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1 Introduction

In settings with incomplete information, whether in peace negotiations, business decisions,

or financial markets, players lack full knowledge of all factors that influence the outcomes of

their decisions. To address such environments, specialized information providers (e.g., peace

mediators, business consultants, and rating agencies) operate as neutral oracles, selectively

disclosing relevant information that can alter strategic behavior and equilibrium outcomes.

This paper studies the role of such oracles in games of incomplete information, modeling them

as agents who transmit information through general signaling functions to the players.

Our primary objective is to characterize when one oracle dominates another and when two

oracles are equivalent. To this end, we define a partial order of dominance: one oracle dominates

another if, in every game, the information structure of the former can induce the same set of

equilibrium outcomes as the latter. Naturally, oracles are equivalent under mutual dominance.1

Building on Aumann (1976), the notion of a common knowledge component (CKC), i.e., the

inclusion-wise smallest set that all players can agree upon, plays a central role in our analysis.

The intuition for this is rather clear. In an incomplete information game, the relevant set of

states for strategic consideration is the corresponding CKC, however an oracle’s knowledge is

not confined to it. Oracles, who typically possess information that the players do not, cannot

always distinguish between states located in different CKCs. Thus, the structure of CKCs

governs the interplay between the players’ subjective knowledge and the oracle’s informational

limitations.

The CKC also defines the boundary between the companion Part I (i.e., Lagziel et al., 2025)

and the present paper.2 Specifically, Part I characterizes dominance when oracles are restricted

to deterministic signaling functions, and when stochastic signals are permitted but the state

space features a unique CKC. Here, we extend the analysis to environments with multiple CKCs

and, in addition, provide a general characterization of equivalence.

1Note that we abstract away from cases in which the oracle has preferences over players’ action profiles or
derives utility from their strategic interaction. In this sense, we adopt Blackwell’s approach (see Blackwell, 1951),
which focuses on comparing signaling structures (namely, experiments) in decision problems, independently of
the sender’s objectives.

2Throughout the paper, we sometimes refer to Lagziel et al. (2025) as “Part I”.
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Using the structure of multiple CKCs, we introduce the concept of an information loop,

the second key element in our characterization. To formally define these loops and present

the main results of the current study, we first partition the state space into distinct CKCs. An

information loop is then defined as a closed path of states that connects different CKCs through

elements of an oracle’s partition.

For example, assume there are 4 states Ω = {ω1, ω2, ω3, ω4} and two players whose pri-

vate information is given by the following partitions: Π1 = {{ω1, ω2}, {ω3}, {ω4}} and Π2 =

{{ω1}, {ω2}, {ω3, ω4}}. The players’ private information induces two CKCs: C1 = {ω1, ω2} and

C2 = {ω3, ω4}. That is, the two players can agree on each of these two events. See the illustra-

tion in Figure 1. If the oracle’s information is given by the partition F1 = {{ω1, ω3}, {ω2, ω4}},

we say that a loop exists, as the different partition elements of F1 form a closed path between

the two CKCs. Namely, ω1 ∈ C1 and ω3 ∈ C2 are joined by a partition element of F1 and

the same holds for ω2 ∈ C1 and ω4 ∈ C2. This yields a sequence of states that starts in C1,

transitions to C2, and reverts back again to C1, through different states that serve as entry and

exit points from each CKC.

Ω Π1 Π2

F1

C1 C2

ω1

ω2

ω3

ω4

Figure 1: There are two CKCs {ω1, ω2} and {ω3, ω4}. The oracle’s partition F1 generates a loop (ω1, ω3, ω4, ω2),
which is a closed path connecting the two CKCs using the oracle’s partition elements.

Assuming that an oracle does not generate information loops, which includes the case where

the entire state space comprises a unique CKC, we prove that it dominates the other oracle if

and only if its partition refines that of the other within every CKC (see Theorem 1 in Section 3).

Importantly, this result extends the characterization result of Part I given a unique CKC, while
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the refinement condition does not follow from the criterion used in the deterministic setting.

However, if a loop exists, the characterization becomes more complex. An information loop

imposes (measurability) constraints on the information the oracle can convey. In the previous

example, notice that every signaling function of the oracle over {ω1, ω2} uniquely defines the

signaling over {ω3, ω4}. Thus, the oracle is not free to signal any information it wants in one

CKC, without restricting its ability to convey different information in the other CKC.

An obvious question that goes to the heart of information loops and our results is, why

should we care specifically about the signaling structure over the pairs of states that form the

loop in every CKC? Moreover, why should a loop consist of separate entry and exit points

in every CKC? The answer is that, given a CKC, Bayesian updating depends on the ratio of

signal-probabilities for the different states. Thus, an effective constraint imposes restrictions

over such ratios, thus relating to at least two states in every CKC (while keeping in mind the

refinement condition in every CKC; this is a crucial aspect in Lagziel and Lehrer, 2025).

The concept of information loops hints at a significant connection to Aumann’s theory of

common knowledge, from Aumann (1976). This link appears to be central to understanding

how shared and differing information structures impact equilibrium outcomes in incomplete-

information games. For this reason we provide an extensive set of results concerning various

properties of information loops in Section 4.

Specifically, the first property of information loops that we study is non-informativeness. A

loop is called non-informative if, in every CKC that it intersects, all the states of the loop are

in the same partition element of that oracle. We refer to this as non-informativeness because,

conditional on the CKC and loop, the oracle has no information to convey to the players. For

example, in Figure 1, consider an oracle with a trivial partition F ′
1 = Ω = {ω1, ω2, ω3, ω4}. This

partition creates a closed path between the two CKCs, as well as joining all the states of the

loop (given a CKC) to a single partition element of F ′
1. Building on this notion and assuming

that the partition of Oracle 1 refines that of Oracle 2 in every CKC, as in the previously stated

characterization, then non-informative loops do not pose a problem for dominance and Oracle

1 dominates the other (see Theorem 3 in Section 5).

However, once a loop is informative (i.e., in at least one CKC that it intersects, there are
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ω1 ω2

ω3

ω4ω5

ω6

F1(ω2)

F1(ω4)

F1(ω4)

C1

C2C3

Figure 2: An illustration of a fully-informative and irreducible loop, which intersects three CKCs C1, C2 and
C3 with two states in each.

states in the loop from different partition elements of the oracle; see Figure 2), then we require

additional conditions for characterization. More specifically, in case there are only two CKCs,

an additional condition is that Oracle 2 also has information loops whose states cover Oracle

1’s loop, roughly stating the up to non-informative set of states, Oracle 2 has similar loops to

those of Oracle 1 (the notion of a cover is formally defined in Section 4). Using this condition

we provide a characterization for the case of two CKCs (see Proposition 3 in Section 5.1).

