That is, Q (z1,...,2,) = >;_; D ajjzix; where a;; € R.

Cram 6.1. Each quadratic form Q (z1,...,2,) in n variables x1,xo,...,z, can be represented by a
symmetric matrix A so that

Q (x) = xT Ax,
where xT' = (z1,...,7,).

For example, the quadratic form Q (z1,72) = a1123 + a127122 + ag223 can be written as

1
ai; 5012 T
xrT X2 1 .
5012 G22 Z2

For the case of n = 3: Q (1’1,172, .Z‘g) = 011;’17% + CLQQLZ?% + CL33£C§ + a12T1Z2 + a13X123 + A23T2x3 can be

written as
1 1
ailp 3012 35013 Ty
1 1
(331 T2 333) 5012 Q22 5023 L2
1 1
3013 3023  G33 T3

To understand the importance of these forms, let us consider a few concrete examples.

EXAMPLE 6.1. A manager faces an optimization problem. The revenue from producing x; units of
product A and zo units of product B is R(z1,x2) = 8xz122. However, the cost is given by C (z1,22) =

322 + 622. How much should the manager produce? Use quadratic forms to present the problem.

Solution. One can formulate the problem as f (21, %2) = 8z172 — 327 — 623, or equivalently

f(x1,22) = (xl a:g) (43 é) <2> .

In the following section, we will see that in such a case, the optimal production is (0, 0).

6.2. Definiteness of quadratic forms

There is an easy way to distinguish between different types of quadratic forms, using its sign.
DEFINITION 6.1. (Definite quadratic forms) Let Q (x) = x? Ax be a quadratic form.

o If Q(x) > 0 for all x # 0, then A is called positive definite.
o If Q (x) >0 for all x # 0, then A is called positive semi-definite.
o If Q(x) <0 for all x # 0, then A is called negative definite.
o If Q(x) <0 for all x # 0, then A is called negative semi-definite.

102



6.2. DEFINITENESS OF QUADRATIC FORMS 103

e Otherwise A is called indefinite.

Why is this distinction so important? If a quadratic form is either positive or negative, we know that it
could be minimized or maximized in x = 0. For this reason, optimizing such a form is relatively easy.
However, determining whether a quadratic form is positive or negative is not easy, as it requires to know
the sign of the form for every vector x.

To simplify the classification, we require an additional definition.

DEFINITION 6.2. (Principal minors) Let A € M,, be an n x n matrix. The k x k matrix formed from
A by deleting the n — k last rows and the last n — k last columns is called a k' order leading principal
sub-matriz of A. That is, if

ailx a2 -+ Gln

az1 Q22 -0 42p
A= . . |

anl an2 e Ann

then the k*" order leading principal sub-matrix of A is

The determinant of the k" order leading principal sub-matrix of A is called the k'™ order leading
principal minor (LPM) of A, and it is denoted by Ax. We use the leading principal minors in the
following characterization of definite quadratic forms.

THEOREM 6.1. Let A be an n X n matrix.

A is positive definite if and only if all its n leading principal minors are positive.

A is positive semi-definite if and only if all its n leading principal minors are non-negative.
A is negative definite if and only if its n leading principal minors follow the rule (—1)’C “Ap >0

for every k=1,...,n.

A is negative semi-definite if and only if its n leading principal minors follow the rule (fl)k .

A > 0for every k=1,...,n.

EXERCISE 6.1. Find the definiteness of the following matrices:
2 3 2 4 0 0
3 7)7\4 7)7\0 ¢/

). Since |41] = 2 and |Ag| = 14 — 9 = 5, the matrix is positive definite.

Solution.
2 3

1) Consideri
(1) nsidering (3 -

2 4
(2) Considering (4 7). Since |A;] = 2 and |Az| = 14 — 16 = —2, the matrix is indefinite.

0 0
(3) Considering <0 ) Since |A;| = 0 and |A2| = 0, the matrix could be either positive semi-
c

definite or negative semi-definite. When writing down the form explicitly, we get @ (x122) =

cr3, and the sign of ¢ clearly determines the definiteness of the matrix.

EXERCISE 6.2. Determine the definiteness of the following symmetric matrices:

(1)



Solution.

1) The LPMs
) The LPMs
) The LPMs
) The LPMs

5) The LPMs
) The LPMs
)

6.2. DEFINITENESS OF QUADRATIC FORMS

1 2 0

2 4 5

0 5 6
-1 1
1 -1
0 0 -2
10 3 0
0 2 0 5
3 0 4 0
0 5 0 6

are 2 and 1, thus the matrix is positive definite.
are —3 and —1, thus the matrix is indefinite.

are —3 and 2, thus the matrix is negative definite.
are 2 and 0, thus the matrix is positive semi-definite.
are 1,0, and —25, thus the matrix is indefinite.
are —1,0, and 0, thus the matrix is negative semi-definite.
The first three LPMs are 1,2, and —10, thus the matrix is indefinite.
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EXERCISE 6.3. Assume that A, B are positive definite matrices. Prove that A 4+ B is also a positive

definite matrix.

Solution. If x” Ax > 0 for every x # 0, and x” Bx > 0 for every x # 0, then

as well.

xT (A4 B)x =xTAx +x' Bx > 0,

EXERCISE 6.4. Let Q (x) = xT Ax be a quadratic form where A is symmetric. Prove that a necessary

condition for A to be positive definite is that all its diagonal entries are positive. Give an example to

show that this necessary condition is not a sufficient condition.

Solution. Suppose Q (x) = xTAx > 0 for all x # 0. For x = ¢; = (0,...,0,1,0,...) = a;; > 0. If A
is positive semi-definite, we must have a;; = ;7 Ae; > 0. Similarly, if A was negative definite. To show

that these conditions are not sufficient consider the indefinite matrix

6.2.1. Definiteness of quadratic forms.

The eigenvalues have a strong connection to the definiteness of quadratic forms.

THEOREM 6.2. Let A be a symmetric matriz. Then,
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e A is positive definite (respectively, semi-definite) if and only if all its eigenvalues are positive
(respectively, non negative).

e A is negative definite (respectively, semi-definite) if and only if all its eigenvalues are negative
(respectively, non positive).

e A is indefinite if and only if its has at least one positive eigenvalue and at least one negative

eigenvalue.

The following theorem regarding positive definite matrices is important in statistics and econometrics.
THEOREM 6.3. Let A be a symmetric matriz. Then, the following statements are equivalent:

e A is positive definite.
e There exists a non-singular matrix B such that A = BT B.

o There exists a non-singular matrix Q such that QT AQ = I.

EXERCISE 6.5. Find the definiteness of the following matrices:
2 3 2 4 0 0
37)°\4 7)7\0 ¢

(1) The eigenvalues are both positive, thus the matrix is positive definite.

Solution.

(2) The eigenvalues are A; < 0 < Ao, thus the matrix is indefinite.
(3) The eigenvalues are \; = 0 and \s = ¢, and the sign of ¢ clearly determines the definiteness of

the matrix.

EXERCISE 6.6. Determine the definiteness of the following symmetric matrices:

(1)

(4)

Solution.
(1) The eigenvalues are 3 and 1, thus the matrix is positive definite.
(2) The eigenvalues are A; < 0 < Ao, thus the matrix is indefinite.
(3) The eigenvalues are both negative, thus the matrix is negative definite.
(4)

4) The eigenvalues are 10 and 0, thus the matrix is positive semi-definite.

6.3. Linear constraints and bordered matrices

Clearly, one can use the classification of quadratic forms in order to determine a global maxima or
minima. However, usually in economics, we are subjected to constraints. Meaning that the optimization
is not taken with respect to R™, but only s part of it. What happens than? we start with a simple

example.

EXAMPLE 6.2. Let Q (z1,72) = 23 — 23 be a quadratic form. Q (z1,z2) is indefinite as we can see that

the origin is not a maxima or minima. However, what happens if we impose the constraint that x5 = 07
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In this case, Q (x1,0) = 22 which has a strict global minimum in x; = 0. Therefore, when we restrict

out, attention to specific set, the quadratic form can transfer from definite to indefinite and vice versa.

a b
THEOREM 6.4. Fiz Q(71,22) = xT Ax where A = and assume that the constraint set is
c

Bix1 + Boxs = 0. The quadratic form given the constraint is positive (respectively, negative) if and only

if

0 By B
det | B1 a b
BQ b C

is negative (respectively, positive). The new matriz is called the bordered matrix.

In other words, we take the linear constraint and the original matrix and generate a new matrix which
determines the definiteness of the restricted quadratic form.

For the general case, we have the following theorem.

THEOREM 6.5. Let Q (x) = x” Ax be a quadratic form with n variables and let Bx = 0 be a set of linear

constraints where
By1 B2 -+ By

Bml Bm2 T an

0 B
H= :

e If the sign of det(H) equals (—1)" and if the last n —m leading principal minors of H alternate

Define the bordered matrix

in sign, then @ is negative definite.
o If the sign of det(H) and the signs of the last n —m leading principal minors of H equal (—1)"
, then @ is positive definite.

EXERCISE 6.7. Check the definiteness of Q (x1, %2, 23, 74) = 23 — 23 + x% + 2% + 4xoxw3 — 22174 On the

constraint set

To+x3+24=0, 1 — 929 + 124 =0.

Solution. First we form the bordered matrix

o 0 | 0 1 1 1
0o 0 | 1 -9 0 1
Hi=|0 1 | 1 0 0 -1
1 -9 | 0 -1 2 0
1 0 | 0 1 0
1 -1 0 1

Since the problem has n = 4 variables and m = 2 constraints, we need to check the largest n — m = 2
LPMs which are det (Hg) and

0 0 | 0 1
00 | 1 -9 0
det (Hs) =det |~~~ — ~
(Hs) 0 1 | 1 0 0
1 -9 | 0 -1 2
1 0 | 0 2 1

Note that (—1)" = 1. In fact, det (Hg) = 24 and det (H5) = 77, so Q is positive definite on the given

constraint set.
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EXERCISE 6.8. Determine the definiteness of the following constrained quadratics:

(1) Q(x1,72) = 22 + 2wy — 22, subject to x1 + 29 = 0.

(2) Q (z1,22) = 422 + 22179 — 23, subject to x1 + x5 = 0.

(3) Q(x1,22,73) = 23 + 123 — 23 + 42123 — 22179, subject to x1 + 22 + 23 = 0 and x1 + x5 — 23 = 0.
(4) Q (z1,22,73) = 2?2 + 2% + 23 + 42123 — 23122, subject to 1 +x2 +23 = 0 and 21 + 22 — 23 = 0.
(5) Q (z1,22,73) = 22 — 23 + 4w122 — 67973, subject to x1 + 22 — 23 = 0.

Solution.

(1) n=2,m = 1. The bordered matrix is

0o | 1 1
H=|
1 ] 1 1
1 | 1 -1

det (H) =2 > 0, negative definite.
(2) n=2,m = 1. The bordered matrix is

0 | 1 1
gH=|_
1 | 4 1
1 | 1 -1

det (H) = —1 < 0, positive definite.
(3) n=3,m = 2. The bordered matrix is

o 0o | 1 1 1
o | 1 1 -1
g |l- - - - - -
1 1 | 1 -1 2
1 1 | -1 1
1 -1 | 2 0 -1

det (H) = 16 > 0, positive definite.
(4) n =3, m = 2. The bordered matrix is

o | 1 1 1

o | 1 1 -1

g |l- - - - - -
1 1 | 1 -1 2

1 1 | -1 0

1 -1 | 2 o0 1

det (H) = 16 > 0, positive definite.
(5) n=3,m = 1. The bordered matrix is

0 0 | 1 1 1
o 0 | 1 1 -1
a_ |- - - - - -
11| 2 -3
1 1 | 2 0 0
1 -1 | -3 0 -1

det (H) =4 > 0 and the determinant of the next LPM is 3, so the matrix is indefinite.



Part 3

Advanced calculus



CHAPTER 7

Calculus of several variables

7.1. Vectors and norms in R”.

7.1.1. Inner products and norms.
After reviewing one-variable calculus, we now turn to calculus in several variables. Before we discuss
functions, limits and derivatives in several variables, we survey a few basic properties in the Euclidean
space R™ when n € N.
The basic elements of R™ are vectors with n coordinates. Between these objects we can do almost every
arithmetic we did in R. For example, let v = (v1,...,v,) and u = (uy,...,u,) be two vectors in R",
then

(1) Addition: u+v = (ug +v1,..., U, + vp).
(2) Subtraction: v —v = (u3 — v1,...,u, — vy), which is identical to addition of u and —wv.
(3) Multiplication by a scalar: cv = (cvy, ..., cv,), when ¢ € R.

Other actions are more problematic, such as deviating, and are usually not well-defined. The first new
action we discuss is taking the inner product of two vectors. The inner product u - v of u and v is

(sometimes denoted (u,v))

n
Uu-v= E U;V;.
i=1

The inner product could be quite useful in economic problems. E.g., assume that a firm uses n inputs with
values x1,...,x,. The price per unit for z; is p;. Thus, the total cost of production is p1x1 + -+ ppTn,
which could be written as p - x, when p = (p1,...,0n), X = (T1,...,%y).

The next element we need to focus on is the concept of length and distance in R™. The concept of
length in these spaces is described by a norm. As there a many types of norms, we usually deal with

the Euclidean norm, also know as the L? norm or the L? distance, and it is defined as follows:

The Euclidean norm, as well as other norms, have the following properties:

e Non negative: ||u|| > 0 for every vector u, and ||u|| = 0 if and only if v = (0,...,0).
e For every ¢ € R and every vector v, it holds that ||cu|| = || - ||u]].

e The triangle inequality. For every two vectors u, v, it holds that ||u + v|| < [|u|] + ||v]].

The inner product could also be presented through the angle between the two vectors. Assume that 6
is the angle between u and v, then u - v = |ju|| ||v|| cos ().

Two vector u, v are orthogonal, or perpendicular, if the inner product (sometimes referred to as the scalar
product) is zero. That is, if u-v = 0. In terms of the angle between the vectors, it follows that § = 7/2,
hence perpendicular. Moreover, if, in addition, ||u|| = ||v|| = 1, then the vectors are orthonormal. Note

that every vector u # 0, can be normalized by taking @ = u/||u||.
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EXERCISE 7.1. Let u,v,w be three vectors in R™ and let ¢ be a real number.

statements:
1) u-(v+w)=u-v+u-w.
(2) u-(rv) = (ru) - v.
(3) u-u>0

Solution. All the proofs are based on algebraic manipulations.

(1) We are able to split the relevant sums because they are finite.

u-(v+w) =

w- (V1 +wi, ..., Uy + Wwy)

n
i=1

n

Z (uivi + uzwl)

i=1

n n
i=1 i=1

U-v+u-w.

(2) We use the fact that r is a real number, not a vector, and get

u- (rv)

w (rvg, ..., T0,)

Z u; (rv;)

n

Z (ru;) v;

i=1

(ruq,...,rup) v

(ru) - v.

(3) Note that for every u; € R, it holds that u? > 0. Thus,

n
u-u= E u? >0,
i=1

as the sum of non-negative numbers.

EXERCISE 7.2. For any two vector u,v € R™, prove that |||u|| — [|v]|| < [lu — v]|.

110

Prove the following

PRrROOF. The proof is based on the triangle inequality of the Euclidean norm, which states that for

every two vectors z,y, it holds that ||z + y[| < [|z[| +[|y]|. Fix 2 = v — v and y = v to get

|z +y

llu—v+wv

IN

IN <=

[ + [lyll

[lu =[] +[]vl]

[lu = vl].
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Now fix y =v — u and = = u to get

lz+yll < =]l + Iyl
\
lu+v—ull < [lull+[lv—ul
I
Wl = llull < flu—wof].
Therefore,
—lfu =l < fJul| = [Jv]] < {lu—wll,
as needed. O

EXERCISE 7.3. For each of the following vectors, find a normalized vector that point in the same direction.

(1) (3,4).
(2) (6,0).
3) (1,1,1).
(4) (71723 73)
Solution. To normalize a vector v # 0, all we need to do is to multiply it by a factor 1/||v]].
(1) (374> H(d};)” = (374) /9315 = (%7 %)
(2) (670) 6,00 — (6,0) V3610 (1,0)-
1 — 1 = (L1 1 L
(3) (111 gty = (LD yeter = (J50 95 95)-
1 _ 1 _ (=L 2 -3
(4) (-1,2,-3) M=12,=-3)I1 — (-1,2,-3) VIt~ \Vid’ vid’ ﬁ)-

EXERCISE 7.4. Prove the following identities:
) [lu+ol* + [Ju — vl = 2|Jul|* + 2|Jv][*.
(2) w-v=gllu+ol[* = Fllu—vl*
Solution. Clearly, ||z||? = x - x. We will use this property to solve both questions.

(1) A direct computation shows

[l +of[* + [Ju — vl (utv)-(utv)+ (u—0)-(u=-0)

= v ut+u-v+v-ut+v-vt+u-u—u-v—v-u+v-v
= 2(u-u)+2(v-v)
2[Jul[* + 2]Jv]|*.

(2) Beginning with the right hand side this time,

1H n ||2 1|| H2 u~u+u~v+v~u+v~v (uu U v v~u+ )
—|lu+ || = =||lu—wv = —_— = — — —_—
4 4 4 4 4

Il
o
[\

1
§u~v+§u~v

= Uu-v.

EXERCISE 7.5. Fix x = (4,-3,6,2) and y = (6,1,7,7)

(1) 2y +3x =7

(2) x-y=?

3) svx-x+y y>/x+y) (x+y)?
Solution.

(1) 2y +3x = (12,2,14,14) + (12, -9,18,6) = (24, —7,32,20).
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(2) x - y=24—-3+42+14=177.
(3) Let us compute both sides of the inequality

VX X+y'y = V1I6+9+36+4++36+1+49+49
= 65+ V/135.
\/(X + Y) : (X + Y) = \/(1Oa _27 1379) : (107 _2a 13a 9)

V100 + 4 + 169 + 81 = v/354,

and the inequality holds.
EXERCISE 7.6. Fix x = (5,0,—6,2) and y = (3,2, 3,2)

(1) -4y +6x=?

(2) x-y=?
B) Isvx - x+y y>x+y) x+y)?
Solution.

(1) —4y + 6x = (—12, -8, —12, —8) + (30,0, —36, 12) = (18, —8, —48, 4).
(2) x-y=154+0-184+4=1.
(3) Let us compute both sides of the inequality

VX X+yy = V25+0+36+4+V/9+4+9+4
V65 + V26.
V/(8,2,-3,4)-(8,2,-3,4)

= V64+4+9+16 =093,

VE+y) - (x+y)

and the inequality holds.

7.2. Functions.

A function f: A — B is a rule that assign for every element x € A, one and only one element in B,
which is f (z). When considering function f : R® — R™ from R" to R", then we should understand
that the input variable x € R™ is a vector, and the output variable f (x) € R™ is a vector as well.

The multivariate function could be as simple as the linear function f (z,y) = x + y, which is linear in
each of its variables, and it could be a bit more complicated, such as f(z,y,z) = (z + z,y — 2).

Why are these functions so important? in elementary microeconomics, for example, we used a one-
dimensional demand function ¢ = f (p) that simply depends on the price p. However, this model is
quite limited. In general, the demand can depend on the price of the good p, as well as on the price of
alternative goods p, and the income y. Implying that ¢ = f (p, pa,y) = ¢ - p“pS2y“s. In addition, if we

take into account the demand of the alternative good, we get a mapping
ar (p,Pa,y) = (c- PPy, ¢ - ppPy™).
Another example is production functions. For example, consider the following Cobb-Douglas production

functionl]
q(K,L) = kK" L,

IThe Cobb-Douglas production function is a production function, widely used to represent the technological relationship
between the amounts of two or more inputs, particularly Capital and Labor, and the amount of output that can be
produced by those inputs. The parameters a; and az are the output elasticities of Capital and Labor, respectively. These
values are constants determined by available technology. (Taken from Wikipedia).


https://en.wikipedia.org/wiki/Cobb%E2%80%93Douglas_production_function
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and the Constant Elasticity of Substitutions (CES) production functionﬂ
g(K,L) =k (AK~+ (1 -\ L) """
Both relate to two means of production - capital K and labor L. Obviously, one can derive more general

functions that depend on different elements and more variables.

EXAMPLE 7.1. A sports store in St. Louis carries two kinds of tennis rackets, the Serena Williams and
the Maria Sharapova autograph brands. The consumer demand for each brand depends not only on
its own price, but also on the price of the competing brand. Sales figures indicate that if the Williams
brand sells for = dollars per racket and the Sharapova brand for y dollars per racket, the demand for
Williams rackets will be D; (x,y) = 300 — 20z 4 30y rackets per year and the demand for Sharapova
rackets will be Dy = 200 + 40z — 10y rackets per year. Express the store’s total annual revenue from

the sale of these rackets as a function of the prices x and y.

Solution. Let R denote the total monthly revenue. Then
R(z,y) = Di(z,y)z+Da(z,y)y
= (300 — 20z + 30y) « + (200 + 40z — 10y) y
300z + 200y + 70zy — 2022 — 10y>.

EXAMPLE 7.2. Output @ at a factory is often regarded as a function of the amount K of capital
investment and the size L of the labor force. Suppose Q (K, L) = ?’II(:%LSL Find the domain of @ and
compute Q(2,1).

Solution. Since division by any real number except zero is possible, the expression @ (K, L) can be
evaluated for all ordered pairs (K, L) with K — L # 0 or K # L. Geometrically, this is the set of all
points in the K L plane except for those on the line K = L.

3-(2)°+5-(1)

=17.
2-1 7

Q(21) =

ExaMpLE 7.3. Output @ at a factory is often regarded as a function of the amount K of capital
investment and the size L of the labor force. Suppose Q (K, L) = Ke® +1In(K). Find the domain of Q
and compute Q(e?,1In (2)).

Solution. Since Kel is defined for all real numbers K and L and since In (K) is defined only for K > 0,
the domain of @ consists of all ordered pairs (K, L) of real numbers for which K > 0.

Q(e?,1n(2)) = 2@ 4 1n (e?) = 2¢* +2 ~ 16.78.

7.2.1. Graphs of functions.

When we move to higher dimensions, providing a geometric representation of a function is not so easy.
Since we live in a 3dimensional world, comprehending how 4 dimensions look is problematic. Therefore,
we are so what limited in that perspective. However, there are functions we can sketch, such as functions
from R? to R! which are surfaces in R®. For example, the function f (z,y) = = + y is linear in every
coordinate, and its graph is a linear plane that goes through the points (0,0,0) with a slope of 1 in
the direction of the axis. Another example is f (z,y) = 22 4+ y? which is a parabolic function in every
coordinate, with a global minimum in (0, 0).

Another way to present a function graphically is by using level curves. Taking the function f (z,y) =
2% +y?, one can sketch the set B, = {(z,y) € R* : 2%+ y*> = n?} by drawing a circle in R? with radius

n for every n € N. In this case, we get a sketch of all the points on which the function equals n.

2Constant elasticity of substitution (CES), in economics, is a property of some production functions and utility functions.
Specifically, it arises in a particular type of aggregation function which combines two or more types of consumption, or
two or more types of productive inputs into an aggregate quantity. This aggregation function exhibits constant elasticity
of substitution. (Taken from Wikipedia).


https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution
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One of the simplest function we know is the linear function. A linear function also exist in higher (than
one) dimensions. However, first we need to define a linear function. A function f : R™ — R™ is linear if

the followings properties hold for every two vectors =,y € R™ and every real number ¢ € R:

o flz+y)=f(z)+ [y

o flex)=cf (2).
THEOREM 7.1. Let f : R® — R"™ be a linear function. then there exists an m X k matriz A such that
f(z) = Az for every x € R".

This theorem shows that a linear function could be represented by a matrix and thus, if we chose one

coordinate and fix all others, we get a one dimensional linear function (straight line in one dimension).

7.3. Limits & continuity
When using the Euclidean norm, one can generalize the limit definition (Definition directly.

DEFINITION 7.1. Let f : R® — R™ be a multivariate function and let zg € R™ and L € R™ be two
real-valued vectors. L is the limit of f in the point z( if for every ¢ > 0 there exists a § > 0 such that
for every ||z — zo|| < 4, it follows that

If (&)~ L]l < e

We denote this limit by lim,_,,, f (z) = L.
From the context, one can understand that || — x¢|| is the distance between z and zy in R", and
IIf (x) — L|| is the distance between L and f (z) in R™. We use this definition to define continuous

functions in the general case. A function f is continuous in zq if the following conditions holds:

(1) the function f has a limit L in .

(2) the function f is defined in .

(3) the equality f (zo) = L holds.
These are basically the same condition that we needed to ensure that a single-variable function is
continuous. One type of functions that we will consider later is the class of continuous functions f :
R — R™. These functions are called curves.
One way to compute limits in R? is to substitute z,y with 7 cos (f),rsin (§) when r is the distance of
the point from the origin and 6 is the angle the line between the point and the origin creates w.r.t the
x axis. This way, we can replace the limit (z,y) — (0,0) with the one dimensional limit » — 0, which

is easily computable.

EXERCISE 7.7. Find the limit the function f (z,y) = =2 in (0,0) along the curves:

22 1y?
(1) y=0.
(2) (@) = 2.
3) y(z) ==

Solution. In every case we substitute y with the relevant y (z) that defines the curve.

(1)

= -0
li y:O 1i x _
o0 &Y 250 22 1 02
= lim0=0.
x—0
(2)
=2 x - a2
lim x, = lim ——
(w,y>ﬁ<o,o>f (z:9) 20 32 4 (22)?
23
= li
z—0 12 + x4
T
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=x xr-XT
1 y= li
(2.5 (0,0) f(@y) 250 22 + 22
2 1

m —- = .
z—0 2.’)3‘2 2

we can see that, om general, the limit in (0,0) does not exist, as different curves towards (0, 0)

produce different outcomes.

EXERCISE 7.8. Compute the following limits. If the limit does not exist, prove it.

. 3
(1) hm(x,y)ﬁ(o,(]) %2123
2

(2) limz y)—(0,0) 72557
(3) lim ;. 4y (0,0) z1n (=] + yl).
Solution.

(1) Let us compute the above limit a long the curves y = 0 and y = z. If y = 0 then

. 3 4+ xy 23420
lim = lim ———
(z,9)—(0,0) T2 + 12 z—0 x2 4+ 02

However, if y = x then

; z® + Yy R A o A
lim —*2 = THr-x
(z,y)—(0,0) T2 + y2 o0 12 + 22

which means the the limit above does not exist.
(2) We compute the limit in absolute value.
z2y 2

R "y'

I2+y4

332

lim lim
(x,y)—(0,0) (x,y)—(0,0)

lim _ .
(z,y)—(0,0) z2 4 y* ]

A

lim 1- =0.
(z,9)—(0,0) i

(3) Now, we use the polar coordinates (r cos (#),rsin (f)) to compute the limit.

lim xz, = lim xIn (x| + —
o m  f@y) = lim oz (] + ly)

= cos(f) lim rIn(|rcos(0)|+ |rsin(9)]) =
r—0+

= cos(0) Tl_ig{r rln (r (Jcos (0)] + |sin (9)]))
= cos(0) }1_1% [rIn (r) + r1n (|cos (0)] + |sin (9)])] .

The term r1n (|cos (8)| + |sin (0)]) goes to zero as r — 0F. Therefore, we need to compute the

limit of the first term.

. . In(r
lim rIn(r) = lim 1( ) =
r—0+ r—0+ b

» oo 1
= lim =
r—0+ — 3
T

I
ET
|
3
I
e
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7.4. Partial derivatives

Although the definition of a continuous function is similar to the one-variable case, the same is not true
when it comes to derivative. As the function depends on many variables, one can take a derivative

with respect to each one differently. This leads us to the concept of partial derivatives. We start with

the simple case of a function f : R®™ — R!. The partial derivative with respect to z; (i = 1,...,n) in
x = (T1,...,2y) is
0f () _ o f (xthe) = ()
8:10,» h—0 h
when e; = (0,...,0,1,0,...,0), when the i* coordinate is 1.

The partial derivative w.r.t. x; in x tells us how the function changes with an infinitesimal change in x.
If we want to discuss the derivative of f we should understand that the function can act quite differently
under infinitesimal changes in different coordinates. For example, F' (z,y) = x — y is increasing in = and
decreasing in y. For this reason, the Gradient of f : R® — R! is a vector of n coordinates defined as

follows:

DF (x) = (8£g),..., agx(:)) .

We also denote it by V f (x). Every coordinate is a partial derivative of f.

7.4.1. First-order approximation in R". One possible use of this derivative is to approximate
the value of the function near a known value. Namely, fix x” € R and consider the linear approximation
(FOA) which follows

n
of (x°
f (@)~ f(x°) +Z¥ (zi —x7).
i=1
This representation of f using a linear approximation is identical to the approximation we studied in
the one-dimensional case.

An alternative formulation is reached by taking = x° + Az

f(XO+A$>:f(X?—‘rAZEl,...,X%—i-ACL'n)f-?:f(xo)-i-z

In some cases, we use dz; instead of Ax;.

EXERCISE 7.9. It is estimated that the weekly output of a certain plant is given by the function Q(z,y) =
1,200z + 500y + 2%y — 23 — y? units, where z is the number of skilled workers and y the number of
unskilled workers employed at the plant. Currently the workforce consists of 30 skilled workers and 60
unskilled workers. Use marginal analysis to estimate the change in the weekly output that will result
from the addition of 1 more skilled worker if the number of unskilled workers is not changed. Compare

your result with the actual change.

Solution. The partial derivative
Q. (z,y) = 1200 + 2zy — 32°

is the rate of change of output with respect to the number of skilled workers. For any values of = and
y, this is an approximation of the number of additional units that will be produced each week if the
number of skilled workers is increased from = to x4 1 while the number of unskilled workers is kept fixed
at y. In particular, if the workforce is increased from 30 skilled and 60 unskilled workers to 31 skilled

and 60 unskilled workers, the resulting change in output is approximately

Q(30,60) = 1,200+ 2-30 - 60 — 3 - 30% = 2, 100.
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Whereas, the actual change is

Q (31,60) — Q(30,60) = 1,200z + 500y + %y — 23 — 3>
= 91,469 — 89,400 = 2, 069.

EXERCISE 7.10. Consider the function f (x,y) = 3z%y? — 9zy°.

(1) Find its partial derivatives using the definition.
(2) Find its partial derivatives using the rules of differentiation.
Solution. We need to find the partial derivatives w.r.t.  and w.r.t. y.

(1) We need to find the partial derivatives w.r.t.  and w.r.t. y.

of (wy) _ . 3@+ h)*y* =9 (x + h) y® — 322y + 9y
Ox h—0 h
_ 322y? + 6zhy? + 3h%y? — 9z — 9hy® — 322> + 9y
~ 5o h
. 6xhy® + 3h2%y% — 9hy?
= lim
h—0 h
= lim 6zy? + 3hy® — 9y° = 62y% — 9y°.
h—0
of (xy) i 322 (y + h)® — 9z (y + h)° — 32292 + 9z
Oy h—0 h
~ tm 3z2y? + 622hy + 3h%2% — 9z (y3 + 3y?h + 3yh? + B®) — 322y + 9zy®
h—0 h
— lim 622hy + 3h%2? — 9z (3y2h + 3yh? + h3)
h—0 h

= %ir% 622y + 3ha? — 27xy® — 27xyh + —9xh? = 622y — 272y>.
L —

(2) Using the rules of differentiation yields

of (z,y) 0 (322 — 9xy®)
ox ox
= 6ay® — 9y°,
of (z,y) 0 (32> — 9xy°)
dy dy
= 6z%y — 27xy>.

EXERCISE 7.11. Consider the following Cobb-Douglas production function ¢ (K, L) = kK* L2 and the
Constant Elasticity of Substitutions (CES) production function ¢ (K, L) =k (AK %+ (1 — X) L‘“)fl/a.
Compute the partial derivative of these functions assuming that all parameters are positive. Give an

economic interpretation for these derivatives.

Solution. Let us begin with the Cobb-Douglas production function.

9q(K,L)  0(kK*L*)
0K N 0K
= katK“~1L%,
9q(K,L)  0(kK*L*)
OL N oL

= kay K™ L1,

We move on to the CES production function. Before we differentiate, we make a few small algebraic

changes in the function.

k ()\K_a + (1 _ )\) L—a)_l/“ _ keln[()\K*‘q.(l_)\)[fa)—l/a]

ln(AK_”'Jr(l—)\)L_“)

= ke_ a
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111()K7a+(1—>\)L7a)
olkee— @
Jq (K, L)

0K 0K
-k 71n(AK*a+(1—/\)L*a) B _a/\Kfafl
- e a(MNE—%+ (1 - \) L)

Thus,

= EQOK 4 (1-NL) {( A1 ]

MK+ (1= A) L)
= (K 41— N L) " Ak

ln(AK_“Jr(l—)\)L_“)
olke— @
dq (K, L)

oL oL

71n(AK*“+(17)\)L*a) —a (1 _ )\) Lfafl
= ke ’ [_a (AK=2+ (1= ) L—a)}
(1—x) Lt
AK =4 (1—\) L—a)]

(1—X) Lot

k(MK +(1—x) L)/ {(

_1_
= EOK 4+ (1-NL ) "]
The derivative taken w.r.t. K presents the change in production given a small change in capital, while

the derivative taken w.r.t. L presents the change in production given a small change in labor.
EXERCISE 7.12. Consider the production function Q (K, L) = 9K/3L?/3,

(1) What is the output when K = 216 and L = 10007
(2) Use marginal analysis to estimate @ (216,998) and @ (217.5,1000). Compute these values up

to three decimal places and compare with your estimation.
Solution.
(1) @ (216,1000) = 9 (216)*/* (1000)*/% = 9- 6 - 100 = 5400.
(2) We use the regular linear approximation,

K, L
QU rran ~ Q0+ WAL
and
9Q (K, L)

0K
We need to compute the partial derivatives w.r.t. K and L.
0Q(K,L) 3L*% 0Q(K,L) 6K/3
oK K2/3° 9L L3

QK+AK,L) ~ Q(K,L)+ AK.

Hence,

dQ (216, 1000)

Q(216,998) ~ Q(216,1000) + oL (-2)
6
= 5400 — {610} -2

= 5400 — 7.2 = 5392.8,

while the true value is 5392.798. The error is —0.002.

dQ (216,1000)
oK

¢

Q(217.5,1000) ~ @ (216,1000) +
100} 3

(1.5)

336 | 2

5400 4 12.5 = 5412.5,

5400 + [
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while the true value is 5412.471. The error is —0.029.

EXERCISE 7.13. A firm has the Cobb-Douglas production function @ = 10961/335%/233;/6

using the input bundle (27,16, 64)

. It is currently

(1) How much is it producing?
se differentials to approximate its new output when z; = 27.1, zo = 15.7, and x5 remains
2) Use diff ial i i h 27.1 15.7, and i
the same.
(3) Compare your results for an exact computation with a calculator.
Solution.
(1) Q(27,16,64) = 10-27'/3.16/2.64'/6 = 10-3 -4 - 2 = 240.

(2) The relevant partial derivatives are

0Q (w1, w2, 23) 1Oxé/2m§/6 0Q (w1, w2, 23) 5;5}/3:3:13/6

6301 B 3%?/3 ’ 8.1‘2 -Té/2
Thus,
0Q (27,16, 64 0Q (27,16, 64
Q(27.1,15.7,64) = Q(27,16,64) + MAM + MA@
or, Oz
.161/2 . g41/6 .971/3 . g41/6
_ 240_’_0.1'10 16 64 _o. '5 27 64
3.272/3 161/2
10-4-2 5-3-2
= 240+0.1-—— —-0.3- = 238.046.

39
(3) The actual output is 238.032, an error of 0.14.

7.4.2. The Jacobian matrix and The Hessian matrix.
To generalize this notion, let f be a function from R™ to R™. That is, f (x) = (f1 (X), ..., fm (X)) when
fi is a function from R™ to R'. We can apply the same notion once again to every f; and get that the

derivative, usually called the Jacobian (or, Jacobian matriz | derivative) is a matrix

Oh(x)  dh(x) . 91i(x)

oz, Oxa Oz
Of2(x)  Of20x) . Ofa(x)

DF (%) =| o %m0
afm(x) 9 fm(x) . afm(x)

oz Oxo ox,

The Jacobian is also denoted by Jy (x).
The Hessian, or Hessian matriz, is similar to the Jacobian, where the derivatives are of the second order

instead of the first order. The Hessian of a function f : R™ — R is

2fx)  ’fx) 0f2(x)
Ox? dro0z, Oz, 0z,
of*(x) 3% df%(x)
DQF (X) _ HF (X) _ Ox10x2 895% 0,02
af*(x) i (x) 02 (%)
82,0z, Ox20x, ox2

It is easy to generalize this to the general case of a function f : R™ — R™, as every coordinate of f,i.e.,
every f;, is differentiated w.r.t. every x; and z;.
When high-order derivatives are concerned, there is one important theorem that helps us with the

computation, and that is Young’s theorem.

THEOREM 7.2. (Young’s theorem) Suppose that f : R™ — R™ is a C? function, then for every

coordinates 1, j, k it holds that
Pfe  0fi

8l‘i8l‘j N 81‘]8.131

Young’s theorem tells us that the order by which we differentiate is not important when the function

are at least twice continuously differential.
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EXERCISE 7.14. Using Young’s theorem, compute the third order partial derivatives of Q = 4K3/4L1/4,

Solution. We compute the partial derivatives up to the third order explicitly.

%‘323;{—@% , Z%ZK%L—;
0°Q 3.5 s Q3 s 1
orz ~ 1t H ’ orz = iR

Qg _ Bp-sg-g

OLOK ~  9KIL — 4
And the third order derivatives are

PQ 15 o 8Q 21 s _u

1 2
—— = —K 4] —— = —Ka[ 71
oK 16 7 v a3 1
530 3 . 2%Q 9 . .
- o ) i S
oLoKZ 16 ' 0 arorz 16 v U

and all the other derivative are given by Young’s theorem.

EXERCISE 7.15. In this question we examine a function such that Young’s theorem does not hold.

0, if (x,y) =1(0,0),
Tyt i (2,y) # (0,0).

x2 +y2 bl

[ (xy) =

1) Prove that the partial derivatives in (0,0) are both zero.

(1)
(2)
3)

)

Compute the partial derivative for any point (x,y).

3) Compute the partial derivative in (0,y) and in (z,0).
(4) Prove that the second partial derivatives in (0, 0) are not equal.
Solution.
(1) When z =0, then f(0,y) = % = 0 and the same holds for f (z,0), thus
ox z—0 T z—=0 T
af (0,0 0 — (0,0 0—-0
9100 _ py JOW = F00) _ 1y, 020
dy y—0 y y—0 Yy
(2) We can use the rules of differentiation and get
of (x,y) (3z%y — y?) (2? + y?) — 2z (2%y — zy?)
Ox o (22 + yz)2
_ 3x4y + 3$2y3 _ y3$2 _ y5 _ 2$4y + 2.’E2y3
(% +y?)°
L aty Ay — - oty
(2 +y2)°
Of (xy) _ (&% =3wy?) (2% +9?) — 2 (2%y — 2y°)
% (2% +y2)°
_ xz® 4+ 23y? — 323y — 3zy? — 223y + 2yt
(2% +y?)°
_ x5 — 4x3y2 — xy4
(2% +y?)°
(3) Using the previous computation yields
o10y) 05 @0)
Ay ’ oy ’
af (0, of (z,0
f( y)ziy f,0)

ox ’ Ox
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(4) We compute the second derivatives using the definition.