While the question of characterization in the case of more than two CKCs remains open, we do

provide necessary conditions for dominance in the general case in Theorem 2, building on the

notion of irreducibility.

The notion of irreducibility, which proves crucial for our analysis, splits to two levels. The

first is irreducible loops, which implies that there exists no (smaller) loop that is based on a

strict subset of states taken from the original loop. The second is referred to as type-2 irreducible

loops, and it implies that the loop does not contain four states from the same partition element

of the oracle (again see Figure 2). On the one hand, type-2 irreducibility is a weaker notion

compared to irreducible loops, because it allows for a loop to intersect the same CKC several

times, whereas an irreducible loop cannot. On the other hand, a type-2 irreducible loop must

be informative because it does not allow for the entry and exit point in every CKC to be in

the same partition element of that oracle. In fact, it is fully-informative because this condition

holds in every CKC, rather than in a specific CKC.

The somewhat delicate understanding of the relations between these loops properties allows

us to achieve another main result: the characterization of equivalent oracles. Formally, we say
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that two oracles are equivalent if they simultaneously dominate one another. The character-

ization of equivalence, given in Theorem 4 in Section 6, is based on: (i) equivalence in every

CKC; (ii) equivalence of irreducible-informative loops; and (iii) a cover over loops. To prove

this result, we use type-2 irreducible loops to compare the information of both oracles. Specifi-

cally, we consider the sets of type-2 irreducible loops that intersect a joint CKC (i.e., connected

loops), also taking into account sequential intersections (i.e., the transitive closure) where loop

1 is connected to loop 2 which is then connected to loop 3 and so on. We observe the set of

CKCs for each of these groups and refer to these sets as clusters. These are used as building

blocks in our analysis, and we prove that the information of equivalent oracles must match on

these clusters. This, in turn, provides some insight into the possible future characterization of

general dominance between oracles, as well as provides another level of extending the theory of

common knowledge, beyond information loops.

1.1 Relation to literature

Part II takes the comparison of oracles beyond the two benchmark environments handled in Part

I (that is, beyond deterministic signaling and stochastic signaling on a state space with a single

CKC), and develops tools for general stochastic signaling when multiple CKCs interact. The

central contribution is the introduction of information loops and associated notions: balance,

covers, irreducibility (including type-2 irreducibility), and cluster-based aggregation, which to-

gether deliver necessary and sufficient conditions in the presence of loops, and a full equivalence

characterization that builds on order-preserving covers of irreducible, fully-informative loops.

Our starting point remains Blackwell’s comparison of experiments (see Blackwell, 1951,

1953), but the object of comparison and the criterion differ in two key ways. First, an oracle

is an experiment generator, namely, it can implement any public experiment measurable with

respect to its partition, rather than being a fixed experiment. Second, the criterion is strategic

and multi-player, so dominance is defined by equality of the sets of Nash-equilibrium outcome

distributions across all games, holding players’ private partitions fixed. These differences matter

only weakly with a single CKC, but are crucial with multiple CKCs, where the loop calculus

captures exactly how measurability forces cross-component co-movement of posteriors.
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Our CKC-based analysis traces back to the epistemic foundations of games, interacting

specifically with the common knowledge ideas of Aumann (1976). For Part II, where the

state space decomposes into multiple CKCs, the right lens is the approximation of common

knowledge by common beliefs à la Monderer and Samet (1989), who formalize p-belief and

common p-belief, showing how implications that classically require exact common knowledge

can be approximated by sufficiently strong common beliefs. The work of Aumann was also

followed by Mertens and Zamir (1985), who construct a universal type space embedding all

coherent hierarchies of beliefs, thus providing a unified measurable framework for Bayesian

games, and by Brandenburger and Dekel (1993), who clarify the equivalence between hierarchies

of beliefs and type representations, linking them to common knowledge.

Our model builds on these studies by fixing the partition structures while varying only the

oracle’s public experiment. The novel constraints we study arise from global measurability

across CKCs (via loops), not from additional complexity in private belief hierarchies. Our

information loops formalize when public measurability (via the oracle’s information) stitches

distinct CKCs so that posterior ratios must align across components, and when such stitching

is slack (no loops) or binding (informative, irreducible loops). This conceptual bridge clarifies

why refinement within CKCs suffices absent loops, but not in general.

Relative to information design and persuasion, the present analysis is comparative rather

than optimal. The persuasion literature3 asks which experiment maximizes a sender’s objective.

Here the oracle has no objective, but is evaluated by its replication ability. In this sense, this

project complements persuasion by characterizing when two generators of public experiments

are equivalent or when one dominates another.

Closer to us, Kolotilin et al. (2017) analyze persuasion with a privately informed receiver

and establish conditions under which optimal mechanisms can be represented as experiments,

delivering tractable characterizations in linear/monotone environments. Part II treats the play-

ers’ experiments as primitives, but evaluates an oracle by the ability to replicate another across

all games with fixed private information, so that the binding obstacles are global measurability

(loops) rather than incentive constraints.

3For a recent survey, see Kamenica (2019).
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Another strand in the literature studies mediators in games with incomplete information.

Mediators deliver differential recommendations that coordinate players’ actions and implement

variants of correlated equilibria (Forges, 1993). In many formulations the mediator does not

convey additional information about the realized state; i.e., its role is purely coordinative.

Under complete information, Gossner (2000) compares mediating structures by the sets of

correlated equilibria they can induce, calling one device “richer” if it generates a superset. This

characterization uses a notion of compatible interpretation in the spirit of garbling. Part II

departs from this strand in two respects: the oracle’s messages are public and informational

about the state, and comparison is by replication power across all games. With multiple CKCs,

feasibility is governed not by recommendation schemes but by measurability links across CKCs,

captured in our framework by information loops (balance and covers).

Closer to the present project are studies on incomplete-information games that establish

partial orderings of information structures. Peski (2008) obtains a Blackwell-type ordering in

zero-sum games. Lehrer et al. (2010) analyze common-interest games with privately observed,

possibly correlated signals, showing that comparative results hinge on the version of Blackwell

garbling tied to the chosen solution concept. Lehrer et al. (2013) extend garbling to characterize

outcome equivalence. Bergemann and Morris (2016) study n-player environments via Bayes

correlated equilibrium and characterize dominance through individual sufficiency. Part II differs

along two margins crucial with multiple CKCs: (i) players’ private partitions are fixed primitives

while the oracle is an experiment generator of public signals; and (ii) dominance/equivalence

are defined by the ability to reproduce the set of equilibrium outcome distributions in every

game, and thus hinge on the loop calculus rather than garbling alone.

The structure of the paper. The paper is organized as follows. Section 2 depicts the

model. Section 3 provides a characterization of dominance when there are no loops. Section 4

studies the properties of information loops. Section 4 outlines necessary and sufficient conditions

for dominance, as well as a characterization of dominance given two CKCs (in Section 5.1).

Finally, in Section 6 we characterize the equivalence relation between oracles.
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2 The model

A guided game consists of a Bayesian game together with an oracle. The oracle provides

information intended to enable a different, and preferably broader, set of equilibria. It operates

via signaling, and our analysis characterizes the extent to which oracles can expand the set of

equilibrium payoffs.

We begin by defining the underlying Bayesian game. Let N = {1, 2, . . . , n} be a finite set of

n ≥ 2 players, and let Ω be a non-empty, finite state space. Each player i ∈ N has a non-empty,

finite action set4 Ai and an information partition Πi of Ω. Let A = ×i∈NAi denote the set of

action profiles. Player i’s utility is ui : Ω × A → R, mapping states and action profiles to

payoffs.

To extend the basic game to a guided game, we introduce an oracle that provides public

information before actions are chosen. The oracle has a partition F of Ω and a countable signal

set S. A strategy of the oracle is an F -measurable function τ : F → ∆(S) with finite-support

distributions, used to transmit information to all players N , where ∆(S) denotes the set of

finite-support probability distributions over S. For ω ∈ Ω and s ∈ S, we write τ(s | ω) for

the probability τ(ω)(s) that s is sent when the realized state is ω. Note that any deterministic

strategy τ : F → S is effectively a partition, and we refer to it as such when appropriate.

The guided game evolves as follows. First, the oracle publicly announces a strategy τ .

Then, a state ω ∈ Ω is drawn according to a common prior µ ∈ ∆(Ω). Each player i is privately

informed of Πi(ω), the atom (i.e., set of states) of player i’s partition that contains ω. Finally, if

τ is deterministic, the signal τ(ω) ∈ S is publicly announced, and if τ is stochastic, a realization

s ∈ S is drawn according to τ(ω) and publicly announced.

Let the join5 Πi ∨ F ′ denote the updated partition of player i given Πi and a partition

F ′. If τ is deterministic, define µi
τ |ω = µ

(
· | [Πi ∨ τ ](ω)

)
∈ ∆(Ω) as player i’s posterior after

observing Πi(ω) and τ(ω). If τ is stochastic, let µi
τ |ω,s = µ(· | Πi(ω), τ, s) ∈ ∆(Ω) denote

player i’s posterior after observing Πi(ω) and a realized signal s according to τ(ω). Thus, every

strategy τ induces an incomplete-information game G(τ) = (N, (Ai)i∈N , (µ
i
τ )i∈N , (ui)i∈N). Since

4In this framework, Ai is independent of the player’s information, but the setting can also accommodate
cases where it is not.

5Coarsest common refinement of Πi and F ′; following Aumann (1976).
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the state space and action sets are finite, the Nash equilibria exist. When there is no risk of

ambiguity, we denote the incomplete-information game without τ by G.

2.1 Partial ordering of oracles

To discuss the oracle’s role in this framework, we adopt a solution concept, referred to as a

Guided equilibrium, that incorporates the oracle’s strategy. Let σi : Πi × S → ∆(Ai) be a

strategy for player i. A tuple (τ, σ1, . . . , σn) is a Guided equilibrium if (σ1, . . . , σn) is a Nash

equilibrium of the incomplete-information game G(τ).

This notion of a Guided equilibrium induces a partial order over oracles (that is, over their

partitions) via the sets of equilibria they can generate. Let NED(G(τ)) ⊆ ∆(Ω×A) denote the

set of distributions over Ω × A induced by Nash equilibria given G and τ .6 Now consider two

oracles, Oracle 1 and Oracle 2, and let Fj and τj denote the partition and strategy of Oracle j,

respectively. Using this notation, we define a partial order as follows.

Definition 1 (Partial ordering of Oracles). Oracle 1 dominates Oracle 2, denoted F1 ⪰NE F2,

if for every τ2 and game G, there exists τ1 such that NED(G(τ1)) = NED(G(τ2)).

Informally, dominance means that one oracle can replicate the other’s signaling structure so

as to induce the same set of equilibria. A direct comparison of equilibria across games without

conditioning on the signaling rule is problematic because players’ strategies typically depend

on the oracle’s signals.

2.2 More than one CKC: two examples

The partition-refinement condition given in Lagziel et al. (2025) ensures that Oracle 1 can

produce the exact same strategy as Oracle 2. This however, hinges on the existence of a unique

CKC. In case there are several CKCs, Oracle 1 may need to follow a different strategy in order

to match the distribution on posteriors generated by τ2. Namely, τ1 may require more signals

6A Nash equilibrium (σ∗
1 , . . . , σ

∗
n), along with the common prior µ, induce a probability distribution on Ω×A.

Fix ω and an action profile a. The probability of (ω, a) under (σ∗
1 , . . . , σ

∗
n), τ and the common prior µ equals

µ(ω)
∑

s∈S τ(s | ω)
∏n

i=1 σ
∗
i (ai | Πi(ω), s). As multiple equilibria may exist, NED(G(τ)) is a subset of ∆(Ω×A).
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than τ2, even if both oracles have the same (complete) information in every CKC. Let us provide

a concrete example for this.

Example 1. More signals are needed.

Consider a uniformly distributed state space Ω = {ω1, ω2, ω3, ω4}, with two players whose

private information is Π1 = {{ω1, ω2}, {ω3}, {ω4}} and Π2 = {{ω1}, {ω2}, {ω3, ω4}}. The oracles

have the following partitions F1 = {{ω1, ω3}, {ω2}, {ω4}} and F2 = {{ω1}, {ω3}, {ω2, ω4}}. This

information structure is illustrated in Figure 3. Notice that there are two CKCs, {ω1, ω2} and

{ω3, ω4}, and both oracles have complete information in each of these components. That is, F1

refines F2 in every CKC, and vice versa.