0f(x,0) _ 9f(0,0)

0x0y z—0 T =0 T ’
af(o, af(0,0
PrO0) o Pt o TR sv=0
Oyox y—0 Y =0 Yy '

We can see that the second derivative in (0,0) are not equal.

EXERCISE 7.16. Consider the production function Q = K3/*L3/*. Show that the marginal productivity
of each factor is diminishing. Show, however, that if the input combination is doubled, then output

more than doubles.

Solution. We need to compute the partial derivatives.
0Q  3L3* 0Q  3K3/*
OK — AKYA’ 9L 4LVA°
We can see that the productivity diminishes in every factor. However,

Q(2K,2L) = 28/4K3/43/4
MOKBMALM > 2Q (K, L).

7.4.3. The chain rule.

A function f : R™ — R™ is continuously differential on a set U if the partial derivative a%ix) in every
coordinates 4, j and in every point x € U exists, and it is continuous in x. In other words, a function
is continuously differential if it has all its partial derivatives and all of them are continuous. The set of
functions that are continuously differential is denoted by C'. Moreover, the set of functions that are n
times continuously differential is denoted by C™.

When composing two functions, the derivative of the composition is based on the derivative of both
functions we used. For that purpose we have the chain rule. In the one-dimensional case, the chain
rule was relatively simple. However, the generalization is a bit more complicated. Thus, we make this

generalization in two stages. First we present the chain rule for curves and later on for general functions.

THEOREM 7.3. (The chain rule for curves) Assume that x (t) = (x1(t),..., 2, (1)) is a C* curveﬂ
and f:R™ — R is also C'. Then g(t) = (fox)(t) = f(z1(t),..., 2, (t)) is also C' and

pon dg(t)  Of(x(t) dxi(t) of (x(t)) dw, (1)
g (1) = dt or, cllt Tt ox,  dt
_of(x(@) , of (x(t) , .\
= o xl(t)+~-+7axn T, (1) =

V@) (@ (), (1)

We see that the derivatives of the composition is the inner product of the gradients of both functions.

THEOREM 7.4. (The chain rule for general functions) Let f : R® — R™ and g : R¥ — R" be two
C* functions such that the composition h = f o g : R¥ — R™ is well defined. Then h(x) = (f o g) (x) is
also C' and the Jacobian of h is given by

Dh(x) = Df(g(x)-Dg(x)=

Jn(x) = Jr(g(x)-Jg(x).

In words, the Jacobian of h is the matriz product of the Jacobian of f in g (x) and the Jacobian of g in

X.

3 As we do not want to discuss the domain and co-domain of every function, we assume that the composition of functions
is well defined.
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Note that the Jacobian of f is an m x n matrix and the Jacobian of ¢ is an n x k matrix, which means
that the matrix product of both is well defined and yields an m x k matrix, as the Jacobian of i should
be.

EXERCISE 7.17. At a given moment in time, the marginal product of labor is 2.5 and the marginal
product of capital is 3, the amount of capital is increasing by 2 each unit of time and the rate of change

of labor is +0.5. What is the rate of change of output w.r.t. time?
Solution. The rate of change of output is AQ =2.5-0.5+3-2=7.25.
EXERCISE 7.18. Let f (z,y) = 32y? + 22 where z (t) = —3t? and y (t) = 4¢3 + .

(1) Use the chain rule to find how f (z (¢),y (¢)) changes as a function of ¢.

(2) Use substitution and direct differentiation to compute how f changes as a function of t.
Solution.

(1) With the chain rule we get

G Eym) = %-w'(t)+—~ (1)

= (3y*(t)+2) (—6t) + 6z (t)y (t) - (12> +1).

(2) Using direct differentiation we get
d _od L a2 3
f@®),y®) = Zf(=36,46° +¢)
d 2
= = [3 (—3t%) (4t® +t) +2(_3t2)}

= % [—91&2 (487 +1)* — 6t2]

= —3% |2 (348 +1)* +2)]

= —6t(46° + 1) [3(4®> +t) + 2+ 3t (126 +1)] .

EXERCISE 7.19. A health store carries two kinds of vitamin water, brand A and brand B. Sales figures
indicate that if brand A is sold for x dollars per bottle and brand B for y dollars per bottle, the demand
for brand A will be Q (z,y) = 300 — 2022 + 30y bottles per month. It is estimated that ¢ months from
now the price of brand A will be x = 2 + 0.05¢ dollars per bottle, and the price of brand B will be
y = 2+ 0.1/t dollars per bottle. At what rate will the demand for brand A be changing with respect

to time 4 months from now?

Solution. Your goal is to find % when ¢ = 4. Using the chain rule, you get

dQ OJq dr 0q dy —0.5
— L2 Y R 402 - (0. - (0. Y.
i —or @t toy @ 0z - (0.05) + 30 - (0.05¢7%)
When ¢t =4, we get £ =2+ 0.05-4 = 2.2, hence
d
d—? =—-40-2.2-0.054+30-0.05-0.5 = —3.65.

That is, 4 months from now the monthly demand for brand A will be decreasing at the rate of 3.65
bottles per month.

EXERCISE 7.20. Let w (r,s) be a function from R? to R. Assume that 7 = y — z and that s = y + .
Define F (z,y) = w(r (z,y),s(x,y)). Compute the partial derivatives of F' in terms of the partial

derivatives of w.
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Solution. A direct computation shows

oF  Ow Or  Ow O0s
9z~ Or 0z 0s oz
B ow  Ow
= —E-ﬁ-gy
oF  Ow Or Ow O0s
oy 9y
_ Ow | Ow
= o Tas

7.5. The Implicit function theorem

The functions we dealt with so far were explicit functions. For example, y = f (z1,22,...,z,) as the
endogenous variable y is a function of the exogenous variables x1, ..., x,. There are functions, commonly
known as implicit functions, where the variables cannot be separated as in the previous case, so that
F (z1,22,...,2Z,,y) = 0 represents y as an implicit function of the variables x1,...,z,. For example,
y3 —3xy+x?—7 = 0. For every value of x, we can solve the equation for y and get a value (when there is
more than one value we can choose one). This implies that y is a function of x, but this function cannot
be represented generally in the form y = f (z), because « and y cannot be algebraically separated.

When considering these functions, we wish to know whether we can represent y explicitly as a function

of the other variables, and also compute it’s derivative. For that we have the Implicit Function Theorem.

THEOREM 7.5. (Implicit Function Theorem) Let F (z,y) be a C* function where v = (21, ...,1,) €

R™ and y € R. Assume there exists a vector (:co,yo) = (a:(f, e ,x?wyo) such that
F (xo,yo) = Constant;
OF (9,
OF (#% ),
Ay

Then, there exists a C' function Y =Y (x1,...,x,) such that

(1) F(z,Y (z)) = ¢, for every vector z € R™ close to x%;
(2) Y (2°) = yo, and

ay o SF(mO,yO)
(3) agi ) _ _ sr(.0507 » for every coordinate z;.
28(s%.v0)

The motivation behind the theorem is to construct a function Y which, essentially, represents the variable
y, at least locally, around z°. We do not know how the function Y looks like, so we do not have an
explicit formulations for it. However, we do know the value of the function at °,which is yo,we do know
that the function sustain the equality w.r.t. F' (where F (z,Y (z)) = ¢), and most importantly, we know
the derivative of Y w.r.t. every x;. Thus, by the first and third point above, we can produce a first-order
approximation of Y w.r.t. every other coordinate, and this first-order approximation will give us some
intuition of the behavior of the variable y, according to the x;s, at least locally around z°.
For example, consider the previous example F (z,y) = y* — 3zy+2? = 7 and the point (z0,3°) = (4, 3).
We can see that the point sustains the condition F' (4,3) = 7. If we compute that partial derivatives of
F we get,
OF@y) _ g oy | W) _yp g
Or dy
OF (4,3 oF (4,3
78(33 ):—1 , 8(y ):15.
Thus, the conditions of the Implicit Function Theorem, Theorem hold, so we know that a C!

function Y (z) exists around = = 4, that sustains the three conditions above. That is,

(1) F(z,Y (x)) =7, for every x near 4,
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(2) Y (4) =3, and
() Y'(4) = ~ iy = 4

Why does that help us? Well, assume that we want to know the value of y when x = 4.3. Then we can

use the first-order approximation and get
Y(43) ~ YY)+ (4)Az
1
= 3+ —-0.3=3.02.
+ 15
The true value in this case is F (4.3,y) = y® — 12.9y + 18.49 = 7. Solving the equation yields

y® — 129y +11.49 =0 = y = 3.01475.

2

EXERCISE 7.21. Prove the the expression 22 — xy3 4+ y® = 17 is an implicit function of y in terms of x

around the point (2%,3°) = (5,2). Estimate the value of y when z = 4.8.

Solution. First, define F (z,y) = 22 — 2y® + y°. We can see that 52 — 523 + 25 = 25 — 40 + 32 = 17,
as needed. In addition,

F . F
a (l',y) = 9r — y3 , a (x’y) _ 73:17y2 4 5y4’
or y
OF (5,2) P OF (5,2) Y
Ox dy
and the second condition of Theorem [7.5 holds as well. The estimation yields
y(48) = y(6)+y (5)Az
dFG(5,2)
_ oz —
= 2+ <_6F(5,2)> (—02) =
Oy
2 1
= - — .- =1.98.
20 5 o8

EXERCISE 7.22. Consider the function F (z1,72,y) = 23 — 23 + ¢°.

(1) If 1 = 6 and x2 = 3 then find a y which satisfies F' (z1, z2,y) = 0.
(2) Does the equation define y as a function of (z1,x2) near (6,3)7?
(3) If so, compute the partial derivative of y in (6, 3).

(4) If (z1,22) = (6.2,2.9) estimate the value of y.

Solution.

(1) We need to solve the equation

36-9+y> = 0,
y3 = _27a
y = -3

(2) We need to see whether the second condition of the Implicit Function Theorem holds.

OF (1,22,y) 2
8y - 3y )
OF (6,3, —3)
= 2 .
o 740

Thus, the conditions hold.

(3) Lets us compute the partial derivatives of the function F,

O nony) g,  OP@no2y) o
8.’L‘1 8.’];2
OF(6,3,-3) _ 1,  OF(63,-3) _
(9:61 31‘2
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Therefore,
OF(6,3,—3)
ay (67 3) _ ox1
o, - 9F(6,3,—3)
Oy
24
229
OF(6,3,—3)
ay <6a 3) _ Oxo
Oy = 9F (6,3,—3)
Oy
_ _=6_2
B 271 9
(4) We can use first-order approximation and get
9y (6,3) 9y (6,3)
6.2,2.9) = 6,3 ———A ———A
y( ) ) y( 3 )+ 81'1 1+ 81’2 T2
4 2 2 1
= 33— _—. 2. —_3111L
9 10 9 10

EXERCISE 7.23. Consider the function 3z2yz + xyz? = 30 as defining 2 as an implicit function of (y, z)
around (1,3, 2).

(1) Estimate x when (y, z) = (3.2,2).
(2) Solve the equation 3z2yz+wyz? = 30 explicitly to find x as a function of 3, z. Use approximation
to estimate « when (y, z) = (3.2,2). Which way was easier?

Solution.
(1) We need to find the derivative of z w.r.t. y.

6(3w2yz+zy22)
Oz (y7 Z) _ oy
ay T T 0(3x2yzfayz?)

ox
322z + x2?

 bayz + y22?

)
——, at (1,3,2).
2473(77)

Hence,
x(3.2,2) = x(3,2)+ MAy
dy
) 23
= 1- o 0.2 = o0

(2) Solving the second-order equation 3z2yz + ryz? — 30 = 0 yields

—y22 + \/y?2* + 360yz

6yz

2
9z (y, 2) Gy= (‘ZQ + %) - (—yz2 AT 360yz) 62

Ay 367222

5

57> as before. Clearly the first method was much easier.

When plugging in (3,2) we get —

EXERCISE 7.24. Suppose the output at a certain factory is Q (x,y) = 223 + 22y + y> units, where z is
the number of hours of skilled labor used and y is the number of hours of unskilled labor. The current
labor force consists of 30 hours of skilled labor and 20 hours of unskilled labor. Estimate the change in
unskilled labor y that should be made to offset a 1-hour increase in skilled labor z, so that output will

be maintained at its current level.

Solution. The current level of output is the value of @ when x = 30 and y = 20. That is,

Q (30,20) = 2 - 30% + 302 - 20 4 20% = 80, 000.
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If output is to be maintained at this level, the relationship between skilled labor z and unskilled labor
y is given by the equation

80,000 = 223 + 22y + 3>,
which defines y implicitly as a function of . The goal is to estimate the change in y that corresponds

to a l-unit increase in x when x and y are related by this equation. The change in y caused by a

1-unit increase in x can be approximated by the derivative %. To find this derivative, we use implicit
differentiation.
d d
0 = 622+ xz—y + 22y + SyQ—y
dx dx
dy
ar (—x2 - 3y2) = 622 + 2y
dy 622 4+2xy  6-30°+2-30-20

= —3.14.

de 34+ 3y2 303 + 3 - 202
That is, to maintain the current level of output, unskilled labor should be decreased by approximately
3.14 hours to offset a 1-hour increase in skilled labor.

7.6. Multidimensional Integrals

7.6.1. Integrals in several variables.
Integrating a function with several variables is not that different from one-variable integration. Similarly
to differentiation, when integrating several variables we relate to the other variables as constant and
integrate the function as if it was a one-variable function.
However, there are times that we wish to compute one integral before the other. That is, assume that

f (z,y) is an integrable function (which means that we can compute its integral which is finite), and

/01 /Oyf(x,y) dxdy.

There are cases, where it is easier to first integrate the y variable and only later the x variable. For

assume that we need to compute

these cases, we have Fubini’s Theorem.

THEOREM 7.6. (Fubini’s Theorem) If the function f (x,y) is integrable and the integral is finite, then

//f(x,wdxdy/[/f(x,y)dx} dy/[/f(w)dy] dr.

7.6.2. Differentiating integrals.
Often we want to differentiate an objective function to find an optimum, and when the objective function
has an integral we need to know how to differentiate it. There is a rule for doing so, called Leibniz’s rule,
named after the 17th-century German mathematician who was one of the two independent inventors of

calculus (along with Newton). We want to find

d e

— flx, t)de.

Note that we are differentiating with respect to ¢, and we are integrating with respect to x. Nevertheless,
t shows up three times in the expression, once in the upper limit of the integral, b(¢), once in the lower
limit of the integral, a(t), and once in the integrand, f(z,¢). We need to figure out what to do with
these three terms.

Three things happen when ¢ changes. First, the function f(z,t) shifts. Second, the right endpoint b(t)
changes, and third, the left endpoint a(t) changes. Leibniz’s rule accounts for all three of these shifts.
Leibniz’s rule says

d [t P9 (a,t) , /
pn o f(a:,t)dx_/(l(t) warb(t)f(b(t),t)—a(t)f(a(t),t).
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Each of the three terms corresponds to one of the shifts we mentioned. The first term accounts for the
shift of the curve f(x,t). The term W tells how far the curve shifts at point z, and the integral
ff((tt)) 8f gtc’t) dx tells how much the area changes because of the shift in f(z,t). The second term accounts
for the movement in the right endpoint, b(¢). The third term accounts for the movement in the left

endpoint, a(t). Putting these three terms together gives us Leibniz’s rule, which looks complicated but
hopefully makes sense.

One of the important uses for this operation is in the field of auction theory. In auctions, when searching
for an equilibrium, we sometimes need to optimize function that are based on integrals. We will discuss

such examples broadly when we study probability.

EXERCISE 7.25. Compute the following derivative. First by using Leibniz’s rule, and then by integrating

and taking the required derivative.

2
(1) %fit‘z tz?dx.

2
(2) 4 ffgt t223dx.

Solution. We start by differentiating both integrals directly.

t? 2
S tatde = / Leatde+ 2t (¢ (8)7) = (<20)- (- (-2)?)
dt —t2 —t2
t2
= / z?dx + 2t° + 2t°
—t2
6 _ 46
= o
14
= —°
3

d 4% 5 3 4 3 2 243 2 3
a 2o3dy = / otaddx 4 8t - (% - (4t —(=3)- (t7-(=3¢)
dt \/—St —3t ( ( ) ) ( )
4¢2
= Qt/ 22dx + 2°t° — 34¢°
—3t
oy 4 4
_ t[(ﬁwx—sﬂ

29¢9 — 3445
2 2 +

34 =
= 279 — 3#’ +29¢9 — 345

35
= 5.97¢9 — 5,
2

Now, we first integrate and then take the derivative.

¢ d[t()?  t(-)°
— 2 = —_— -
i )t dt l 3 3
e
Codt| 3
= U

3
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4t? 2)4 4
4t -3t
d/ 2o3de — d [Ig( ) —t2( 3t) 1

dt |, dt 4 4
d 34
= D |yg8410 2 46
ALGEE
34
= 10-25¢ —6-=¢°
4
= 5~27t9—$t5.

2



CHAPTER 8
Optimization
8.1. Unconstrained optimization

Though functions of more than one variable are complicated, finding an extreme point of such a function

is quite similar to the one-dimensional case. Similarly to Fermat’s Theorem, Theorem [2.3] when a

function f : R® — R! is C! and it has a local minimum (or, a local maximum) x, then Ogi*) = 0 for
every t =1,...,n.

THEOREM 8.1. Let f: R™ — R be a Ct function with an interior local minimum (or, a local maximum,)

x, then 853(;_‘) =0 for everyi=1,...,n.

Again, the fact that the partial derivatives are zero, does not imply that the point is an extreme point.
It is the other way around.
One can use the Hessian of f to determined whether the point is a minimum, a maximum, or a saddle

point.

LEMMA 8.1. Let f : R® — R! be a C! function where all the partial derivative in a point x are zero (we

assume that x is an inner point of the domain of f).

o If the Hessian Hy (x) is a negative (semi-) definite symmetric matrix, then f is a strictly
(weakly) concave function, which implies that x is a strict (weak) local maximum of f.
o If the Hessian Hj (x) is a positive (semi-) definite symmetric matrix, then f is a strictly
(weakly) convex function, which implies that x is a strict (weak) local minimum of f.
o If the Hessian Hy (x) is a indefinite symmetric matrix, then f is neither concave nor convex,
thus x is neither a local minimum of f, nor a local maximum of f.
In case you do not remember what the definiteness of a matrix is, you should go over Section [6.2] once
more. Here is a quick reminder of Theorem

LEMMA 8.2. Let f : R" — R! be a C! function where all the partial derivative in a point x are zero (we

assume that x is an inner point of the domain of f).

o The Hessian Hy (x) is positive definite (semi-positive definite) if all principle minor are strictly

positive (non-negative, respectively) . That is, if

*f >f f
8% f 9% f dz2 dx20x,  Ox301
8% f 2 dro01, 8% f 9%f 8%f
ouz| >0 | o2y 27 | ” 0 |mede a7 Gegdm| 0
8I18:E2 8x§ a2f 62f 82f
Ox10x3 Ox20xs3 Bmg

Alternatively, the Hessian is positive definite if all its eigenvalues are positive. (Semi-positive
definite follows from either non-negative eigenvalues or non-negative principle minors.)
o The Hessian Hy (x) is negative definite (semi-negative definite) if have alternating signs: the

minors of odd order are strictly positive and the others are strictly negative. That is, if

*f 2’ f *f
*f *f da? D220z, Ow307;
8% f Ox? Ox2011 9% f 9% f 5%f
aaz| >0 | o2 21 | <O |5e0e 2l Bwgdms| O
Ox10x2 O3 9% f 9% f 8%f
Ox10x3  Oxa0x3 0x3

129
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Alternatively, the Hessian is negative definite if all its eigenvalues are negative. (Semi-negative
definite follows from either non-positive eigenvalues or alternating signs in principle minors
with weak inequalities.)

o If the principle minors of Hy (x) violate the two previous patterns, then x is a saddle point.