Ω Π1 Π2

ω1

ω2

ω3

ω4

(a)

The players’ information

Ω

F1

F2

ω1

ω2

ω3

ω4

(b)

The oracles’ information

Figure 3: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

Consider the stochastic strategy τ2 given in Figure 4. Notice it is F2-measurable, as

τ2(s|ω2) = τ2(s|ω4) for every signal s, but not F1-measurable.

The set Post(τ2) of τ2-posteriors is

Post(τ2) =


(ei, ei), ∀ 1 ≤ i ≤ 4,((

3
7
, 4
7
, 0, 0

)
, ej

)
, j = 1, 2,(

ek, (0, 0,
1
2
, 1
2
)
)
, k = 3, 4


,
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τ2(s|ω) s1 s2 s3
ω1 0 1/2 1/2
ω2 1/3 2/3 0
ω3 0 2/3 1/3
ω4 1/3 2/3 0

Figure 4: A stochastic F2-measurable strategy of Oracle 2.

and we can now try to mimic τ2 using an F1-measurable strategy. First, this requires at least

two signals to distinguish between ω1 and ω2, as well as ω3 and ω4. Second, the posterior((
3
7
, 4
7
, 0, 0

)
, e1

)
requires another signal s so that τ(s|ω1) = α > 0 and τ(s|ω3) = 4

3
α > 0.

However, the F1-measurability requirement implies that τ(s|ω3) = α, and the τ2-posterior(
e3, (0, 0,

1
2
, 1
2
)
)
necessitates that τ(s|ω4) = α as well. These conditions are jointly given in

Table (a) within Figure 5.

τ1(s|ω) s3 s4 s5
ω1 α β 0
ω2

4
3
α 0 γ

ω3 α β 0
ω4 α 0 γ

(a)

τ1(s|ω) s3 s4 s5 s6
ω1 1/2 1/3 0 1/6
ω2 2/3 0 1/3 0
ω3 1/2 1/3 0 1/6
ω4 1/2 0 1/3 1/6

(b)

Figure 5: A strategy τ1, either with 3 signals as given in Table (a), or with 4 signals as in Table (b).

Evidently, it must be that α, β, γ > 0 in order to mimic τ2, but the second and fourth

rows in Table (a) cannot jointly sum to 1 unless α = 0, which eliminates the possibility of

a well-defined mimicking strategy. Thus, in order to mimic the stated strategy τ2, Oracle 1

requires an additional signal as presented in Table (b), in Figure 5. To conclude, though the

oracles’ partitions refine one another in every CKC, they cannot always produce the exact same

strategy when trying to mimic each other.

Example 2. Dominance need not imply refinement with multiple CKCs

In this example we wish to show that when there are multiple CKCs, Oracle 1 can dom-

inate Oracle 2 although F1 does not refine F2. To see this, we revisit an example from

Lagziel et al. (2025) in which Π1 = {{ω1, ω2}, {ω3, ω4}}, F1 = {{ω1, ω2, ω3}, {ω4}} and F2 =

{{ω1, ω2}, {ω3}, {ω4}}. This is illustrated in Figure 6.
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Ω

Π1

F2

F1

ω1

ω2

ω3

ω4

Figure 6: Note that F2 strictly refines F1 and Π1.

Now consider the signaling strategy of Oracle 2 given in Figure 7, where Oracle 2 provides

the players with no additional information regarding states ω1 and ω2. Thus, the posterior

over these states remains the original one. On the other hand, given the states ω3 and ω4,

the strategy τ2 reveals the true state with a positive probability and induces the posterior

(0, 0, 2/5, 3/5) with the remaining probability.

τ2(s|ω) s1 s2 s3
ω1 1/4 0 3/4
ω2 1/4 0 3/4
ω3 0 1/2 1/2
ω4 1/4 0 3/4

Figure 7: A stochastic F2-measurable strategy of Oracle 2.

While Oracle 2 can assign different probabilities to a signal conditioned on ω2 and ω3, Oracle

1 cannot. However, there is a signaling strategy for Oracle 1 that produces the same distribution

over the posteriors as τ2 does. The following strategy τ1, given in Figure 8, does that.

τ1(s|ω) s1 s2 s3
ω1 1/2 0 1/2
ω2 1/2 0 1/2
ω3 1/2 0 1/2
ω4 0 1/4 3/4

Figure 8: A stochastic F1-measurable strategy of Oracle 1.

In this example, it is straightforward to prove that Oracle 1 can mimic every strategy τ2 of

Oracle 2, and we prove this result under more general conditions in Theorem 1 and Proposition

12



3. Yet, it is clear that F1 is not a refinement of F2 in general, but it is a refinement in every

CKC.

3 Multiple CKCs and no loops

We now turn to the general setting in which the players’ information structures induce any

(finite) number of CKCs. Assume that C1, . . . , Cl are mutually exclusive CKCs such that

Ω =
⋃l

j=1Cj. A key aspect of our analysis is the presence of measurability constraints, where

different CKCs are connected by atoms of the oracles’ partitions. To understand the significance

of this, consider a setting where F1 does not contain any element intersecting multiple CKCs.

In this case, the characterization result given a unique CKC from Part I (see Theorem 5

in Appendix A.1.2) applies separately to each CKC, as Oracle 1 faces no constraints when

attempting to mimic some strategy of Oracle 2.

However, when elements of Oracle 1’s partition intersect different CKCs, the analysis be-

comes more complex, because we must account for measurability constraints when attempting

to use the same strategy τ1 across different CKCs. Such intersections impose constraints on τ1,

preventing us from naively applying previous results.

This issue becomes even more complicated when multiple elements of Oracle 1’s partition

intersect different CKCs, forming what we call an (information) loop.7

Generally, a loop is an ordered sequence of states from different CKCs such that the partition

of an oracle groups together distinct pairs of states from different CKCs, creating a closed path.

The main result of this section, presented in Theorem 1 below, states that in the absence of

such loops, Oracle 1 dominates Oracle 2 if and only if F1 refines F2 in every CKC. The formal

definition of a loop is provided in Definition 2.

Definition 2. An Fi-loop is a sequence (ω1, ω1, ω2, ω2, . . . , ωm, ωm), where m + 1 ≡ 1 and

m ≥ 2, such that

• ωj, ωj ∈ Crj and ωj ̸= ωj for all j = 1, . . . ,m.8

7An (information) loop is different from a loop in graph theory. In graph theory, a loop refers to an edge
that connects a vertex to itself.

8Here Crj refers to the CKC that contains the j-th pair of states (ωj , ωj).
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• ωj+1 ∈ Fi(ωj) for all j = 1, . . . ,m.

• Crj ̸= Crj+1
for all j = 1, . . . ,m.

• The sets {ωj, ωj+1} are pairwise disjoint for all j = 1, . . . ,m.

To understand information loops, one can view the CKCs as the vertices of a graph. An edge

connects two CKCs if there exist ωj+1 and ωj such that they belong to the same Fi-partition

element (this corresponds to the second requirement). An information loop then parallels an

Eulerian graph, where there is a walk that includes every edge exactly once (the last requirement

in the definition) and ends back at the initial vertex (hence the requirement m + 1 ≡ 1). As

noted at the beginning of Section 3, the key aspect of the general analysis is to consider the

case when the oracle partition atoms intersect different CKCs, so we require that Crj ̸= Crj+1

for all j = 1, . . . ,m.

An example of an F1-loop is provided in Figure 9.(a), which depicts a loop consisting of six

states across three CKCs. Note that a loop can intersect the same CKC multiple times, as long

as the sets {ωj, ωj+1} remain pairwise disjoint for each j.

We use the concept of a loop in our first general characterization, presented in Theorem 1.

This theorem builds on the assumption that F1 contains no loops and extends the main result

of Part I by showing that one oracle dominates another if the former’s partition refines that of

the latter in every CKC. It is important to note that the proof is extensive, as it must account

for the measurability constraints of τ1 across all CKCs.

Theorem 1. Assume there is no F1-loop. Then, Oracle 1 dominates Oracle 2 if and only if

F1 refines F2 in every CKC.

The proof of Theorem 1 builds on the concept of a sub-strategy. A sub-strategy is a signaling

function without the requirement that the probabilities sum to 1. This relaxation allows us

to study functions that partially mimic a strategy τ2, meaning each posterior is drawn from

Post(τ2) and is induced with a probability that does not exceed the probability with which

τ2 induces it. We show that the set of sub-strategies is compact, allowing us to consider an

optimal sub-strategy for mimicking τ2. The proof then proceeds by contradiction: if the optimal
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A = F2(ω1) B = F2(ω1)

C1

C2C3

(b)

Figure 9: Figure (a) depicts an F1-loop with three CKCs and six states overall. Figure (b) illustrates how the
F1-loop, presented in (a), is non-balanced with respect to F2. Namely, F2 has two elements A = {ω1, ω2, ω3},
and B = {ω1, ω2, ω3} such that the number of transitions from A to B are 3, while the reverse equals 0.

sub-strategy is not a complete strategy, we can extend it by constructing an additional sub-

strategy to complement the optimal one for posteriors that are not fully supported (relative to

the probabilities induced by τ2). This part is rather extensive as it requires some graph theory

and several supporting claims given in the proof in the appendix.

4 Information loops

Previous sections have examined the problem of oracle dominance in the absence of loops,

considering either a unique CKC or multiple CKCs without loops. However, in order to confront

the general question of dominance in the presence of information loops, we need to have a clear

understanding of their properties and implications.

Specifically, when an F1-loop exists, it may create challenges for Oracle 1 in mimicking

Oracle 2, because loops introduce measurability constraints across CKCs. Although Oracle 1

can mimic Oracle 2 within each CKC individually, it may be impossible to do so simultaneously

across CKCs if the required combined strategy is not measurable with respect to F1. This

suggests that any F1-loop must satisfy certain conditions to ensure that such a strategy is

indeed F1-measurable. The first condition that we study, which turns out to be a necessary

condition for dominance, is generally referred to as F2-balanced.

The idea starts with an F1-loop. We examine all states in this loop and determine how they
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can be covered by two F2-measurable sets. In other words, the loop is divided into two disjoint

sets, each contained in an F2-measurable set, denoted A and B. Next, we count the number

of transitions along the loop from A to B, where the entry point into one CKC is through a

state in A and the exit is through a state in B. We do the same for transitions from B to A.

An F1-loop is called F2-balanced if the number of transitions between A and B is equal in both

directions. The formal definition follows.

Definition 3. An Fi-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm) is F−i-balanced if for every F−i-measurable

partition of the loop’s states into two disjoint sets {A,B} such that ∪j{ωj, ωj} ⊆ A∪B, it fol-

lows that:

#(A → B) := |{j;ωj ∈ A and ωj ∈ B}| = |{j;ωj ∈ B and ωj ∈ A}| =: #(B → A). (1)

Note that an F1-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm), where ωj ∈ F2(ωj) for all j = 1, . . . ,m,

is F2-balanced. Figure 9.(b) examines the F1-loop from Figure 9.(a). The sets A and B are

F2-measurable, restricted to the six states under consideration. The partition into A and B

renders the loop non-F2-balanced, as #(A → B) = 3, while #(B → A) = 0.

Why are balanced loops crucial? Consider, for example, a non-balanced loop as depicted in

Figure 9, and assume that τ2(s|ω) = 1
2
− 1

4
1{ω∈A} for some signal s ∈ S. This imposes a specific

1 : 2 ratio between any two states described in each CKC, so that Πi
τ2(s|ωi)
τ2(s|ωi)

= 1
8
. However, since

ωi and ωi+1 belong to the same F1 partition element, the measurability constraints on Oracle 1

along the loop require that τ1(s|ωi) = τ1(s|ωi+1), hence Πi
τ1(s|ωi)
τ1(s|ωi)

= 1 for any s in the support

of all states. In other words, Oracle 1 cannot match the ratio dictated by τ2, therefore the key

proportionality lemma from Part I (see Lemma 1 from in Appendix A.1.1) does not hold in at

least one CKC.

If the loop were balanced—say, with A = {ω1, ω2} and B = {ω1, ω2, ω3, ω3}—then the same

strategy τ2 would yield Πi
τ2(s|ωi)
τ2(s|ωi)

= 1, as required. In general, when all loops are balanced,

this discrepancy is eliminated for any two such sets A and B. The notion of balanced loops is

closely related to the following notion of covered loops, which implies that an F1-loop can be

decomposed to loops of F2.
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Definition 4. An Fi-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm) is F−i-covered if

• The set {1, ...,m} is partitioned to disjoint sets of indices, J, I1, ..., Ir, i.e., {1, ...,m} =

J ∪ (∪r
t=1It).

• For each t = 1, ..., r,
(
(ωj, ωj)

)
j∈It

is an F−i-loop, also referred to as a sub-loop.9

• J = {j;ωj ∈ F−i(ωj)}.