EXERCISE 8.1. The production function of a firm is F (K, L) = K'/*L'/2. The retail price of the product

is 12, and the unit price of capital and labor are 6 each. Find the optimal values for K and L.

Solution. The profit function is
7 (K,L) =12K'Y*L'/? — 6K — 6L.

The first order conditions are

or (K, L) _3
VA g3/ g =
E)e 3 6=0,
or (K, L) /45—
2 = GKYALTY?2 _6=0.
OL
Thus,
L1/2 ) 3
K1/4 )
And we get K =0.25, L = 0.5. The Hessian is
9?2 5?2 9 71— 3 _
<%2Kjff 8§§%> _ (—4K T/AT1/2 §K 3/47, 1/2)
37-—3/47—1/2 1/47-3/2
SKOL  OL7 SETSMALTYE —3KVALTY

—2.0.2577/40.51/2  2.0.2573/40.571/2
3.0.2573/40.571/2  —3.0.251/40.57%/2 )

But computing the leading principal minors we get that the point is a strict local maximum.

EXERCISE 8.2. A monopolist is facing two distinct markets - a domestic market and a foreign one. Let
Q; be the amount supplied to market i, and let P, = G; (Q;) be the inverse demand function of market

i. Specifically, the revenue from market i is Q; P; = Q;G; (Q;) when
G1(Q1) =50 — Q1, G2 (Q2) = 100 — 10Q>.
The cost function of the firm is
C(Q1 4 Q2) =C(Q) =90+ 20Q.

Find how much should the monopoly produce for each market in order to maximize profit.

Solution. The monopolist profit function is
m(Q1,Q2) = Q1(50 — Q1)+ Q2 (100 — Q2) — 90 —20(Q;1 + Q2) =
= 30Q1 — Q1 +80Q2 — Q3 — 90.

The FOC conditions show that

o (Q1,Q2) _
on (Qth) . o

Thus,
Q1 =15, Q2 = 40.
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For the SOC we get

’m(Q1,Q2)  9°7(Q1,Q2) 2 0
Q7 9Q20Q1 N
’m(Q1,Q2) 9*m(Q1,Q2) | — 0o -2/
0Q10Q2 Q3

One can see that the first LPM is —2 and the second LPM is 4, which means that the bundle is profit

maximizing.

EXERCISE 8.3. Find the critical points of the functions

fz,y) = 42 +3y? —12zy + 182.
f(zy) = 16y —4x+2y~ "

Solution. Taking the FOC for f (z,y) = 422 + 3y* — 12xy + 18z yields

fy(z,y) = 6y—12z=0.
Thus, y = 2z and
8r—24x+18 = 0
I
16z = 18
L 0,0

Taking the FOC for f (z,y) = 162y — 47 + 2y~ ! yields

fo(z,y) = 16y —4=0,
fy(z,y) = 16z —2y~2 = 0.
Andyzi,
m:$:2

EXERCISE 8.4. A firm has a Cobb-Douglas production function
Q (z,y) = ="y,

It faces output prices of p, and input prices of w, r respectively. Find the profit-maximizing input bundle.
Find condition on the parameters such that this solution is a global maximum.

Solution. The profit function is
7 (z,y) = pry® — wx — ry.

The FOC yield

T (zy) = apz® 1yt —w =0,
my (T, y) = bpxty’™t —r = 0.
Solving this system gives y = %’z, and so
b
Lo et <wa>
ap ar
U}libT‘b 1/(a+b71)
r = al—bpbb ’
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The Hessian is

a (a _ 1) pxa—be abpx“_lyb_l
abpx®—1yb—1 b(b— 1)pxayb*2 '

Thus the first LPM is a (a — 1) pz®~2y® < 0 if and only if a € (0,1). The second LPM is

ab [(a _ 1) (b _ 1)p2x2a72y2b72 _ abp2172a72y2b72] _ abp2I2a72y2b72 [(a _ 1) (b _ 1) _ ab]

= abp?a?iT2y?2 [1—a—10].

Andifa+b<1, a€(0,1), and b € (0,1), this is a global maximum.

8.2. Optimization with constraints

8.2.1. Equality constraints.
In the previous section we studied unconstrained optimization problems. We had a function f : R” — R!
and we needed to maximize or minimize it. However, many problems in economics have constraints. For
example, consider a simple consumers problem. If the consumers do not have a budget constraint, and
given that more consumption is better for the consumers, a consumer would choose an infinite amount
of every good. Clearly this cannot be achieved in the real world, because consumers cannot purchase
unlimited quantities of goods. The budget constraint is another condition that we need to take into
account when trying to optimize the utility of the consumer. How do we that? Well, it turns out to be
not that difficult due a very simple, yet ingenious, function called The Lagrangian.

8.2.1.1. Lagrangian.
The Lagrangian is named after the person who developed it, a 18*" century Italian-French mathemati-
cian, called Joseph-Louis Lagrange. The Lagrangian takes the function we wish to optimize and the
conditions we need to sustain and bundles into one function that we need to optimize. It is a very

elegant and easy way to solve constrained optimization problems. How does it work?

(1) Assume that we wish to maximize a function f(x) when f : R® — R!, but we have the

following m equality constraints given by the equations

g1 (X) = az,
92 (X) = a2,
9Im (X) =  Qm,
where g; : R® — R! is a C! function and a; € R, for every i = 1,...,m.

(2) First, we write down the Lagrangian L : R**™ — R,
L% A1 Am) = F(X) + D Aifai — gi (x)].
i=1

Note that L is a function of x and of Aq,..., \,,, where \; are called the Lagrange multipliers.
(3) Next we use the FOC (first-order condition) on L. That is, we compare the partial derivatives
to 0 and find the critical points,

8L(X,)\1,...,)\m) 8L(X,)\17...,)\m)

=0, ... =0

89c1 ’ ’ 8xn ’

OL (%A1, Am) _ OL (%M. Am) _
0\ S oA, -

The following theorem concludes this procedure.
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THEOREM 8.2. Let f:R™ — R! and g; : R® — R! wherei = 1,...,m be C' functions, and consider the
problem of maximizing (or minimizing) f (x) given the constraints
g1 (X) = az,
92 (X) = a2z,
9Im (X) = Qm,
where a; € R for every i =1,...,m. If xx is a solution for this problem then there exists (A\],...,A\})
such that
8L(x*,)\f,...,/\7*n):0 8L(x*7)\f,...,/\7*n):0
8x1 ’ ’ axn ’
8L(X*7)\T,...,)\;‘n):0 8L(X*7)\T,...,)\;‘n):0
o\ ’ ’ o\, '

In other words, the theorem states that if a solution exists, then we should find it by the FOC of The
Lagrangian.

The best way to understand this procedure at this point is by exercising it several times, thus we move
along to solving problems.

EXERCISE 8.5. A consumer has a utility function

u(x,22) = a:(lj'5xg'5,

The prices are p; = 10, po = 20 and his budget is M = 120. Find the bundle that maximizes his utility.

Solution. The maximizing problem is

maXg, ,z, U (xla xQ) - :L'(l).sng),
s.t. 10z1 + 2022 = 120.
The Lagrangian is
L (x1,29,\) = 295295 + X (120 — 102, — 20z5) .

The FOCs give
VT2

L(L‘l (.I‘l,xg,)\) = 2\/571 —10A =0,
Lmz (x1,$2,>\) = \/E _2())‘:03

2,/1‘2

L>\ (.1‘1,.132, )\) 120 — 10.131 — QOZ‘Q =0.

Solving this system yields
1

202

{E1:6, .’E2:3, A

EXERCISE 8.6. Solve the maximization problem

3951‘%2 + 4$1,

80.

maXg, z, f (1’1; xQ) =

s.t. 41 + 1229 =

Solution. The Lagrangian is

L (z1,22,\) = 3z129 + 421 + A (80 — 421 — 1229) .
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The FOCs give

Lzl (.131,%‘2,/\) = 3x2+4—4X=0,
Lx2 (xl,xg, /\) = 3$1 — 12X = 0,
L)\ (56171’2,)\) = 8074‘%1 7121’2 =0.

Solving this system yields
8
x1 =12, 22 =3, A=3.

EXERCISE 8.7. Solve the minimization problem

minﬁflwz f (1'17332) = 5z + 229,

s.t. 3:171 + 21}11‘2 = 80.

Solution. The Lagrangian is
L(z1,29,)\) = 5z1 + 229 + A (80 — 321 — 22129) .

The FOCs give

Ly, (z1,22,\) = 5—=3XA—2X\z3=0,
L, (x1,22,\) = 2—2X\x1 =0,
L>\ (.1‘1,.132,)\) = 80—31‘1 —233‘1%‘2 =0.

Solving this system yields two results and the one that minimizies the function is

1 1
.171:—47 1:2:_115’ )\:—1
EXERCISE 8.8. Solve the maximization problem
maxg, z, [ (T1,22) = 2122,
s.t. x1 + 4y = 16.

Solution. The Lagrangian is
L (331,.%2, )\) =129 + A\ (16 — T — 431‘2) .

The FOCs give

Lwl (xl,l‘g,/\) = $2—)\=O,
L$2 (1‘1,172, A) = I — 4\ = 0,
L)\ (l’l,wg,A) = 167%174%2:0

Solving this system yields
{E1:87 $2:2, A=2.

EXERCISE 8.9. Solve the maximization problem

MmaXg,,z, f($1,$2) = J)%l‘g,

s.t. 227 + 23 = 3.

Solution. The Lagrangian is

L(z1,22,\) = 2iz2 + A (3 — 227 — 23) .
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Lwl (x].) $2) A)
Ly, (1,22, )
Ly (xq,22,))

2$1I2 — 4)\.131 = 0,
x% —2X\xo =0,

3227 — 23 =0.

135

Solving this system yields several solutions, thus we can plug each solution into the goal function and

see which is the maximizer. The final solution is

EXERCISE 8.10. Solve the maximization problem

=1 |, To =1,
or
1 =-1 To = 1.
maXg,,x,x3 f(l'1,1}2,$3) = X1T2T3,
s.t. 1‘% + 1‘% — 1’
T1+x3 = 1.

Solution. The Lagrangian is

L(l‘l,l‘g,xg,)\l,)\g) = 212223 + M\ (1 — x% — l‘g) + Ao (1 — T — 333) .

The FOCs give

The final solution is

EXERCISE 8.11. Find the optimal bundle for the general Cobb-Douglas utility function

o1 (X1, T2, 3, A1, Ao

T2 (Jf ,$27$3,A17 2

SIS

T3

~

)
1 A2)
(w1, 2, 23, A1, A2)
A (71, T2, 23, A1, A2)
( )

L)\z x17$271‘37)\17)\2

XTol3 — 2)\1.131 — )\2 = O,

13 — 2)\1332 = 0,
21T2 — Ap = 0,
1—a?—23=0,

1—$1—:L‘3:0.

21 ~ —0.7676, xz = —0.6409, z3 = 1.7676.

1—a

u (1, x2) = kajzy ©,

on the budget set pix1 + paxo = I.

Solution. The Lagrangian is

The FOCs give

Solving this system yields

EXERCISE 8.12. Find the point closest to the origin that is on both planes

L(z1,29,)\) = kxi‘xé_a

L., (z1,22,\) = kax
sz (.’El,.’EQ,)\) = k(].
L)\ (1'1,1727)\) = I-
al
Ty = —, T2 =
D1

+ A —prxz1 — poxa).

a—1_1—a

1 @y P —Ap1 =0,
—a)ziry® — Apa =0,

p1r1 — p2x2 = 0.

(1-a)l
b2 .

3x+y+z = 5,

r+y+z = 1.
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Solution. We need to solve the minimization problem
ming . f (2,y.2) = 2° +y> + 2%,
s.t. xr+y+z= 5,
r+y+z= 1.
The Lagrangian is
L(z,y,z, A, ) =22+ + 224+ MG -3z —y—2)+(l—z—y—2).

The FOCs give

L, (z,y,2,\1,A2) = 2x—3\1 — A2 =0,
Ly(z,y,2,A1,X2) = 2y— A — X =0,
L. (z,y,2,A\1,A2) = 2z—X1 —X2=0,
Ly, (z,y,2,M1,\2) = 5—-3x—y—2z=0,
Ly, (,y,2,M1,A2) = l—axz—y—2=0.

The solution we get from this system is
1 1
=12,-=,—2].
(.’E, Y, Z) < 9 2 ) 2)

The previous problems focused on equality constraints. But what happens when some of the constraints

8.2.2. Inequality constraints.

are in the form of inequalities? For example, instead of the constraints set

g1 (X) = a1,
g2 (X) = ag,
Im (X) = Qm,
we have
g1 (X) = ar,
g2 (X) = a2,
9k (X) = G,
gk+1 (X)) < gy,
gm (X) < am.

What happens now? The setup is quite simple to the one we had before. We still form the Lagrangian,

but now we take a few different conditions as the following theorem states.

REMARK 8.1. We now focus on maximization problems. When we have inequality constraints, then
distinction is important, thus the following formulation holds for the maximization problem depicted.
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THEOREM 8.3. Let f:R™ — R! and g; : R® — R! wherei = 1,...,m be C' functions, and consider the

problem of maximizing f (x) given the constraints

g1(x) = ai,
g2 (X) = AQaz,
9k (X) = G,

ge+1 (x) < apqa,

IN

Ay«

Im (%)

where a; € R for everyi=1,...,m. Define the Lagrangian function

L(x,)\l,...7)\m):f(x)+2)\i [a; — gi (X)].
i=1

If xx is a solution for this problem, then there exists (\},...,\%,) such that

OL (x%, A5, .., A%)
8xi

AL (3%, A%y ... AL
N

and for every inequality constraint i =k + 1,...,m, it holds that

=0, forevery i=1,...

=0, forevery i=1,...

7k’

Note that the formulation of the Lagrangian is such that all constraints are taken as non-negative

constraints. That is, we write a; — g; (x) > 0 which is non negative, instead of g; (x) — a; < which is non

positive.

REMARK 8.2. What happens if we have a minimization problem? In that case, the formulation is similar

to the one presented in Theorem [8.3] but the Lagrangian is formulated with a minus sign, such that

m

L% A Am) = F(x) =) Nifai — gi (x)].

i=1

8.2.2.1. Kuhn-Taker Formulation.

When the constraints are of the form

1 Z Oa
2 Z Oa
T, = 0,
gn+1 (X) S An+1,
Im (X) <,



8.2. OPTIMIZATION WITH CONSTRAINTS 138

that is, when there are m + n inequality constraints, when the first n relate to the non negativity of the

coordinates of the solution, the Lagrangian of the maximization is defined as

(8.2.1) LA, ) = f(x)+ Zmi + > Ailai— g (x)],

1=n+1
which is identical to the Lagrangian presented in Theorem with the relevant constraints. Yet, as this
setup is quite common in economic problems, the Lagrangian presented in Equation [§:2.1]is called the

Kuhn-Tucker Lagrangian. It is named after its developers, Harold Kuhn and A.W. Tucker.

EXERCISE 8.13. Solve the maximization problem

maxy, z, f (T1,22) = 1 — x%,
s.t. 2423 = 4,
Ty > 0,
T9 Z 0.

Solution. The Lagrangian is
L (1,22, A1, 2, A3) =21 — x% 4+ A1 4+ Aoxs + A3 (4 — m? — :rg) .

The conditions we need to sustain are

Ly, (x1,22, M1, 2,A3) = 14X —2X321 =0,
Ly, (1,22, M, A2, A3) = —2x3+ Xg — 2329 =0,
Ly, (21,22, M\, X0, A3) = 4—a? —23 =0,

Az =0, Aoxo = 0,

A >0, for i=1,2,

x; >0, for =12
We can see that 1 + A\; = 2A3x; implies that 1 > 0 and A3 > 0 (since A\; > 0). Thus, the equation
A1z1 = 0 implies that A; = 0. Take the second equation are write it down as 2z5 (1 4+ A3) = Ay. Since

14+ A3 > 0, we can deduce that either Ay and x5 are both strictly positive or both are zero. By Asxs = 0,

we conclude that Ao = 9 = 0. Thus,

224H0=4 = x;=2
= M =0,
1
= A3 = T
The final solution is
(21,22, A1, A2, A3) = (2,0,0,0, i) .
EXERCISE 8.14. Solve the maximization problem
maxg, 2, [ (T1,22,23) = 12273,
s.t. z1 + 2y + a3 < L,
T > 0,
To > 0,
T3 > 0.

Solution. The Lagrangian is

L(x1,22,23, A1, A2, A3, A1) = 212223 + A121 + Ao%o + Az + A (1 — 21 — 290 — 23) .
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The conditions we need to sustain are

Ly, (%1, 22,03, A1, A2, A3, M) = @223+ M — A =0,

Ly, (z1,x2, T3, A1, A2, A3, M) = 213+ A — A\ =0,

Lyy (01, 29,23, A1, A2, A3, A1) = 2172+ A3 — Ay =0,
M(l—21— 29 —23) =0, Az =0,
Aoy = 0, Azx3 =0,

A >0, for i=1,2,3,4,
r; >0, for i=1,2,3,
and, x1 + o+ a3 < 1.
The first three equations can be written as
A = ToT3+ A = 2123 + Ao = T122 + A3.

We need to separate the problem into two cases: Ay = 0 or Ay > 0. If Ay = 0, by the non negativity of
the variables we get that \;, =0 Vi =1,2,3,4, and

LoX3 = X1X = T1X3 = 0.

Thus, the solution is that two variables equal zero, and the last one equals any number in [0, 1]. Specifi-
cally, the objective function equals zero, and clearly this is a minimum point and not a maximum given

the above-mentioned conditions. Now assume that A4, > 0. Thus, we get
1—21 —2x9—23=0,
and at least one coordinate is strictly positive. Assume that x; = 0. Thus,the equations
Ay = Ta%3 + A1 = 2123 + A2 = T1X2 + A3,

and the fact Ay > 0 yield
Ay = A3 =g > 0.

This means that xo = x3 = 0 which contradicts the conclusion that x1 + 22 + x3 = 1. Thus z; > 0, and

by symmetry, the same holds for zo and z3. Hence, A\; = Ao = A3 =0, and

XLoX3z = X133 = T1T2
3
To = T1 = I3,
and the solution is
111 1
A1, Az, Az, A = -, -,-,0,0,0,=].
(331,332,3337 15 N2y, A3 4) (373737 s Yy 79>

EXERCISE 8.15. Solve the minimization problem

ming, o, f (z1,22) = —a7 + 222,
s.t. 23+ 23 < 1,
T > 0,
Ty 2 0.

Solution. Note that this is a minimization problem and so the Lagrangian is

L(xl,xg,)\l, )\2,)\3) = —(E% =+ 2£U2 — )\1361 — )\Qifg — )\3 (1 — (E? — (Eg) .
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The conditions we need to sustain are

Lzl (x17x27 A17 )\2a )\3) - _23/'1 - Al + 2)\31)1 = O7
sz (3317552,)\1,)\2,)\3) - 2_)\2+2A3m2 :0’
Mz =0, Aoxo =0,

Ag(l-l’%-l’2) =0
A >0, for i=1,2,3
x; >0, for ¢=1,2,
and, % +a23<1.
Writing the equation 2 4+ 2A3x2 = A2 and using the non negativity of all the variables yields
Ao > 0= x5 =0,

as Aoxg = 0. Thus, we conclude that Ay = 2. From the equation 2z; + A\; = 2A3x; we conclude that
if xy =0, then \y = 0. If ;1 = Ay = 0, then z; = x5 = 0, and the goal function is also 0. However,
if z1 > 0, then Ay = 0 and A3 = 1 (follows from 2z7 + Ay = 2X3z1). Hence, by A3 (1 — 2% —23) =0
we know that zo = 0 and x; = 1. In this situation, the goal function is f(1,0) = —1 and this is the

minimum of the function given the previous constraints.