The cover is order-preserving if every F−i-loop
(
(ωj, ωj)

)
j∈It

in the cover follows the same

ordering of pairs as the Fi-loop.

In simple terms, the definition states that, given an F1-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm),

we can partition its states to several F2-loops and a set of states where ωj ∈ F2(ωj). Figure

10 (a) depicts an F1-loop consisting of ((ωj, ωj))j=1,...,4, which is covered by two F2-loops:

(ω1, ω1, ω3, ω3) and (ω2, ω2, ω4, ω4). In this case, the set J (defined in Definition 4) is empty.

Figure 10 (b) depicts a case in which J = {2, 4}, and (ω1, ω1, ω3, ω3) forms an F2-loop, yet it is

not an F2-sub-loop of the original F1-loop since ω1 is linked to ω3 instead of ω3. Actually, if we

set A = {ω2, ω2, ω4, ω4, ω1, ω3} and B = {ω1, ω3}, which are F2-measurable, then #(A → B) =

2, but #(B → A) = 0, so the F1-loop is not F2-balanced. Finally, note that the sub-loops in

Figure 10 (a) are order-preserving. By contrast, the sub-loop (ω1, ω1, ω3, ω3, ω2, ω2) in Figure

10 (c) does not preserve the ordering of the pairs as the F1-loop, since the pair (ω3, ω3) appears

before (ω2, ω2).

The following Proposition 1 proves that an F1-loop is F2-balanced if and only if it is F2-

covered. This proposition assists with the proof of Theorem 2 below, which provides a necessary

condition for dominance.

Proposition 1. Let (ω1, ω1, ω2, ω2, . . . , ωm, ωm) be an F1-loop. The following statements are

equivalent:

i. The loop is F2-balanced;

9The order of the pairs (ωj , ωj) in the F−i-loop does not have to coincide with their order under the Fi-loop.
For instance, an F1-loop (ω1, ω1, ω2, ω2, ω3, ω3) might be covered by the following F2-loop (ω1, ω1, ω3, ω3, ω2, ω2).
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F2(ω4)
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Figure 10: Two states connected by a colored line are in the same information set of F2. In (a), the F2-sub-loops
that cover the F1-loop are order-preserving, i.e., following the ordering of pairs in the original F1-loop, whereas
the sub-loop in (c) is not order-preserving. (b) illustrates a case where (ω1, ω1, ω3, ω3) forms an F -2 loop, but
it is not an F2-sub-loop of the original F1-loop.

ii. The loop is F2-covered;

iii. For every F2-measurable function f :
{
ω1, ω1, ω2, ω2, . . . , ωm, ωm

}
→ (0,∞),

m∏
i=1

f(ωi)

f(ωi)
= 1.

The next two properties that we study are irreducible and informative loops. Starting with

the former, an Fi-loop is irreducible if it does not have a sub-loop, namely, there exists no

‘smaller’ Fi-loop that comprises a strictly smaller set of states taken solely from the original

loop. Our analysis would use irreducible loops as building blocks to decompose and compare

loops generated by the oracles’ partitions.

Definition 5. Let Li = (ω1, ω1, ω2, ω2, . . . , ωm, ωm) be an Fi-loop. We say that the loop is

irreducible if there exists no strict subset of the set {ωj, ωj : j = 1, . . . ,m} that forms an

Fi-loop.

We use the definition of an irreducible loop in the context of covers as well, stating that a

cover is irreducible if every loop in the cover is irreducible. Furthermore, the idea of irreducible
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loops is closely related to the concept of covers, and specifically to the set J = {j;ωj ∈ F−i(ωj)}

given in Definition 4 above. Specifically, if there exists an Fi-loop with a pair of states (ωj, ωj)

such that ωj ∈ Fi(ωj), then it cannot be irreducible unless it comprises only 4 states.10 We

typically refer to such cases where ωj ∈ Fi(ωj) as non-informative because Oracle i cannot

distinguish between the two states. This condition is essentially equivalent to every F1-loop

being F2-balanced at 0, meaning that for any choice of the specified F2-measurable sets A and

B, the number of transitions between these sets is zero. The following Definition 6 captures

the idea of informative loops, which would later be used in Theorem 3 as a sufficient condition

for dominance.

Definition 6. An Fi-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm) is Fk-non-informative if Fk(ωj) = Fk(ωj)

for every j. The loop is Fk-fully-informative if Fk(ωj) ̸= Fk(ωj) for every j.

To understand the motivation behind this definition, consider any F1-loop denoted by

(ω1, ω1, ω2, ω2, . . . , ωm, ωm). If this loop is F2-non-informative, it suggests that the ratios τ2(s|ωi)
τ2(s|ωi)

equals 1 for every signal s supported on these states. In simple terms, conditional on any

{ωi, ωi}, Oracle 2 does not provide any additional information, so the constraints that an F1-

loop imposes on Oracle 1 in every CKC (i.e., that the product of probability ratios along the

loop equals 1) are met by the measurability requirements of F2.

The following proposition summarizes key properties of informative and irreducible loops. It

states that an irreducible loop intersects every CKC at most once and must be fully informative

(unless it has only 4 states). In addition, the proposition shows that an informative loop has a

fully-informative sub-loop, as well.

Proposition 2. Consider an Fi-loop Li.

• If Li intersects the same CKC more than once, then it is not irreducible.

• If Li is irreducible and consists of at least 6 states, then it is Fi-fully-informative.

• If Li is Fi-informative, then it has an Fi-fully-informative sub-loop.

• If Li is Fi-fully-informative, then it can be decomposed to irreducible Fi-loops.

10In general, the smallest possible loop has at least 4 states, so any such loop is, by definition, irreducible.
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• If Li is not irreducible, then either it intersects the same CKC more than once, or it has

at least 4 states in the same partition element of Fi.

We use this proposition in the following subsection to provide necessary and sufficient con-

ditions for the dominance of one oracle over another.

5 Necessary and Sufficient conditions for dominance

In the following section, we address the general case where F1 has loops, which imposes con-

straints on Oracle 1 across CKCs. Due to the complexity of this problem, we divide our analysis

into two parts: a necessary condition for dominance presented in Theorem 2, and a sufficient

condition given in Theorem 3. These theorems depend strongly on the properties of information

loops, and specifically on the notions of covers, irreducibility and non-informativeness.