REMARK 8.3. For more exercises, one could use the Book “Must Have Tools for Graduate Study in

Economics” by William Neilson, pages 48-51, and pages 67-70.
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Probability and Statistics



CHAPTER 9

Basic concepts in probability and statistics

9.1. Probability spaces and axioms

Every probability (down to its most basic element) starts with some kind of an experiment whose result
we cannot accurately predict. The experiment has several possible outcomes, each may occur due to
several parameters which we bind together as Probability.

To better understand the notion of probability, we start with one of the simplest experiment which is -
a symmetric coin toss. Assume we have a coin with ‘0’ written on one side, and 1’ written on the other
side. We are told that half the times the coin lands on ’'0’. Therefore, every toss of this symmetric coin
is an experiment, that could end with ‘0’ with probability (w.p.) 0.5, or ‘1’ w.p. 0.5.

The set of all possible results is denoted by €, which is a sample space. A probability function Pr : 2% —
R is a function that assigns a number Pr(A) € [0,1] to every subset A C Q. A subset A of the sample

space is call an event. In the example above, Q = {0,1} and

Pr({1}) = %, Pr({2}) = %, Pr({1,2}) =1, Pr(¢)=0.

Another simple example is a simple symmetric dice with six faces. In this case, Pr(4) = % for every
subset A C Q as Q ={1,2,3,4,5,6}. The couple (2, Pr) is called a probability space.

9.1.1. The Probability axioms.

There is a good reason for using the number of elements is a subset of the sample space to define the
probability of that set. It is for the symmetry between the different possible results in the sample space
and the basic assumptions on the probability function. There are three axioms, know as The Probability
Azioms, or The Kolmogorov azioms, that we assume on Pr (-):

(1) For every event A C Q, it follows that Pr(A) > 0.

(2) Pr() =1.

(3) Any countable sequence of disjointﬂ events Ay, Ay, ... satisfies Pr (o, 4i) = > o, Pr(4;).

These three axioms are all the assumptions we make on the function Pr (-).
EXERCISE 9.1. Prove the following statements:

(1) For every event A, it holds that Pr (A¢) =1 — Pr(A).

(2) Pr(¢) =0.
(3) if A C B, then Pr(A) < Pr(B).

Solution.

(1) Note that AU A° = Q and since A and A€ are disjoint, it follows that

Pr(A)+Pr(A°) = Pr(AUA°)
= Pr(Q)
=1

=Pr(A° = 1-Pr(A).

(2) This follows directly from the previous conclusion and the axiom Pr(2) = 1 when Q¢ = ¢.

1Events A1, Asg, ... are disjoint if A; N A; = ¢ for every i # j.

142
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(3) Define the event C = B\ A, and note that C' and A are disjoint such that C U A = B. Hence,

Pr(B) Pr(CUA)
= Pr(C)+Pr(4)

Pr(4),

v

since Pr (C) € [0, 1].

9.1.2. The inclusion—exclusion principle.
The inclusion-exclusion principle gives us an easy way to compute the probability of unions of events.
It states that:

e For any two events A, B, it holds that
Pr(AUB)=Pr(A)+Pr(B)-Pr(ANnB).
e For any three events A, B, C, it holds that
Pr(AUBUC) = Pr(A)+Pr(B)+Pr(C)
— Pr(AnB)—Pr(AnC)—-Pr(BnC)
+ Pr(AnBNnCQC).

EXERCISE 9.2. We toss a symmetric, six-faces dice twice.

(1) Define the probability space.
(2) Write down the event A where both tosses are identical and the event B where the sum of
results equals 4.
(3) Compute Pr(4), Pr(B), and Pr(AU B).
Solution.
(1) The sample space is Q = {(4,5): ¢,7=1,2,...,6} and Pr(w) = 1/36 for every w € Q.
(2) A={(i,i): i=1,2,...,6 and B={(i,§): i+j=4, i,j=1,2,3}.
(3) Using the probability axioms, we get

1 1
1 1

Now we use the inclusion-exclusion principle. First,Pr (AN B) =Pr(2,2) = %. Thus,

Pr(AuB) = Pr(A)+Pr(B)—-Pr(ANB)
6 3 1 2

36 36 36 90
EXERCISE 9.3. There are n students in a class room. What is the probability that there exists at least

one couple of students with the same birthday?

Solution. Let A be the event where there is at least one couple of students with the same birthday. We
are going to compute Pr (A¢). In order for no such couple to exists, all the students must have different
birthdays. Thus we need to choose n dates from 365 possible days of the year, and then distribute them
to the students. The size of the sample space is |[2] = 365" as every student has, in general, 365 options.

Therefore,

(*%)n! 365!

Pr(4%) = ~nt%_
r(A9) 365" 365" (365 — n)!’

B 365!
365™ (365 — n)!’
which is more than half when n = 23, and about 0.994 when n = 60.

=Pr(4) =
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EXERCISE 9.4. How many solutions are there for the equation x1 + x2 + -+ + x,, = n?

Solution. We solve this question by creating an equivalent, experiment. Assume you have m — 1 sticks
and n identical balls which you place in a raw. The sticks act as partitions and the balls within two
sticks is the number of balls in that partition. Note that randomly organizing these objects in a raw
creates m cells (including the two outer cell created by the extreme sticks) and the number of balls states

the value of that cell. This is exactly like distributing n times the number 1 into m different variables.

(n+m71) n+m71).
n

, Or ( m—1

Thus the answer to the question is

EXERCISE 9.5. In a box there are 100 bulbs among which 6 are defected. We choose 5 randomly without
putting them back in the box.

(1) What is the probability that we will have exactly 2 working bulbs?
(2) What is the probability that we will have at least 2 working bulbs?
Solution.
(1) Let A;be the event where we have exactly ¢ working bulbs. The probability of A, is
94y (6
PI‘(AQ) — (2)(3)

()

(2) We can sum up disjoint events and get

() - Eon
- (60

9.2. Conditional probability

The idea behind conditional probability is to give changes in probability when the information we have
changes. For example, take a basic experiment of tossing twice a fair six-faces dice. We know that every
combination (4, j) when 4,j € 1,...,6 have the same 1/36 probability to be realized. Now assume that
someone told us that the sum of the two tosses is at least 10, now what is the probability of a couple

(i,4) to be realized? Well, in this case, we can intuitively say that

g if (i,7) = (4,6),
g if (i,) = (6,4),
g if (i) = (5,5),

Pr((i,j)li+j=210)= {5, if (i,5) = (56),
g if (i,7) = (6,5),
g if (i,7) = (6,6),
0, otherwise.

Note that we used symmetry to compute the non-zero probabilities.

DEFINITION 9.1. (Conditional probability) The probability of event A conditional on event B such

that Pr(B) > 0 is
Pr(AnNB)
Pr(B)

PROPOSITION 9.1. For any event B with positive probability, the conditional probability Pr(-|B) is a

Pr(A|B) =

probability. That is, it sustains the three probability axioms.

PROOF. We need to prove that Pr (-|B) sustains the three probability axioms. First,

Pr(ANB) >0

Pr(A|B) = = 2
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as both the numerator and the denominator are non-negative. Second,
Pr(QnB) Pr(B) _ 1
Pr(B)  Pr(B)

Pr(QB) =

And last, let Ay, A, ... be a sequence of disjoint events. Then

Pr((U; 4i) N B)

Pr <LiJAZ-B> = —m

Pr (U, (4: 1 B))
Pr(B)

>, Pr(A;nB)
Pr(B)

Pr(A; N B)
Pr(B)

= ZPT(Ai|B)7

as required. O

EXERCISE 9.6. An urn contains 10 white balls, 5 yellow balls, and 10 black balls. You take out a ball

at random and it turns out that it is not black.

(1) What is the probability that it is yellow?
(2) What is the probability that it is white?

Solution.
_ Pr(YnB°) _ Pr(Y)

(1) Pr(Y|B%) = =550 = drpey =
(2) Pr(W|B) = 1— Pr(Y|B°) = 2.

ho
il

H
|
|

W

|
o

EXAMPLE 9.1. Assume that a patient can either be healthy, an event denoted by H, or he
can have a certain condition, an event denoted by U. He takes a test to determine his status.

The probabilities are given in the following table:
’ ‘ Positive test | Negative test ‘ Overall ‘

H 0.001 0.987 0.988
U 0.010 0.002 0.012
Overall 0.011 0.989

we can see that condition U is rare, only 0.012 percent of the population have it (that is,

12 people out of every 1000 people on average).

(a) Assuming that the test was positive, what is the probability of actually having the condi-
tion?
(b) Assuming that the test was negative, what is the probability of actually having the con-

dition?

These question are based on the idea of conditional probabilities. First, denote the event that the test
was positive, meaning the person has the condition, by P, and the event where the test is negative is

denoted N. We need to compute the following probabilities:

Pr (U|P) =7 , Pr (U|N) =?
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Using conditional probability,

Pr(UnNP)
Pr (P)
0.010 _ 10 _
0.011 11

Pr(UNN)
Pr(UN) = ———~=
r (U[N) Pr (V)
0.002 2

= 70.989 = @ ~ 0.002.

This means that a false positive (getting a positive test when you do not have the condition) occurs w.p.
0.09. Almost 10% of the times! On the other hand, a false negative occur only 0.2% of the times.

Pr (U|P)

0.91,

9.2.1. Bayes’ Law.
Bayes’ law is basically a simple law of conditional probability that helps us to transform the relation
between the event in question and the event we condition on. This law is easily derived from the
definition of conditional probability: For any two events A, B both with positive probabilities,
Pr (B|A) Pr(4)

Pr(A|B) = W
Usually in economics, we call Pr (A) the prior (probability), as this is the probability we have before we
get additional information. The probability Pr (A|B) is called the posterior, as it is known to us only
after event B is given.
Although Bayes’ law is simple and very important in economics (game theory, finance and so on), people
do not always follow it. Consider the example given by Kahneman and Tversky in 1973 (published in
Psychological Review).

EXAMPLE 9.2. (Kahneman and Tversky, 1973) Some subjects are told that a group consists of
70 lawyers and 30 engineers. The rest of the subjects are told that the group has 30 lawyers and 70
engineers. All subjects were then given the following description:
Dick is a 30 year old man. He is married with no children. A man of high ability and high motivation,
he promises to be quite successful in his field. He is well liked by his colleagues.
Subjects were then asked to judge the probability that Dick is an engineer. Subjects in both groups said
that it is about 0.5, ignoring the prior information. Note that the new information is uninformative and
irrelevant, so

Pr (engineer| new information) = Pr (engineer) ,
or in other words, Pr (B|A) = Pr(B). According to Bayes rule the posterior should be the same as the
prior, Pr (4|B) = Pr(A).

9.2.2. Law of total probability.
The law of total probability is a very important aspect in probability theory. It helps us to compute the
probability of may events in the same manner a probability tree helps with the computation. In fact,
the law of total probability is a mathematical, or more accurately an algebraic, way to write down a
probability tree.

DEFINITION 9.2. (The law of total probability) Assume that Bj, Bs,... is a countable sequence
(finite or infinite) of disjoint events that forms a partition of the sample space €. That is, BN B; = ¢
and |J, B; = Q. Then, for every event A it follows

Pr(A) =Y Pr(A|B;)Pr(B).
This law states the one can break down every event to a countable set of smaller events, compute the

probability of each conditional event and take its product with the probability of the event, on which

we conditioned. This is basically the same thing we do with probability trees. First we write down all
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the edges (that are the different options B;). Then we compute the probability that the event A occurs
in every edge. And lastly we sum-up the probabilities of all the edges.

EXERCISE 9.7. We toss two fair, six-faces dices until the sum of the two is higher than 10.

(1) What is the probability that the number of tosses will be less than 10?7
(2) What is the probability that we will get a sum of 12 before we get a sum of 117

Solution.

(1) Let A be the required event. In order for the number of tosses to be less than 10, we need no
more than 9 repetitions. Let us compute the probability of A¢. The event A€ states that there
are at least 10 repetitions, which means that we need to fail 9 straight times. The probability
of getting a sum that is higher than 10 is % = % Thus, the probability of failing 9 straight
times is (%)9. Hence, Pr(A) =1-— (%)9.

(2) We solve this question by conditioning on the first experiment. Let X be the outcome of the

first experiment and let A be the event where we get a sum of 12 before we get a sum of 11.
Pr(4A) = Pr(AlX=11)Pr(X =11)
Pr(AlX =12)Pr(X =12)
Pr(A|X #11,12) Pr (X # 11,12)
2 33

1
- 02 41. aPr(A).22
361 3 TP 36

where we use symmetry between the tosses to conclude that if the sum of the first toss in

+
+

neither 11 nor 12, then the probability of A remains the same. Thus,

3 1
% Pr (A) = %,
1

EXERCISE 9.8. In a casino we have two slot machines. One of them has a 0.4 probability of winning and
the other has a 0.2 probability of winning. A person chooses the following strategy: he picks a machine

at random, if he wins, he plays another game, otherwise he plays the next game in the other machine.

(1) What is the probability of losing both games?
(2) What is the probability of winning exactly one game?

Solution.

(1) We need to condition on the machine that the person choose. Let A be the event where he
choose the machine with the higher probability and denote the event where he chose the other
machine by B. We use W and L to denote a win or a lose, respectively.

Pr(L,L) = Pr(L,L|A)Pr(A)+Pr(L,L|B)Pr(B)

(2) Let us compute the probability of winning both games.

Pr(W,W) = Pr(W,W|A)Pr(A)+ Pr(W,W|B)Pr(B)

(5) 5+ (3) 3

= 0.1.

Thus, the probability of winning exactly one game is 1 — 0.5 — 0.1 = 0.4.

EXERCISE 9.9. A binary signal passes through a noisy system.
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o If the signal is '0/, there is a probability of ey that is goes through as '1’.
o If the signal is '1’, there is a probability of e; that is goes through as '0’.

answer the following questions:

(1) Assuming the we sent out ‘0’ w.p. p, and ‘1’ w.p. 1 —p. What is the probability that the
signal received is accurate?

(2) What is the probability that the signal ‘1011 reaches its destination correctly?

(3) Assuming that we submit every signal three times and it is interpreted according to the majority
rule. What is the probability that a signal of ‘0’ will be decoded accurately?

(4) Given the probabilities in the previous questions 1 and 3. If we received '101’, what are the

chances that the original transmission was ‘000’7

Solution.

(1) Denote by A the event where the signal passed correctly. We use ’s,’ s} to denote the signal

that were sent out and 'r{,’ ] to denote the signals received.

Pr(A) = Pr(ro|lso)Pr(so) + Pr(ri|s1)Pr(s1)
= (1—e)p+(1—e1)(l—p).

(2) The probability is (1 — e1)* (1 — ep).

(3) The signal will be decoded correctly if among the three received signals there are at least two
'0/. Therefore, the probability is (1 — eg)” + (;’) (1—eo)’ eo.

(4) First, we wish to write down the question mathematically.

Pr (sgsoso|riror:) =7

We can compute this using the law of total probability and Bayes’ law.

Pr (r17mo71|808050) Pr (805050)

Pr(sososo|rirori) = Pr (7’17“07"1)

eg (1—eo)p
Pr (r17mo71|808050) Pr (s05050) + Pr (r17ror1]s15181) Pr(s15181)
eg (1 —eo)p
g (L—eo)pter(l—e)’(1-p)

EXERCISE 9.10. There are three chests with two drawers each. All look the same from the outside. In
one chest there are two gold coins, one in each drawer, in another chest there are two silver coins and
the last has one silver coin and one gold coin. We pick a chest and a drawer randomly. Given that we

found a gold coin, what are the chances that the other coin is also gold?

Solution. We need to condition on the chest we chose. Denote the following events:

e (;, choosing the chest with ¢ gold coins when i = 0,1, 2.

e A, finding a gold coin in a random drawer we choose.

Pr (A|G2) Pr (Gs)
Pr(4)

1-(2/3) 2

/2 3

Pr (G2|A) =

EXERCISE 9.11. In the first group there are 17 girls and 3 boys. In the second group there are 5 girls
and 10 boys. We choose two students randomly from the second group and move them to the first
group. Then, we choose randomly one student from the first group. What is the probability that the

last student is a boy? is a girl?



9.2. CONDITIONAL PROBABILITY 149

Solution. We need to condition on the students that were moved from the second group to the first.

Let G; be the event where i boys moved from the second group to the first (i = 0, 1, 2).
2
Pr(Boy) = Y Pr(Boy|G;)Pr(G))
i=0

3 4
=5<> Pr(Gr) +

3 0, <a°> 0,
n e ) T2
3 4.5 4 5-10-2 5 9-10

9 1415 " 22 1415 22 14 15
1 20 15 13

Pr(G2)

(5)

22
R

s T 2T 66
and Pr (Girl) = 1 — Pr (Boy) = 22.

EXERCISE 9.12. There are 3 coins, two fair coins (with equal probabilities to fall on both sides) and one

coin that lands on 'H’ w.p. 0.25. We choose one coin at random and flip it twice.

(1) What is the probability of getting exactly one 'H’?
(2) Given we got exactly one time 'H’, what is the probability that we chose the non-symmetric
coin?
Solution.

(1) We condition on the chosen coin. Let F' denote the event of a fair coin chosen, and let U

denote the event of choosing the unfair coin. Denote by H; the event of getting ¢ times 'H'.

Therefore,
Pr(H,) = Pr(H.|U)Pr(U)+Pr(H|F)Pr(F)
1 3 1 11 2 11
= 21137333 !,

(2) Bayes’ law states that

PI‘(Hl)
1. 3.1

_ 2'1'1'523
11 :
51 11

9.2.3. The Monty Hall Problem.
This problem is based on a game show called “Lets Make a Deal” whose host for several years was Monty
Hall.

EXERCISE 9.13. (The Monty Hall Problem) There are three doors, labeled A, B, and C, when
behind only one of them there is a prize and nothing behind the other two (with equal probabilities for
each door). The host, Monty Hall, offers a contestant the choice among three doors. Then, the host,
who knows where the prize is, reveals one of the doors with no prize. The contestant needs to choose

whether to stay with her original pick or switch to the other door. What should she do?

Solution. The answer is that she should take the other door. To see why, suppose she chooses door
A, and that Monty reveals door B. What is the probability that the prize is behind door C given that

door B was revealed? Bayes’ rule says we use the formula

P B| prize in C) Pr (prize in C
Pr (prize in C| open B) = r (open B prize in C) Pr (prize in )
Pr (open B)
By symmetry, we know that Pr (prize in C') = Pr (prize in A) = Pr (prize in B) = 1/3. When the prize
is in C, the probability of opening door B is 1. This is due to the fact that Monty cannot open door A

(as this is the door the contestant choose), and he cannot open door C, as the prize is there. Using the



9.3. INDEPENDENT EVENTS 150

law of total probability we get

Pr (open B)

Pr (open B| prize in A) Pr (prize in A)
Pr (open B prize in B) Pr (prize in B)

+ o+

Pr (open B prize in C) Pr (prize in C)

11 1 1 1
-z 41D =2Z,
2 3+0 3Jr 3 2

Thus
Pr (open B| prize in C) Pr (prize in C)
Pr (open B)

Pr (prize in C| open B) =

1-

;3

W=
[\]

This means that the probability of winning by switching is 2/3, and this is true also in the case that
Monty opens door C'. Since A is arbitrarily, we conclude that switching guarantees a probability of 2/3

of winning.
9.3. Independent events

We say that two events are independent if the realization of one event does not affect the probability
that the other is realized.

DEFINITION 9.3. Let A, B be two events given a probability space (£2,Pr). The events A and B are
independent if Pr (AN B) = Pr(A) Pr(B).

EXERCISE 9.14. In the library there are 10 probability books, 5 with solutions. When a student comes
to collect a book, he gets one at random. One book is lost. A student borrows a book and brings it
back after 3 days. A week later, a different student comes and also borrows a book at random. Define

the following events:

e A- the first student got a book with solutions.
e B- the second student got a book with solutions.
Are A and B independent?
Solution. Let S be the event the the lost book has solution. Thus,

Pr(A) = Pr(4]|S)Pr(S)+ Pr(A|S°)Pr(S°)
_ 41,51 1
9 2 9 2 2

One can verify that the same computation hols for Pr (B). However,

Pr(AnB) = Pr(AnB|S)Pr(S)+Pr(ANB|S)Pr(S°)
2 2
= %~%+%~%=%>%-%=Pr(A)Pr(B),
which means that the event are dependent. The intuition behind this result is interesting. Although the
students do not take book at the same time, the fact the one either got a book with solution or without,
affects the probability that the other will get a book with solutions. To make this more intuitive, try
think of what would happen had we repeated the process for many times. Would we then know what

kind of book was lost?
EXERCISE 9.15. Two fair dices are tossed. Consider the events:

e A, the result in the first dice is odd.
e B, the result in the second dice is odd.
e (', the sum of the results is odd.

(1) Prove that every two events from the above are independent.
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(2) Are A, B, Cindependent? That is, do they satisfy the equality Pr (AN BN C) = Pr(A) Pr(B) Pr (C)
?

Solution.

(1) This is proven by straightforward computation.

1
Pr(A) =Pr(B) = 2
and Pr(C) = % since C' occurs once one dice is odd and the other is even. The chances for

that are 0.25 and there are two options (for each of the coins), so the probability is half.

Pr(ANB) = i:Pr(A)Pr(A),
Pr(ANnC) = Pr(C|A)Pr(A)
_ %é:pr(C)Pr(AL

and the same result is reached when A is replaced by B. To conclude, every two events are
independent.
(2) The three events are dependent. Why?

Pr(ANnBNC) =0,

since the sum of two odd numbers is even. this means that Pr (AN BN C) # Pr(A) Pr (B) Pr (C).

EXERCISE 9.16. (Polya’s Urn) Assume there is an urn with 8 balls, 5 black balls and 3 white ones.

Whenever we take out a ball randomly, we put it back in along with 4 more of the same color.

(1) What is the probability that the first ball we take out is black?
(2) What is the probability that the second ball we take out is black?
(3) What is the probability that the 100*® ball we take out is black?

Solution.

(1) The probability is 3.
(2) Denote the event where the i-th ball is black by B;.

Pr (BQ) = Pr (BQ|Bl) Pr (Bl) + Pr (BQ|Bf) Pr (Bf)
_ 95,53 5
12 8 12 8§

and we got the same result.

(3) Since we do not want to consider all the possible cases up to the 100th stage, we try using
symmetry. Assume that the balls are numbered such that the black balls have numbers from
1 to 5 and the white ones have numbers from 6 to 8. Now assume that whenever a ball is
taken out, we put it back in along with four other balls with the same number and color. By
symmetry, we know that the probability of taking out a ball with a digiti =1,...,8 is %, since
all the numbers have the same chance of being picked. This means that the chances of taking

out a ball with a number 1 till 5, i.e., a black ball, is 2.

EXERCISE 9.17. A disease hits 1 in every 20,000 people. A diagnostic test is 95% accurate, that is, the
test is positive for 95% of people with the disease, and negative for 95% of the people who do not have
the disease. Max just tested positive for the disease. What is the probability he has it?
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Solution. We use the previously-defined notation where H means healthy, U means unhealthy, P means

a positive test, and N means a negative test.

Pr (P|U)Pr (U)

Pr(U|P) = P (P
95 1
_ 100 20,000
Pr (P|U)Pr(U) + Pr (P|H) Pr (H)
9 . _1
o 100 20,000
T 9% 1, 5 19,999
100 20,000 100 20,000
95
= ——— =0.000949.
95 +5- 19,999

In words, although the test came in positive, the chances of actually being sick is less than 0.01%.

EXERCISE 9.18. You have data that sorts individuals into occupations and age groups. There are three
occupations: doctor, lawyer, and entrepreneur. There are two age categories: below 40 (young) and
above 40 (old). You wanted to know the probability that an old person is an entrepreneur. Your grad

student misunderstands you, though, and presents you with the following information:

e 20% of the sample are doctors and 30% are entrepreneurs;
e 40% of the doctors are young;
e 20% of the entrepreneurs are young;

e 70% of the lawyers are young.

Find the probability that the an old person is an entrepreneur.

Solution. Define the following events:

e A person is an entrepreneur - F.
e A person is a doctor - D.
e A person is a lawyer - L.
e A person is young - Y.
e A person is old - O.
We need to compute Pr (E|O).
Pr(O|E)Pr (E)
Pr (O)
0.8-0.3

0.8-034+06-0.2403-0.5

24 8
24+12415 17

Pr (E|O)




CHAPTER 10

Probability functions and probability density functions

10.1. Discrete Random variables

A random variable (RV) X : Q — R is a function such that for every result w € € of the experiment,
get a number X (w). For example, we toss two fair dices and X is the sum of the results. Clearly, X
could be every natural number from 2 to 12 and the probability that X equals such a number changes.
E.g., Pr(X =2) = 3 as it occurs only when both dices land on 1, while Pr (X =7) = § (verify this!).
Usually we use random variables as tolls to compute many things, such as averages etc. A random
variable that can get a countable set of values is called a discrete random variable. The set of values

that any RV can get is referred to as its support.

10.1.1. Distributions.

Consider an experiment where we toss a fair dice. Let X be the result of the experiment. That is, X
gets any natural number from 1 to 6 with equal probabilities. The distribution Px of X is a function
that assigns every value k € R, the probability that X = k. Specifically, Px : R — [0,1] is a function
form the real numbers to [0, 1] such that Px (k) = Pr(z = k). In this example,
i, ifk=1,2,3,4,56,

Px (k) =

0, otherwise.

DEFINITION 10.1. (Distribution) For every discrete RV X, the distribution Px is a function from R
to [0,1], such that Px (k) = Pr (X = k) for every k € R.

EXERCISE 10.1. We toss two fair dices and X is the sum of their results. Find the support and the
distribution of X.

Solution. The support of X is the set {n € N: 2 <n < 12}. The distribution of X is

Pr(XzQ)z% , Pr(X:?)):%,
Pr(X:4):33—6 , Pr(X:5)=%,
Pr(X:G):% , Pr(XzﬂZ%,
Pr(X:S):% , Pr(X:9):%,
Pr()(:l()):;—6 , Pr(lel):%,
Pr(X:12):%.

10.1.2. Cumulative distribution function.
An important function regarding any RV is the cumulative distribution function, CDF, denoted by Fx
for every RV XE| The CDF F is defined from R to R such that for every k € R, Fx (k) = Pr (X < k).
That is, it sums up the values of the distribution of X up until the value &, hence its name “cumulative
distribution function”.

The CDF has three properties:
(1) limg—oo Fr (k) =1 and limg—, o F, (k) = 0.

I\When the random variable is clear from the context, the CDF is denoted by F'.

153
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(2) F, () is monotone non-decreasing.
(3) F,(:) is right-continuous.

EXERCISE 10.2. We toss three fair dices and X is the maximal value of their results.

(1) Find the CDF of X.
(2) Use the previous result to find the distribution of X.

Solution. Note that this is a symmetric sample space, and || = 63 = 216.

(1) The CDF of X is

Fx (k) = Pr(X<k)

0, k<1,
13, 1<k<?2,
23 2<Ek <3,

=515 433, 3<k<d4,
43, 4<k<5,
53, 5<k<6,
63, k> 6.

(2) We can use the previous results to compute the distribution of X.
Px (k) = Pr(X=k)
= Pr(X<k)-Pr(X<k-1)
— P (k) — Fx (k- 1)

Bl k=1,2,3,4,5,6,

0, otherwise.

10.1.3. Common discrete distributions.
There are several commonly-used RVs, and therefore their distributions are well known and categorized.
As these random variables are common, we tend to remember their properties. Most of the times we
relate to the distributions rather than thee RVs themselves. Nevertheless, we will define the RVs first,
and their distributions are deduced directly.
10.1.3.1. Bernoulli distribution. First we define the most basic random variable, which is a Bernoulli
random variable X with parameter p € [0, 1], denoted by X ~ B (p). The RV X is basically an indicator
that equals 1 if an experiment succeeds (occurs w.p. p), or 0, otherwise. A Bernoulli distribution with
parameter p is
j22 k=1,
1—p, k=0,

10.1.3.2. Binomial distribution. The next random variable is the Binomial random variable with

Px (k) =

parameters (n,p), denoted by X ~ Bin (n,p). The RV X counts the number of success in n indepen-
dent experiments where each experiment succeeds w.p. p. Therefore, A Binomial distribution with

parameters n, p is
n —k
P o) = ()t -
for every k =0,1,...,n.
10.1.3.3. Geometric distribution. Another very common random variable is the Geometric random

variable with parameter p € [0, 1], denoted by X ~ G (p). The RV X count the number of experiments

in a sequence of independent Bernoulli experiments (all with parameter p € [0, 1] ) needed to reach the
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first success. Its Geometric distribution is

Px (k)= (1-p)""'p,

for every k € N.

10.1.3.4. Poisson distribution. One random variable that can be observed in many places in our
everyday lives is the Poisson random wvariable. This random variable counts the number of events in
a given time frame (or, given some other units), when there is a fixed average rate of occurrences. A
Poisson random variable X with parameter A, denoted by X ~ Pois()), can equal any non-negative

integer, under the following Poisson distribution,

A"
PX (k) =e H’
when £ =0,1,2,.... One can prove that the Poisson distribution is derived from the binomial distribu-

tion when n — oo and np = A. Note that X is the average rate of occurrences.

10.1.3.5. Uniform distribution. The last discrete common RV we are going to discuss is the uniformly
distributed RV. The uniform random variable X with parameters a,b € Z, denoted X ~ U [a, b] equals
every number between a and b with equal probability. That is, the uniform distribution is

1
b—a+1

There are several more common distribution, such as the negative binomial, and the hyper-geometric

Px (k) = Vk=a,a+1...,b

and more. Nevertheless we will focus on these ones, and the others could be found in any probability
textbook.

EXERCISE 10.3. A drunk person is moving one step to the right w.p. p and one step to the left w.p.
1 — p. If he moves to the right, then w.p. ¢ he slides two steps to the left. Let X be his location after n
steps. Find the distribution of X.

Solution. Let Y be the number of successful steps to the right, without sliding back to the left.
Y ~ Bin(n,p(1 —q)) and

n =Y + steps right with slide + steps left.
Since a step right with a slide of two to the left is basically a step left, then
X =Y — steps right with slide — steps left.

Combining this two equations yields
X =2Y —n.
Thus,

Pr(X=k) = Pr(2Y —n=k)

- Pr(Y: ’H")
2

when k € Z, k € [-n,n], and M‘T” eN.

EXERCISE 10.4. We toss two coins until one shows “Heads” and the other “Tails”. One coin shows
“Heads” w.p. p, while the other lands on “Heads” w.p. ¢. Let X be the number of rounds.

(1) Find the distribution of X.
(2) What are the chances that the first coin (i.e., the one w.p. p) will show “Heads” in the last

round?

Solution.



10.2. CONTINUOUS RANDOM VARIABLES 156

(1) We have a sequence of i.i.d. Bernoulli experiments, where a success is reached w.p. p (1 —¢q) +
q(1 —p)in each. Thus, X ~ G (p(1 —q) +q (1 — p)).

(2) The fact that it is the last round implies that one coin fell on “Heads” and the other on “Tails”.
Denote this event by A. Denote the event where the first coin shows “Heads” in the last round
by B.

Pr(BnNA)

Pr(A)
p(1—q)
p(l—a)+q(l—p)

Pr(B|4) =

EXERCISE 10.5. A drunk person moves either one step right or one step left with equal probabilities
and independently of past steps. After a hundred steps, he is located at +10 to the right of his starting
point. Find the distribution of his first step.

Solution. The first step could be either right, +1, or left, —1. Let p be the probability that the first
step is +1. We know that until the 100th round, he made 55 steps right and 45 steps left. As all the
steps are symmetric, when randomly choosing a first step from this collection there is a 0.55 probability

of getting +1, and a probability of 0.45 of getting —1.

10.2. Continuous Random variables

A continuous random variable is a random variable whose support (that is, the set of values he can
take) is uncountable and is piece-wise convex. In other words, the support is given by a union of non-
degenerate intervals. For example, take the interval [0,1] and choose uniformly a point within this

interval. Denote its value by X. In this case, X is a continuous RV distributed uniformly on [0, 1].

10.2.1. Cumulative probability distribution and density functions.

Although continuous RVs are random variables, the fact that they can take an uncountable number of
values makes them very different from discrete random variables. First, the probability that a single
specific point is chosen is 0. In fact, when discussing continuous RVs, we do not discuss the distribution
as we previously studied, but we use a different function to describe the RVs, which is the density
function.

A continuous random variable X has a CDF, just as a discrete RV, and its definition is the same,
Fx (t) = Pr(z <t). However, when it comes to continuous RVs, the CDF is not only continuous, but
also continuously differentiable, C'*. For this reason, we can discuss its derivative f, (t) = %t(t) which is
an integrable, non-negative function whose integral on R equals 1. This function is called the probability

density function (PDF) of X. The PDF has the following properties:

(1) fx (t) > 0 for every t € R.
(2) oo [ fx (B = 1.
(3) —e fk [x (t)dt = Fx (k) for every k € R.

The support of a continuous RV is the smallest closed set such that {t e R: f(¢) > 0}.

10.2.2. Common continuous distributions.
There are a few continuous RVs whose classes are common and are important to remember.
10.2.2.1. Uniform distribution. Let a < b be two real numbers. The uniform (and continuous)
random variable between a and b, denoted by X ~ U (a,b) is a RV that can take any value in [a, b] and
whose density function is constant. That is,
1

fX (t) = m, Vt S [a,b],
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fxlt) Fx(t)

Ficure 10.2.1. PDF and CDF of a uniform distribution

and equals 0, otherwise. Hence, the CDF of X is

Fx () = Pr(

The graphs of these functions are presented in Figure [10.2.1]

10.2.2.2. Ezponential distribution. An exponential RV count the time between events that occur
according to a Poisson distribution. That is, if a Poisson RV count the number of events in a given time,
the exponential RV counts the time between events. In some sense, these RV are equivalent as each one
of them defines the other. The parameter of this RV (and distribution) is A, and the density function is
given by

fx (t) = Xe™ ™, vt >0,

and 0, otherwise. Its CDF is

Fx(t) = Pr(X <)
= _oo/ fx (s)ds
0, if ¢+ <0,

1—e M ift>0.

It is denoted X ~ Exp ()).

10.2.2.3. Normal distribution. The normal distribution is probably the most common and used
distribution of all. A RV with a normal distribution has two parameter, ¢ and o2, which will be
discussed later on. It is denoted by X ~ N (u,0?) and its density function is

1 —(t=m)?
fx (t) = 5;?62; . VteR.

When ¢ = 0 and o = 1, the normal distribution is called a standard distribution. The CDF of the
standard distribution is denoted by ® (). The graphs of these functions are presented in Figure [10.2.2

REMARK 10.1. We do not have an explicit function for the CDF of the normal distribution. The reason
for that is that such a representation does not exists and the function is computed numerically. Therefore,
in order to find the relevant probabilities we use the normal distribution table. One important property
of the CDF of the normal distribution is symmetry. That is,

B(—t)=1-(t).

This property is quite useful when using the table of the normal distribution, since it contains only

positive values and do not related to cases where ¢t < 0.
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f7(z) ®(z)

4 2 -1 0 1 2 3 Z

FI1GURE 10.2.2. PDF and CDF of a normal distribution

10.2.3. Examples and Exercises.

EXAMPLE 10.1. (Second-Price auctions)ﬂ A simple application of Leibniz’s rule comes from auction
theory. A first-price sealed bid auction has bidders submit bids simultaneously to an auctioneer who
awards the item to the highest bidder who then pays his bid. This is a very common auction form. A
second-price sealed bid auction has bidders submit bids simultaneously to an auctioneer who awards the
item to the highest bidder, just like before, but this time the winning bidder pays the second-highest
price. To model the second-price auction, suppose that there are n bidders and that bidder ¢ values the
item being auctioned at v;, which is independent of how much everyone else values the item. Bidders
do not know their opponents valuations, but they do know the probability distribution of the opponents
valuations. Bidder ¢ must choose his bid b;.
Let F;(b) be the probability that the highest other bid faced by 4, that is, the highest bid except for b;,
is no larger than b. Then F;(b) is a probability distribution function, and its density function is f;(b).
Bidder i’s expected payoff is ,

i) = [ (=00,

0

Lets interpret this function. Bidder ¢ wins if his bid is the highest bid, which occurs if the highest other
bid is between 0 (the lowest possible bid) and his own bid b;. If the highest other bid is above b; bidder
i loses and gets a payoff of zero. This is why the integral is taken over the interval [0, b;]. If bidder 4
wins he pays the highest other bid b, which is distributed according to the density function f;(b). His
surplus if he wins is v; — b, his value minus how much he pays.
Bidder ¢ chooses the bid b; to maximize his expected payoff V;(b;). Since this is a maximization problem

we should find the first-order condition:

d [
Vi(b;) = 7/ (v; — b) fi(b)db = 0.
db; Jo
Notice that we are differentiating with respect to b;, which shows up only as the upper endpoint of the

integral. Using Leibniz’s rule we can evaluate this first-order condition:

d [
0 = av; J, (vi —b) fi(b)db
bi b dbl 0

The first term is zero because (v; — b) f;(b) is not a function of b;, and so the partial derivative is zero.

The second term reduces to (v; — b;) fi(b;) because ZZ’% is simply one. The third term is zero because the

derivative 42 = 0 . This leaves us with the first-order condition

db;
0= (v; —b;) fi(b;)

Since density functions take on only non-negative values, the first-order condition holds when v; —b; = 0,

or b; = v;. In a second-price auction the bidder should bid his value.

2Taken from MUST-HAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS by William Neilson, Depart-
ment of Economics University of Tennessee — Knoxville September 2009 (©) web.utk.edu/~wneilson/mathbook.pdf
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This result makes sense intuitively. Let b; be bidder is bid, and let b denote the highest other bid.
Suppose first that bidder ¢ bids more than his value, so that b; > v;. If the highest other bid is in
between these, so that v; < b < b;, bidder ¢ wins the auction but pays b > v; more than his valuation.
He could have avoided this by bidding his valuation, v;. If b > b; or b < v;, then bidding b; does not
matter compared to bidding v;.

Now suppose that bidder ¢ bids less than his value, so that b; < v;. If the highest other bid is between
these two, so that b; < b < v;, bidder i loses the auction and gets nothing. But if he had bid his value
he would have won the auction and paid b < v;, and so he would have been better off. Again, if b < b;
or b > v;, then bidding b; does not matter compared to bidding v;. Thus, the best thing for him to do
is bid his value.

DEFINITION 10.2. (First-order stochastic dominance) For every two lotteries F' and G such that
G (z) > F (x) in every z, we say that F stochastically dominates G (also called, first-order stochastic

dominance).

EXERCISE 10.6. Let U(a,b) denote the uniform distribution over the interval [a,b]. Find conditions on
a and b that guarantee that U(a,b) (first-order) stochastically dominates U(0,1).

Solution. First we need to write down the lottery G, which is the CDF of U (0,1) and the lottery F,
which is the CDF of U (a, b).

0, z <0,
G@)=q%2, 0<z<1,
1 xz>1,
and
0, z < a,
Fz)=q4%2 a<z<b,
1 x> b.

Now, we need to observe G (z) — F (z). Clearly, if a < 0, then taking every a < x < min (0,b) yields
G(x)-F(x)=0—-F(z)<0.

Thus, a > 0. If b < 1, then every max (b,0) < z < 1 yields
G(x)—F(z)=G(z)—-1<0.

This implies that ¢ > 0 and b > 1. Let us write G (z) — F (z)explicitly.