Starting with the necessary conditions, the following theorem, which builds on Propositions

1 and 2, states that if Oracle 1 dominates Oracle 2, then besides the refinement condition in

every CKC, already established in Theorem 1, it must be that every F1-loop is covered by loops

of F2. In addition, it states that every irreducible F2-loop that cover an irreducible F1-loop is

order-preserving, essentially stating that the two loops coincide.

Theorem 2. If Oracle 1 dominates Oracle 2, then:

• F1 refines F2 in every CKC;

• Any F1-loop has a cover by F2-loops; and

• Every irreducible F2-loop that covers an irreducible F1-loop is order-preserving.

The proof of the first part is immediate, as it follows directly from the main result of Part

I (see Theorem 4 therein cited in Appendix A.1.2). The proof of the second part relies on

Proposition 1 by assuming that an F1-loop is not F2-balanced, and constructing a strategy τ2

that Oracle 1 cannot mimic without violating measurability constraints. The last part relies on

Proposition 2, as well as a key lemma from Part I (cited in Appendix A.1.1), by depicting a two-

signal strategy τ2 that one cannot mimic without following the same order of pairs throughout

the F2-loop.
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Next, we use the understanding regarding covered and balanced loops to present a sufficient

condition for dominance, which indirectly requires that any loop is balanced at 0—meaning

that there are no transitions between sets A and B. This leads to the following Theorem 3,

which uses the non-informative notion for dominance.

Theorem 3. If F1 refines F2 in every CKC and every F1-loop is F2-non-informative, then

Oracle 1 dominates Oracle 2.

Though we do not yet provide a full characterization, it becomes rather clear that the

requirement that every F1-loop is F2-balanced should be the main focus, as it is a necessary

condition, as well as a sufficient one when the balance is set to zero. In the following section

we show that the balance condition is both necessary and sufficient for the case of two CKCs.

5.1 The case of two CKCs

In this section, we assume there are only two CKCs. This assumption simplifies the analysis, as

the case of two CKCs can be resolved using our prior results, allowing us to examine all possible

loops directly. Formally, Proposition 3 states that, given two CKCs, the necessary condition of

an F2-balanced loop from Theorem 2 is also a sufficient condition.

To build intuition, consider the scenario with two CKCs depicted in Figure 11, featuring

an F1-loop (ω1, ω1, ω2, ω2) across four states. Fix some τ2 and assume the loop is F2-balanced.

There are then only two possibilities: either the loop is F2-non-informative, as shown in cases

(a) and (b) in Figure 11, or it is also an F2-loop, illustrated in case (c) in Figure 11. The first

possibility was covered in Theorem 3, while the second allows Oracle 1 to meet the constraints

imposed by the F1-loop when attempting to mimic τ2.

Proposition 3. Assume there are only two CKCs. Then, Oracle 1 dominates Oracle 2 if and

only if F1 refines F2 in every CKC and any F1-loop is F2-balanced.
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Figure 11: Two CKCs with an F1-loop described by (ω1, ω1, ω2, ω2). Graph (a) and (b) depict two F2-balanced
loops, that are also F2-non-informative, and (c) describes an F2-loop. Any other structure of F2 yields a non-
balanced loop.

6 Equivalent oracles

In this section we tackle a parallel question to dominance, which is the problem of oracles’

equivalence. Specifically, we characterize necessary and sufficient conditions such that both

oracles dominate one another simultaneously, as formally given in the following definition:

Definition 7. F1 is equivalent to F2, denoted F1 ∼ F2, if the two oracles dominate one another,

that is, if Fi ⪰NE F−i for every i = 1, 2.

Based on the results for the case that loops do not exist and the case of two CKCs, equiv-

alence between oracles obviously requires two-sided refinement within every CKC (i.e., equiva-

lence), and that every Fi-loop is F−i-balanced for every Oracle i. This, however, is insufficient

and equivalence also requires that every irreducible Fi-loop with at least 6 states is also an

irreducible F−i-loop. This result is given in the following Theorem 4.

Theorem 4. F1 is equivalent to F2 if and only if for every Oracle i, the partition Fi refines

F−i in every CKC, any Fi-loop has a cover of F−i-loops, and every irreducible Fi-loop with at

least 6 states is an irreducible F−i-loop.

The equivalence condition concerning irreducible loops is based on the ability of both oracles

to follow similar measurability constraints when signaling to players in every CKC. That is,

if one oracle is constrained by an information loop, then we require the other to follow suit.

Yet, this still raises the question of why we need to focus on irreducible loops. To understand
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this, consider a single partition element of Fi that intersects at least two CKCs where each

intersection contains at least two states. This evidently generates a non-informative loop,

because all pairs are non-informative. But as long as the other oracle cannot distinguish between

the two states in each pair, the ability to separate different pairs in different CKCs is not needed,

as each pair is common knowledge among the players themselves within every CKC.

The proof of Theorem 4 also builds on an intermediate irreducibility notion that we refer

to as type-2 irreducible loop. More formally, an Fi-loop is type-2 irreducible if it does not have

four states from the same partition element of Fi. This notion refines that of fully-informative

loops (as every type-2 irreducible loop is fully-informative), but also weakens that of irreducible

loops, because a type-2 irreducible loop can intersect the same CKC multiple times, and so be

decomposed into sub-loops.

The notion of type-2 irreducible loops is crucial for our analysis and results, but also in a

more general manner. We use type-2 irreducible loops to generate the basic elements, building

blocks, upon which two oracles must match one another (in terms of their information). These

building blocks are referred to as clusters and they are constructed as follows. First, we take

the set of type-2 irreducible loops. Then, we consider such loops that intersect the same CKC

and consider them as connected. Next, we take the transitive-closure of this relation, which

yield disjoint sets of connected type-2 irreducible loops. Finally, we take every such set (of

connected loops) and consider all the CKCs that it intersects - this is a cluster. We prove

that the oracles’ partitions match one another in each of these clusters. That is, the clusters

are the basic structure upon which we derive an equivalence, and later extend it to ”simpler”

connections between clusters that involve only a single partition element of Fi.
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A Appendices

A.1 Key results from the companion Part I

A.1.1 Proportionality lemma from Part I

Fix two distinct signals {s1, s2} and assume that the partition F2 = {A1, A2, . . . , Am} has m

elements, as noted. Let p1, p2, . . . , pm be m distinct probabilities such that all ratios of two

distinct numbers from the set A = {pj, 1− pj : j = 1, 2, . . . ,m} are pairwise different.11 Define

the signaling function τ2 such that

τ2(s1|Aj) = 1− τ2(s2|Aj) = pj, ∀ ≤ j ≤ m. (2)

Given this signaling function and assuming that the state space comprises a unique CKC,

Lemma 1 (from Part I) states that the condition Post(τ1) ⊆ Post(τ2) implies that τ1 is partially

proportional to τ2, restricted to a subset of feasible signals.