0, z <0,
x, 0<z<a,
Gx)-F(z) = {z—42, a<z<l,
1_§7a’ 1ngba
—a
0 x >,
0, z <0,
x, 0<x<a,
_ z(b—1)+a(l—x) a<z<l
b—a ’ - ="
b2, 1<z <b,
—a
0 T > b,

and the result holds.
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EXERCISE 10.7. The time X it takes to serve a client is distributed exponentially with A = 0.5. In order
to improve the service time, the employees are being trained to speak faster. The new service time is

Y = %X + 1—10. Find the PDF of Y.
Solution. To find the density of Y, we first need to find the CDF of Y.

Fy(t) = Pr(Y<t)
1 1
= Pr{- — <
r<2X+10_t)
1
= Pr<X§2t>
5
1
= FX<2t—5>

0, if 2t — <0,
1—eM23) it -1 >0,
0, if t <

1—et+io, ift>

sk~ ==

And the density is

0, if t < 4,
fy (t) = ) 10
e, if t > 5.

EXERCISE 10.8. The time X an economist exits his work place is distributed U (7,9). The driving time
home is distributed Y = 1 + +. Find the density of Y.

Solution. We need to find the CDF of Y and then the density. Note that Y € (1 + %, 1+ %),

Fy(t) = Pr(Y <t)
1

= Pr{1+— <t
(ex=y)

0, if ﬁ <17,
— _ ti -7 : 1
= 1 9i7 5 if 7 S —1 S 9,
1, if 9 < 5,
1, if 141 <t
_ 9t—10 . 1 1
= (25 Hl+g<t<l+g,
0, if t <1+ 3.
The density is
1 : 10 8
by = Lz TEelsh sl

0, otherwise.



CHAPTER 11

Joint distributions - probability functions in several variables

11.1. Joint distributions

Until now we discussed one-dimensional RVs. Clearly, this is not the general case. One can think of
RVs in several dimensions as a vector where each coordinate is a one-dimensional RV. For example,
consider an experiment where two fair dices are tossed. Let X be the sum of the results and let Y be the
maximal result between the two. The support of (X,Y)is {(i,j) € N*: i =2,3...,12, j =1,2,...,6}.
The joint distribution Px y of (X,Y) is a function such that for every k, € R?

Pxy (k) =Pr(X =k Y =1).

The marginal distribution of X is the distribution of X, and it could be derived from the joint distribution

by summing over the support of Y,

Pr(X=Fk)=Y Pr(X="FkY=1).
l

The same holds for the marginal distribution of Y. This is true for the discrete case. For the continuous
case, we can discuss the joint distribution of (X,Y’) when relating the the CDF

Fxy (k1) =Pr(X <k Y <I).
In this case, the density function is fx y (k,1) = %. Similarly to the discrete case, we can use

integration to compute the marginal density of X by

(k) = / " ey (60 dl,
and " -
Fx@= [ [ fxy ot da,

The same holds for Y.
The conditional distribution of X given Y =1 is given by

fx,v (k1)
kll) = _
when the RVs are continuous, and
Pxy (k1)
P k|l) = ————,
X|Y( | ) Py (l)

when the RVs are discrete.
In case A is an event with positive probability, then conditional distribution of a continuous random

variable X given A is

k
fxia (k) = léf((A; “lgx=rycay

11.2. Independent random variables

DEFINITION 11.1. Two random variables X,Y are independent if for every k,! € R they satisfy the
equality
fX,Y (kvl) = fX (k) fY (l) 5

161
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in case the RVs are continuous; And the equality
Pxy (k,1) = Px (k) Py (1),

in case the RVs are discrete.

Note that we the above equalities must hold for every k and every [, and not just for some values.

The intuition behind the definition of independence of RVs is as follows. When two RVs are independent,
the fact that one of them is fixed, does not change the distribution of the other. Basically, when we fix
one of them, the other maintains the same values and probabilities it already had, and is not affected

in any way.

EXERCISE 11.1. The joint distribution of X Y is given in the following table:
| x\v |v=1|y=2]y=3|y=4|y=5]

X=51 001 0.03 0.17 0.00 0.00
X =201 0.03 0.05 0.04 0.2 0.12

X =30 0.11 0.04 0.02 0.07 0.11
Answer the following questions:

(1) Find Pr (X = 30), and Pr (X € [5,20],Y € [2,4]).
(2) Given that X > 20, find the probability that ¥ < 2.
(3) Determine whether the events A = {X < 20} and B = {Y € {1,4}} are independent.

Solution.

(1) The probability Pr (X = 30) could be computed by summing over all the values of ¥ when

X = 30.
5
Pr(X=30) = » Pr(X=30,Y=y)
y=1
= 0.11+0.04 4 0.02 + 0.07 + 0.11
= 0.35.
Pr(X €[5,20],Y €[2,4]) = 0.03+0.17 4 0.05 + 0.04 + 0.2
= 0.49.

(2) We need to compute Pr (Y < 2|X > 20).

Pr(Y <2,X > 20)
Pr (X > 20)
0.05+0.03 +0.04 + 0.11
Pr (X = 20) + Pr (X = 30)
0.23 23
0.79 79
(3) We need to find the probability of the following events: A, B, and AN B.

Pr(Y <2|X >20) =

Pr(A) = Pr(X <20)

— 1—Pr(X =30)
= 0.65,
Pr(B) = Pr(Y =1)+Pr(Y =4)

= 0.15+ 0.27 = 0.42,

w
=
N
D)

=
I

Pr(Y € {1,4}, X < 20)
0.04 + 0.2 = 0.24.
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Hence,
Pr(ANB)=0.24 #£0.273 =0.42-0.65 = Pr(A) - Pr (B),

which means they are dependent.

EXERCISE 11.2. The joint distribution of X, Y is given in the following table:
| X\Y [y=1]|y=2]y=3]|Y=4]

X=1]| 0.02 0.02 0.21 0.02
X =2 0.03 0.01 0.05 | 0.06
X=3]| 0.01 0.01 0.01 0.06
X =41 0.00 0.05 | 0.00 | 0.12

X=5] 012 | 0.06 | 0.00 | 0.14
Answer the following questions:

(1) Which event is more likely A = {X € [3,4]} or B={Y <2, X =5}7

(2) Find the probability that Y # 3.

(3) Compute Pr (Y =2|X =5) and Pr (X > 3|Y € {1,4}).

(4) Determine whether the events A = {X € {1,3}} and B = {Y € {1,2,4}} are independent?

Solution.

(1) We find the probability of both events by summing over the relevant cells.
Pr(4A) = 0.01+0.0140.01+ 0.06+ 0.05+ 0.12 = 0.26,

Pr(B) = 0.12+0.06 =0.18,

and so event A is more likely to occur.
(2) Using the complement of Y # 3 yields

Pr(Y #3) = 1-Pr(Y =3)
— 1—(0.21+0.05+0.01)
= 0.73.

(3) These probabilities are easily computed using the definition of conditional probability.
Pr(Y =2nX=15)
Pr(X =5)
0.06

0.06 + 0.12 + 0.14
0.06 3

032 16

Pr(Y =2/X =5) =

Pr(X >3NnY € {1,4})
Pr (Y €{1,4})
0.45 45
0.58 58
(4) We need to find the probability of the following events: A, B, and AN B.

Pr(X >3]Y €{1,4}) =

Pr(A) = Pr(X e{1,3})=0.36,
Pr(B) = Pr(Y e{1,2,4})=0.73,
Pr(ANB) = Pr(Y e{1,2,4},X €{1,3})=0.14.

Hence,
Pr(ANB)=0.14 #£0.2628 = 0.73-0.36 = Pr (A) - Pr (B),

which means the events are not independent.



CHAPTER 12

Moments

Moments are types of averages of RVs. As every random variable X is a stochastic function (gets values
with certain probabilities), one can discuss its average value, or the average value of X2 and so on. A
moment of degree k is the average value of X* and we will now see how it is computed.

12.1. Expectation
The expected value of a random variable X, denoted E [X] is

YpkPr(X =k), X is discrete,

Blx] = .
[ tfx (t)dt, X is continuous.

In general, the expectation of a RV is the weighted average of the values he gets, times the probabilities
of getting these values.

The expectation has the important property of linearity. For every RVs z,y and a real number ¢ € R,

E[X+Y]|=E[X]+E[Y] , E[cX] = cE[X].

EXERCISE 12.1. Find the expected value of the following random variables:

Solution. We will compute these expected values one by oneE|

X ~ Ula,bl

b
E[X] = ) kPr(X=k)
k=a

You can find different and additional computations of expected values online or in most probability textbooks.
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Bin (n,p)

n

> kPr(X

k)
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X ~ Ezp(\)
E[x] — /Rl-cfx(k)dk:
= /Ookke_’\kdk
0

e—)\k' 1 [e’e} N
J— . s —_ -
= )\Kk A>|O+A/0 e dk}
= / e M dk
0

1 e 1
= —Xe )\k|0 = )\
X ~ N(01)
E[X] - /kdk
R
/ook L =20k
= e
Lo V2w

L /Ook%kzdk
—— e
Ver J s
= O,

—k2 . . . . . .
as ez is an even function (symmetric around & = 0) and k is an odd function (asymmetric around

_ k2
k = 0), hence ke™ is an odd function and its integral on a symmetric interval around k£ = 0 is 0.

ExamPLE 12.1. (Choice between lotteries)ﬂ Suppose that an individual is choosing between two
lotteries. Lotteries are just probability distributions, and the individual wishes to maximize its expected
utility with an increasing utility function u (z), where z is an mount of money given in the lottery.

Assume that the amount of money in every lottery is bounded between ¢ and b such that b > a.

EXERCISE 12.2. Given a lottery F' (in other words, F' is a CDF over amount of money), what is the
objective function of the decision maker? That is, what is the function that the decision maker wishes

to maximize?

Solution. The objective function of the decision maker is his expected utility given by

/ab u(x)F' (x)dz,

where a is the lowest possible payoff from the lottery, b is the highest possible payoff, u (x) is a utility
function defined over amounts of money, and F’(x) is the density function corresponding to the CDF
F(z). We assume that the decision maker prefers to get more money than less, meaning u is non-

decreasing and v’ (z) > 0.

EXERCISE 12.3. The individual can choose between lottery F'(z) and lottery G(x). Assume that F (x) <
G (z) for every x. Prove that the decision maker would choose F over G.

PROOF. In order to answer this question, we prove that

/abu(x)F'(x)dx — /abu(x)G’(x)dx >0,

2Taken from MUST-HAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS by William Neilson, Depart-
ment of Economics University of Tennessee — Knoxville September 2009 (©) web.utk.edu/~wneilson/mathbook.pdf
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which implies that the by choosing F' instead of G, the decision maker is maximizing its objective

function. Thus, using integration by parts

/ab u(x)F' (x)dx — /ab w(x)G' (z)dr = /ab u(z) [F'(z) — G (z)] dz

b
= (u(@)[F(z) - G (2)]) Z*/ u'(z) [F(x) — G ()] do

b
= u®) [F(b) = G (b)] —u(a) [F(a) = G(a)] = / u'(z) [F(z) = G ()] do

b
u(b) [1 — 1] — u(a) [0 — 0] — / o' (z) [F(z) — G (z)] dx

b
= / u'(2) [G(z) — F ()] dx

> 0

7

when the last inequality follows from the non-negativity of v’ (x) and G () — F (x) in every . O

EXERCISE 12.4. Your annul income depends on the number of products X you are able to sell. There are
5 companies interested in your product, each will eventually buy it with probability 0.25 (independently
of the other firms). The retail price of the product is 1 million dollars and your annul costs are fixed,
and equal $500,000. Find the expected annual income.

Solution. Let Y denote the annual income. Clearly, Y = 105- X —5-10°. In addition, X ~ Bin (5,0.25),
which implies E [X] = %. Hence, by the linearity of the expectation we get

E[Y] = 10°- E[X]-5-10°
5
= 10°. > —5.10°
4
10
= 5-10°( ——1
5-10 (4 )
= 750, 000.

12.1.1. The expected value of a function of a RV.
In many cases, we do not know the distribution of the RV whose expected value we wish to compute.
Although this could be problematic, there are cases in which the computation is not too difficult. Fix a
random variable X and let Y = g (X) be a function of X. That is, g : R — R is a real-valued function,
and so Y = g (X) is a new random variable. In this case, the expected value of YV is

Yrg(k)Pr(X =Fk), X is discrete,

E[Y] =
[ g(t) fx (t)dt, X is continuous.

Note that the distributions, Px and fx, are taken w.r.t. the random variable X, and not Y. Thus, in
cases that the distribution of X is known and Y is a known function of X, finding the expected value

E[Y] is just a direct computation.

12.1.2. Conditional expectation.
Another value we should consider is the conditional expectation. The conditional expectation of X given
Y =1is
>, kPx)y (k|l),  when the RVs are discrete,

EX|Y =1 =
Jg kfx|v (k|l) dk, when the RVs are continuous.
12.1.3. The law of iterated expectation.
Conditional expectation is useful just as the law of total probability. Its helps us computing the expected
value of a RV by conditioning on another RV.
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THEOREM 12.1. (The law of iterated expectation) Let X,Y be two RVs with finite expected values
such that the expected value of X|Y ewists and is also finite. Then,

E[X]=E[E[X|Y]].
Note that E [X]Y] is a function of Y. Thus, the expected value of E [X]Y7] is taken over the values of Y.

EXERCISE 12.5. There are two random variables X,Y with a joint probability distribution given in the

following table. Show that the law of iterated expectation works for the random variable X.
(Pr(X=kY=0D[l=1]1=2|Pr(X=0k)]

k=1 0.1 0.3 0.4
k=2 0.2 0.1 0.3
k=3 0.1 0.2 0.3
Pr(Y =1) 0.4 0.6
Solution. Lets begin by computing the expected value of X and the expected value of X|Y = [ for
every | = 1,2.
E[X] = 1-04+4+2-03+3-03=1.9.
0.1 0.2 0.1
EX|Y =1 = l-oj+2~oj+3-0172,
0.3 0.1 02 11
EX|Y=2 = 1-—+2-— — =
X1 ] 0.6+ 0.6Jr3 06 6
Thus,
EEX|Y]] = EX|]Y=1PrY=1)+E[X|Y =2]Pr (Y =2)
11
= 204+ —-06
6
8§ 11
= —+—=19=E[X
10 " 10 ) X1

as required.

EXAMPLE 12.2. (Calculating the benefit of a search)ﬂ Consider the following search process. A
consumer, Max, wants to buy a particular digital camera. He goes to a store and looks at the price.
At that point he has three choices: (i) buy the camera at that store, (ii) go to another store to check
its price, or (iii) go back to a previous store and buy the camera there. Stores draw their prices P

independently from the distribution F(p) given by

170, w.p. 0.1,

180, w.p. 0.4,
P= P

190, w.p. 0.3,

200, w.p. 0.2.

EXERCISE 12.6. We want to answer the following question: If the lowest price so far is ¢, what is the

expected benefit from checking one more store?

Solution. Lets begin by answering this in the most straightforward way possible. Suppose that ¢ = 200,
so that the lowest price found so far is the worst possible price. If Max searches one more time there
is a 10% chance of finding a price of $170 and saving $30, a 40% chance of finding a price of $180 and
saving $20, a 30% chance of finding a price of $190 and saving only $10, and a 20% chance of finding
another store that charges the highest possible price of $200, in which case the savings are zero.
The expected saving is

0.1-304+04-204+03-10+0.2-0=14.

3Taken from MUST-HAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS by William Neilson, Depart-
ment of Economics University of Tennessee — Knoxville September 2009 (©) web.utk.edu/~wneilson/mathbook.pdf
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When ¢ = 200, the expected benefit of search is $14. \

Now suppose that ¢ = 190, so that the best price found so far is $190. Max has a 10% chance of finding
a price of $170 and saving $20, a 40% chance of finding a price of $180 and saving $10, a 30% chance of
finding the same price and saving nothing, and a 20% chance of finding a higher price of $200, in which

case he also saves nothing. The expected saving is
0.1-204+04-1040.3-0+0.2-0=6.

When the best price found so far is ¢ = 190, the expected benefit of search is $6.
Finally, suppose that ¢ = 180. Now there is only one way to improve, which comes by finding a store
that charges a price of $170, leading to a $10 saving. The probability of finding such a store is 10%, and
the expected saving from search is $1.
So now we know the answers, and lets use these answers to figure out a general formula, specifically one
involving conditional expectations. Note that when Max finds a price of p and the best price so far is
q, his benefit is ¢ — p, in the case the new price p is lower than the old price q. Otherwise the benefit is
zero because he would be better off buying the item at a store hes already found. This "if" statement
lends itself to a conditional expectation. In particular, the "if" statement pertains to the conditional
expectation E[g— P|P < ¢], where the expectation is taken over the random variable P. This expression
tells us what the average benefit is, provided that the benefit is non-negative. The actual expected
benefit is

Pr(P <q)Elg— P|P <],

which is the probability that the benefit is positive times the expected benefit conditional on the benefit
being positive. Lets make sure this works using the above example. In particular, lets look at ¢ = 190.
The expected benefit is

Pr(P < 190)E[190 — P|P < 190] = 0.5-[(190 — 180) Pr (P = 180|P < 190)]
+ 0.5-[(190 — 170) Pr (P = 170|P < 190)]
_ o [10. Pr(180) ~_ Pr(170)

Pr (P < 190) Pr (P < 190)

= 10-0.4+20-0.1=6,

which is exactly what we found before.

The conditional expectation lets us work with more complicated distributions. Suppose that prices are
drawn independently from the uniform distribution over the interval [150,200]. Let the corresponding
distribution function be F(p) and the density function be f(p). The expected benefit from searching at

another store when the lowest price so far is ¢ is

Pr(P<q)Elg=PIP <d = F(Q)/lzo[q—p]j;(é))dp
= /q l9 =l (p)dp-
150

To see why this works, look at the top line. The probability that P < ¢ is simply F(q), because that
is the definition of the distribution function. That gives us the first term on the right-hand side. For
the second term, note that we are taking the expectation of ¢ — p, so that term is in brackets. To
find the conditional expectation, we multiply by the conditional density which is the density of the
random variable p divided by the probability that the conditioning event (P < ¢) occurs. We take the
integral over the interval [150, ¢] because outside of this interval the value of the benefit is zero. When
we multiply the two terms on the right-hand side of the top line together, we find that the F(q) term

cancels out, leaving us with the very simple bottom line. Using it we can find the net benefit of searching
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at one more store when the best price so far is $182.99:

q 182.99 1
/ lg — plf(p)dp = / [182.99 — p] - —dp = 10.883.
150 150 50

12.2. Variance

The next moment we will discuss is the second moment. The variance, V (z) (or, Var (X)) of a random
variable X is V (z) = E {(X —E [X])z} . In words, it is the expected value of the new RV (X — E (X))?,
which defines the distance between a RV and its average. Therefore, the variance is the average distance
of a random variable and its expectation. Another way to denote the variance of a random variable X
is 0% when ox = /V (X) is called the standard deviation of X.

The variance us a parameter that measures deviations of a RV from the expected value. When a RV
gets most of its value in the same area, e.g., a constant RV, then its variance would be low. For example,

assume that X = ¢, a constant RV. In this case, E [X] = ¢, and
V(X)=E [(X - 0)2} —E [(c - 0)2} = 0.

On the other hand, if X has a wide range of values, then its variance will grow significantly.

The variance is not linear, however there are a few important properties it poses:

(1) For every random variable X and real numbers a,b € R, V (aX + b) = a®*V (X).
(2) If X,Y are independent, then V(X +Y) =V (X)+V (V).

In most cases, the easiest way to compute the variance V (X) of a random variable X is by computing
its expected value E[X], and the expected value of X2. These two values generate the variance in the

following manner,

V(X) =

when the forth equality follows from the fact that E[X] is a number which implies E[XE [X]] =
E [X]E [X] as the expectation is linear.

12.2.1. Variance of known distributions.
In the following table you can find a list of known distributions and their variances (along with other
properties we discussed). You could derive these values yourselves by straightforward computation (or

found it online, or in most probability textbooks).

’ Distribution ‘ Support ‘ probability \ density ‘ Expectation ‘ Variance ‘
B(p) k=0,1 Px(1)=p p p(1-p)
Bin (n,p) k=1,2,....n | Px(k)=()p"(1 —p)"F np np (1 —p)
G (p) k €N\ {0} Px(k)=(1-p"'p 1 =
Pois (\) ke NuU{0} Px (k) = e AT A A
2
Ula,b) |k€a,a+1,....b Px (k) = 52 bta (b—atl)1
_ 1 b+a (b—a)?
U (a, b) ke [a, b] fx (k) b—a 2 12
Exp(\) k € [0, 00) fx (k) = de™?F % %
N (1, 0?) EeR fyx (k) = 2;0264';;2“) B o2
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EXERCISE 12.7. Suppose that the random variable X has the following distribution:

—14, w.p. 0.02,

—6, w.p. 0.10,

-2,  w.p. 0.15,

Px (k) =

2, w.p. 0.40,

4, w.p. 0.23,

7, w.p. 0.10.
Find the mean and variance of X.
Solution. We can compute both values directly.

E[X] = -14-002-6-0.1—2-0.15

+ 2-04+4-023+7-0.1=1.24.

VIX] = E[(X-124)]

= (—14—1.24)*.0.024 (-6 —1.24)> . 0.1 + (=2 — 1.24)* - 0.15
+ (2-1.24)%-04+ (4—1.24)>-0.23 + (7— 1.24)> - 0.1 = 16.762.

EXERCISE 12.8. Consider a random variable X with PDF fx (k) = 2k on [0, 1].

(1) Find the CDF of X, and prove that it is a CDF.

(2) Find the mean and variance of X.

Solution.

(1) We can find the CDF by integrating the density function.

Fx (k)

k
[ fx (t)dt
I

0dt, if k<0,

= [Fotat, ifkel0,1],
oy 2tdt, it k> 1,

0, ifk<0O,
= =k ifkel01],
1, ifk>1.

We can see the it follows the required properties as limg_,o0 Fy (k) = 1, limg—, oo Fy (k)

and F, () is a continuous, monotone, non-decreasing function.

(2) A direct computation yields

E[X] =

1
/ k- 2kdk
0
1
2 / k2dk
0

171
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1
E[X?] = /k:2-2kdk
0
1
= 2/ k3dk
0
_ 1
= 3
and so
VIX] = E[X*]-(E[X])
_ 1 4
T2 09
_ 1
18

EXERCISE 12.9. Prove that for every random variable X and real numbers a,b € R,

V (aX +b) = a*V (X).

Solution. Fix a random variable X and real numbers a,b € R. Note that E [az + b] = oE [X] + b, thus

V (aX +1b) E[mx+b—me+mf]
- E[@X+b—aEuq—mﬂ
- E [aQ (X —E [X])Q}
— o’E [(X _E [X])z]
= a’V(X).
EXERCISE 12.10. Suppose that the random variable X takes the values 6 and y with equal probabilities

dV(X)
dy

(and only these values). Find the derivative

Solution. First we need to compute the variance V (X).

6+y
E[X] = 77
) 36 + y?
Blx?] - =22,
V[x] = E[X*] - (E[X])’
_364+y? 36+ 12y +y?
- 2 4
_ 72+ 2y — 36 — 12y — /2
- 4
0 36+y7 —12y
= —
_ (y-6)’
_ (2) .
Thus,
dV(X)Q(y—G).ly—G
dy 2 2 2

12.2.2. Covariance.

The covariance of two random variables X, Y is defined by

Cov (X,Y)=E[XY] - E[X]|E[Y].
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The covariance is significant when trying to compute the variance of a sum of RVs. Consider the random
variables X1,...,X,, then

V( n Xi) _ i:V(Xi)—an:ZCOV(Xin)

i=1 j#i
n n
= ) V(X)+2) ) Cov(X;X;).
i=1 i=1 j<i

The covariance has the following properties. Fix two random variables X,Y.

(1) For every real numbers a,b € R, it holds that Cov (aX +b,Y) = aCov (X,Y).
(2) Cov (X,Y)=Cov (Y, X).
(3) Cov (X, X)=V(X).

DEFINITION 12.1. (Correlation) Two random variables X, Y are uncorrelated if Cov (X,Y) = 0.

In other words, two RVs are uncorrelated if E[XY] = E[X]E[Y]. Note that two uncorrelated RVs,
does not mean they are independent. Nevertheless, as the following lemma states, the converse is true.

LemMmA 12.1. If X, Y are independent, then they are also uncorrelated.

12.2.3. The correlation coefficient.
One of the main uses of the covariance is the “Pearson’s correlation coefficient”, also know as "the
correlation coefficient”, p. This coefficient is defined for any two non-constant RVs as follows. Fix two

random variables X, Y’ the correlation coefficient p (X,Y’) is given by

(X,Y) = Cov (X,Y)  Cov(X,Y)
P = N VYY) oxoy

The Pearson correlation coefficient is defined only if both of the standard deviations are finite and
nonzero. One simple property, derived from the Cauchy—Schwarz inequality, is that |p(X,Y)] < 1. In
addition, since the covariance is symmetric, it follows that the correlation coefficient is symmetric. The
Pearson correlation coefficient is a kind of measurement for the linear relation between two random

variables:

e The Pearson correlation equals 41 in the case of a perfect direct (increasing) linear relationship
(correlation). That is, in case Y = aX + b, when a,b € R and a > 0.

e The Pearson correlation equals —1 in the case of a perfect decreasing (inverse) linear relation-
ship (anti-correlation). That is, in case Y = aX + b, when a,b € R and a < 0.

e The Pearson correlation equals some value between —1 and +1 in all other cases, indicating
the degree of linear dependence between the variables. As it approaches zero there is less of a
relationship (closer to uncorrelated). The closer the coefficient is to either —1 or 1, the stronger

the correlation between the variables.

If the variables are independent, Pearson’s correlation coefficient is 0, but the converse is not true because
the correlation coefficient detects only linear dependencies between two variables. For example, suppose
the random variable X is symmetrically distributed about zero, and Y = X?2. Then Y is completely

determined by X, but their correlation is zero, meaning they are uncorrelated.

EXERCISE 12.11. There are two random variables X, Y with a joint probability distribution given in the

following table.
(Pr(X=kY=0)[lI=6|1=8][1=10]

k=1 0.2 0 0.2
k=2 0 0.2 0
k=3 0.2 0 0.2

Determine whether the RVs are independent? Correlated? Are these results consistent?
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Solution. The RVs are dependent since Pr (X =1)Pr(Y =8) > 0 =Pr (X =1,Y = 8). However, they

are uncorrelated as

E[X] = 04-14+02-2+04-3=2,
E[Y] = 04-6+0.2-8404-10=38,
E[XY] = 02(6+10+ 16+ 18+30) =0.2-80 = 16
4
Cov (X,Y) = E[XY]-E[X|E[Y]

= 16—-16=0.
The two result are consistent, as a Pearson’s correlation coefficient of 0, does not imply independence.

EXERCISE 12.12. Assume you got 5 cards in your hands, number from 1 to 5, in a random order. Let
X be the number of the top card and Y be the number of the bottom one.

(1) Find the correlation coefficient between X and Y.
(2) Let W = X +Y. Compute the correlation coefficient between X and W.

Solution. We start with the first question. By symmetry both RVs have the same distribution, namely
a uniform distribution such that X ~ Y ~ U[1,5]. Also, using symmetry, we can describe the joint
distribution of these RVs as follows

X\Y |y=1|v=2[y=3|Y=4]Y=5] Marginal of X

X=1 0 % | % | m | m 5

X=2 3 0 % | 3% | m 5

X=3 % | 0 % | 5

X =4 % | % | m 0 3 5

X=5 % | % | 3% | m 0 5
Marginal of Y % é % é é

Clearly, the probability Pr (X = k,Y = k) equals zero as the tom card and bottom card cannot be the
same. And, e.g., the probability of Pr (X =1,Y = 2) is computed as follows:

PriX=1,Y=2) = Pr(Y=2[X=1Pr(X=1)
11 1
T4 5 20

when the second line holds since the probability of Y = 2 when the top card is one, is 0.25, by symmetry.
In order to compute p (X,Y") we need to find the variances of both RVs and the covariance. The variance

is given by the know formula

b—a+1)’-1  (5-1+1)°-1
12 B 12
24
To12

= 2=Var(X)=Var(Y).

The covariance could be computed directly.

1
E[XY] _ [243+4+5+6+8+10+12+15+20]- - =85,
541
E[X] = E[Y] - %:3,

Thus,
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Now we can use this result to answer the second question.
Cov(X,W) = Cov(X,X+Y)
= Cov(X,X)+Cov(X,Y)
= V(X)+Cov(X,Y)
= 2-05=1.5.
In addition,
V(W) = V(X+Y)
= VX)+V(Y)+2Cov (X,Y)
= 242+42(-0.5)

= 4-—-1=3.
Thus,
Cov (X, W
VV X))V (W)
_ 5 1.3
V2.3 2 2

EXERCISE 12.13. There are two random variables X, Y with a joint probability distribution given in the

following table.
| Pr(X=kY=0)[i=10]1=20]1=30]

k=1 0.04 0 0.20
k=2 0.07 0 0.18
k=3 0.02 0.11 0.07
k=4 0.01 0.12 | 0.18
1) Construct a table of the joint CDF.

2
3
4
5)
6

Find the marginals of both RVs.

Find the conditional distribution Pry/y (k|20).

Find the mean of Y and the conditional mean of X given Y = 20.
Are these RVS independent?

Verify the law of iterated expectation for the mean of X.

(1)
(2)
(3)
(4)
(5)
(6)

Solution.

(1) The joint CDF could be computed directly by summing up the relevant cells in the previous

table. Thus,
| Pr(X=kY=0D[1=10]1=20]1=30]
k=1 0.04 0.04 0.24
k=2 0.11 0.11 0.49
k=3 0.13 0.24 0.69
k=4 0.14 0.37 1.00
(2) The marginals are:
0.24, k=1,
0.25, k=2,
Pr(X =k) =
0.20, k=3,

0.31, k=4.
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0.14, 1 =10,
Pr(Y=1)=1<023, =20,
0.63, [ =30.

(3) We use the definition of conditional probability in order to compute Prxy (k|20).

Pryy (k[20) = Pr(X = kY =20)
_ Pr(X =kY =20)
Pr (Y = 20)
o5, k=1,
_ 535, k=2,
ol k=3,
012 k=4,
0, k=1,
_Jo, k=2,
35, k=4

(4) Using the marginal of Y we get
E[Y]=0.14-10+0.23-20 + 0.63 - 30 = 24.9.

Using the previous question we get

E[X|]Y =20 = 0-140-24 .34 2.4
23 23
81
= =

(5) No, they are dependent as
Pr(X =2Y =20)=0+#025-023=Pr(X =2)-Pr(Y =20).
(6) First we compute the mean of X directly.
E[X]=1-024+2-0254+3-0.20+4-0.31 = 2.58.

Now we need to compute E [X|Y = {] where | = 10, 20, 30.
1-004+2-0.07+3-0.02+4-0.01

E[X|Y =10] = 014 2,
EXY _20 — 1-0+2.0+5,2.?()).11+4-0.12:3.52’
EIXY —30 — 1-0.2+2-0.1éo+6§~0.07+4.0.18:2.36’
hence .
E[X] = E[E[X|Y]

0.14-240.23-3.52 +0.63 - 2.36 = 2.58,

and it works.

EXERCISE 12.14. There are two random variables X, Y with a joint probability distribution given in the
following table.
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(Pr(X=kY=0)[i=3]1=8][1=10]

k=1

0.03

0.02

0.20

k=

0.02

0.12

0.05

k=3

0.05

0.01

0.21

k=4

0.07

0.11

0.11

1

Find the marginals of both RVs.
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)
2) Find the conditional distribution Y| X = 3.
3) Find the means and variances of both RVs.

) Find the covariance Cov (X,Y).

) Find the correlation coefficient of both RVs.

)

Use the law of iterated expectation to compute the mean of X.

4
b}

(
(
(
(
(
(6

Solution.

(1) The marginals are

0.25, k=1,

0.19, k=2,
Pr(X =k) =

0.27, k=3,

0.20, k= 4.

0.17, k=3,
Pr(Y =1)=140.26, k=S5,

0.57, k= 10.

(2) The conditional distribution is
Pr(X=3Y =1

Pr(Y =[X=3) =

Pr(X =3)
808 =3,
= (0L 1=38,
o2l 1 =10.
(3) The means are E[X] = 2.6, E[Y] = 8.29. The variances are V (X) = 1.32, V (Y) = 6.45.
(4) The covariance is Cov (X,Y) = —0.514.
(5) The correlation coefficient is —0.176.
(6) We need to compute E [X]Y =[] where [ = 3,8, 10.

1-0.03+2-0.02+3-0.05+4-0.07

E[X|]Y =3 = 2.94
(X ] 01T ,
1-0.02+2-0.12 -0.014+4-0.11
E[X|Y =8 — 0.0242-0.1243-001+4-0 _ 981,
0.26
1-02+2-0. -0.214+4-0.11
E[X|Y —=10] — 02+2-005+3-0214+4-0 — 2.0,
0.57
hence
E[X] = E[E[X|Y]]

0.17-2.9440.26 - 2.81 + 0.57 - 2.4 = 2.6,

and it works.

EXERCISE 12.15. Let Fx (t) be the uniform distribution on [a, b] and let ¢ € (a,b). Show that Fx (¢|X < ¢)

is the uniform distribution on [a, c|.
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Solution. We can use the definition of conditional distribution such that

Fx(t|X§C) =

and we got a uniform distribution on [a, c].

Pr(X <t|X <¢)
Pr(X <t,X <g¢)

Pr(X <e¢)
0, t<a,
Pxed, 0St<e
Pixed >0
0, t<a,
t—a
e _ t—a

=2 = a<t<eg,
a

[}
)

o
|

o

e

—_

t>c,

EXERCISE 12.16. Consider the tables of probabilities

(Pr(X=kY=0]i=10]1=20]

k=—1

0.1 a

k=41

0.3 b

What values a, b must take such that X,Y are independent?

Solution. In order for these RVs to be independent, we need to make sure that

for every k = +1 and for every [ = 10, 20. Therefore, we get the following equalities.

Which implies that

We can verify that the other two equalities hold given these values

is 1.

Pr(X=kY=0)=Pr(X=5kPr(Y =10

Pr(X =—1,Y = 10)
0.1

Pr(X =+1,Y = 10)
0.3

Pr(X =—1,Y = 20)

a

Pr(X =+1,Y = 20)
b

0.25
0.75
a

b

Pr(X =-1)Pr (Y =10)

(0.14a)-04.

Pr(X = +1)Pr (Y = 10)

(0.3+1b)-0.4.

Pr(X =-1)Pr (Y = 20)

(0.1+a) (a+d).

Pr(X =+1)Pr (Y = 20)

(0.34b)-(a+b).

0.1+ a,
0.3+ 0,
0.15,
0.45.
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. Note that the sum of probabilities



CHAPTER 13

The Central Limit Theorem (CLT)

The central limit theorem (CLT) is probably the most popular and commonly-used theorem in proba-
bility theory. Its strength and significance comes from the fact that we can make very few assumptions
on a set of RVs, and still get a very good approximation of their average.

13.1. Laws of large numbers

Before we discuss the CLT, we start we a simpler theorem, called the law of large numbers.

Let {Xn},cn
random variable X,,, and get a number z,,. Denote by 4, the average of the first n samples. Assume

be a sequence of independent and identically distributed (i.i.d.) RVs. We sample each

that the expected value of every RV is u. Since the RVs are i.i.d., the expected value of the average n
RVs is also p. The basic law of large numbers states that @, — p as n — oo with probability 1.

THEOREM 13.1. (The Weak Law of large numbers) For every ¢ > 0,

lim Pr(|a, —p| <e) =1

n—oo
The weak law states that no matter how small € is, eventually the average sample is close tox by no more

than e. Basically, we see that, independently of the distribution of the RVs, their average converges to

the expectation.

13.2. Central Limit Theorem

The CLT improves the result of the weak law of large numbers, in the sense that it tells us how the
average of the RVs is distributed.

First, we define the standard normal distribution. Let Z ~ N (0,1) be a normally distributed RV, with
mean g = 0 and standard deviation ¢ = 1. Denote its CDF by ®. That is, for every ¢t € R,

Pr(Z<t)=®(1).
For every set {X,},y of ii.d. RVs with finite expectation E [X,,] = p and finite variance V (X,,) =

02 > 0, define the standardized RV Z,, as Z,, := )57;;“ when X, = %Z?:l X,.

THEOREM 13.2. (The Central Limit Theorem) If {X,.}, .y is a sequence of i.i.d. RVs with finite
expectation E [X,)] = u and finite variance V (X,,) = o2, then

lim Pr(Z, <t)=®(t).

n—00

In words, the distribution of the standardized RV converges to the standard normal distribution. Or,

equivalently, Z, ~ Z as n — oo. Note that this result is also independent of the distribution of X, .

REMARK 13.1. Usually, we cannot make an infinite number of samples. Therefore, we use the CLT’s
approximation when n > 30. When the number of samples is at least 30, the approximation is sufficiently

accurate.

EXERCISE 13.1. A financial tool gives any investor the following returns (per day) for each dollar invested

10, w.p. 0.4,
0.1, w.p. 0.6.

X =

179
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That is, after a day, the investor either gets back $10 for every dollar invested (w.p. 0.4), or just 10
cents for every dollar invested (w.p. 0.6). John invests $10,000. What is the probability that after 150
days he will have more than $17

Solution. Denote by X the amount of money John has after 150 days. Let X; be the return on day

i=1,...,150. Thus,
150

X = 104HX1-.
i=1

Taking log;, (-) on both sides gives

150
logyo (X) = logq, <104 HX1>
i=1
150
= logy, (10*) + logy, (H Xi)
i=1
150
i=1
Computing the expected value and variance of log,, (X;) yields
E[log;, (X;)] = 1-04+(—1)-0.6=—0.2,
E [log}, (X;)] = 1:04+1-06=1,
Varlog,y (X)] = E [log, (X:)] — (E [logyo (X:)))* = 0.96.

Thus,

Pr(X >1)

Pr (logy (X) > logy, (1))

150
= Pr (4 +) logy (X;) > 0)
=1
150
= Pr (Z log,o (X;) > 4)
=1

| Lo 4
- Pr|— )= (~0.2) > —— — (—0.
Y<15Oi_2110g10(Xz) (-0.2) > 150 (02)>

150
= Pr Flo > o1 10810 (X3) +0.2 - 77*25 +0.2
\/m \/m

V150 V150
~ Pr (Z15(] > 217)

= 1-(2.17) = 0.015.

EXERCISE 13.2. On a roulette in a casino there are 38 numbers: 18 reds, 18 blacks, and 2 greens. You
can only bet $1 on either back or red, and in case you choose correctly (a color is randomly drawn), you
get an additional dollar back. What is the numbers of rounds needed such that the casino wins (positive
gains) with probability of at least 0.95?

Solution. Denote the number of rounds by n. Let X; be the profit of the casino in round i. We wish
to find n such that Pr (31 ; X; > 0) > 0.95. Note that
-1, w.p. 2

X, = 197
1, w.p. 9
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Thus’E[Xi]:_l'l%+1'%:1—19,and
Var(X;) = E[X7] - (BX)])’
oL 3%0
a 192~ 361°
The CLT yields
Pr iX‘>O = liX>l'0
i=1 ' - nz "Tn
— Pr(X, >0
9 19
= X — % —5
i NG \/@/\f
~ <Zn > — )
= —_— @ —_ .
ey
We wish that the last term will be greater than 0.95, or equivalently,
1- ( ) > 0.95
)
1= <1 < )> > 0.95
)
vn >
® > 0.95
(e77) =

Using the normal distribution table, we can see that this holds if

vn > 1.645
610
n > 593.
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