11To achieve this, one can consider m distinct prime numbers r1 < r2 < · · · < rm. Define T0 = Q, and for
every j ≥ 1, let Tj be the extended field of Tj−1 with

√
rj . Take pj ∈ Tj \ Tj−1.
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Lemma 1. Fix τ2 given in Equation (2) and a unique CKC. If Post(τ1) ⊆ Post(τ2), then for

every signal t ∈ Supp(τ1) there exists a signal s ∈ {s1, s2} and a constant c > 0 such that

τ1(t|ω) = cτ2(s|ω) for every ω ∈ Ω.

A.1.2 Unique CKC, characterization result from Part I

Theorem 5. Assume that Ω comprises a unique common knowledge component. Then, the

following are equivalent:

• F1 refines F2;

• F1 ⪰NE F2;

• For every τ2, there exists τ1, so that Post(τ1) ⊆ Post(τ2);

• For every τ2, there exists τ1, so that Post(τ1) = Post(τ2);

• For every τ2, there exists τ1, so that µτ1 = µτ2.

A.2 Proof of Theorem 1

Proof. One direction is straightforward. Assume, to the contrary, that Oracle 1 dominates

Oracle 2, but F1 does not refine F2 in some CKC. Denote this CKC by C1, and consider the set

of all games in which the payoffs of all players are zero in every ω /∈ C1, independent of their

actions. Thus, Oracle 1 dominates Oracle 2 in every game restricted to C1, although F1 does

not refine F2 in C1. This contradicts the ket result from Part I (see Theorem 5 in Appendix

A.1.2).

Moving on to the second part, assume to the contrary that F1 refines F2 in every CKC, but

Oracle 1 does not dominate Oracle 2. Therefore, there exists a strategy τ2 such that Oracle 1

cannot produce the same distribution over posteriors as τ2.
12 The proof now splits to 4 steps.

12Observe that the condition that Oracle 1 can generate the same distribution over posterior profiles as Oracle
2 implies that Oracle 1 dominates Oracle 2. To see this, consider any game and any signaling strategy τ . Since
the players’ strategies depend on the profile of posteriors, we can then abstract away from the underlying private
and public information and assume that the players play a Bayesian both Oracles can generate distributions
over the profiles of posteriors, which can be generated by both Oracles.
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Step 1: Mimicking sub-strategies.

We start by defining the notion of a sub-strategy, which resembles a strategy, but with

induced probabilities that may sum to less than 1. Formally, a partial distribution p̃ is a

non-negative function from a finite subset of S to [0, 1] such that
∑

s∈S p̃(s) ≤ 1. A partial

distribution differs from a distribution as the probabilities need not sum to 1. Let ∆̃(S) be the

set of partial distributions on S, and define a sub-strategy τ : Ω → ∆̃(S) as an F1-measurable

function from Ω to the set of partial distributions on S. That is, τ(s|ω) ≥ 0 and
∑

s τ(s|ω) ≤ 1,

for every ω and s. Evidently, every F1-measurable strategy is a sub-strategy.

For every sub-strategy τ and every p ∈ (∆(Ω))n, let Pτ (p) be the probability that τ yields

the posterior p, i.e.,

Pτ (p) =
∑

(ω,s): τ(s|ω)>0,
and (µi

τ |ω,s
)i∈N=p

µ(ω)τ(s|ω). (3)

Similarly, define Pτ2(p) for every posterior p given the stated strategy τ2. We say that a sub-

strategy τ mimics τ2 if

Pτ (p) ≤ Pτ2(p), for every p ∈ (∆(Ω))n. (4)

Hence, a sub-strategy τ mimics τ2 if, for every posterior p, the probability that τ generates

p does not exceed the probability that τ2 generates it. Note that the null sub-strategy (i.e.,

τ(s|ω) = 0 for every ω and s) also mimics τ2.

Consider any sub-strategy τ that mimics τ2. Because τ2 generates a finite set Post(τ2) of

possible posteriors, there exists a finite number of combinations of posteriors (which does not

exceed 2|Post(τ2)|) that every signal of τ supports. So, if some sub-strategy uses more than

2|Post(τ2)| signals, we can apply the pigeonhole principle to deduce that the additional signals

support similar combinations of posteriors as some other signals. Therefore, for every such

additional signal s, there exists another signal s′ and a constant c > 0 such that τ(s|ω) =

cτ(s′|ω) for every ω, and we can unify the two signals into one. We can thus assume that there

exists a finite set of signals S, such that every mimicking sub-strategy (i.e., that mimics τ2)

uses only signals from S.
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Step 2: Optimal sub-strategies.

Let Aτ be the set of sub-strategies that mimic τ2. Note that the set of sub-strategies

supported on S is compact, and the (inequality) mimicking condition, Pτ (p) ≤ Pτ2(p) for every

p ∈ (∆(Ω))n, remains valid when considering a converging sequence of sub-strategies. Thus,

Aτ is also compact.

Consider the function H(τ) =
∑

p∈Post(τ2) Pτ (p) defined from Aτ to [0, 1]. As a piece-

wise linear function of τ , it is a continuous, so τ 1.0 = argmaxτ∈Aτ
H(τ) is well-defined. If

H(τ 1.0) = 1, then τ 1.0 is an F1-measurable strategy that mimics τ2. This contradicts the

original premise (that Oracle 1 cannot induce the same distribution over posteriors as τ2), so

assume to the contrary that τ 1.0 is a proper sub-strategy and H(τ 1.0) < 1. If that is the case

(i.e., if H(τ 1.0) < 1), there exists a posterior p∗ ∈ Post(τ2) so that Pτ1.0
(p∗) < Pτ2(p

∗).

Step 3: Partially supported and connected posteriors.

For every posterior p ∈ Post(τ2), let Ap = {ω ∈ Ω : pi(ω) > 0 for some player i} be the

set of states on which p is strictly positive, contained in some CKC denoted Cp. We say that a

posterior p ∈ Post(τ2) is partially supported (PS) if Pτ1.0
(p) < Pτ2(p), otherwise we say that p

is fully supported (FS). Let us now prove a few supporting claims related to PS posteriors.

Claim 1: If p is PS, then
∑

s τ 1.0(s|ω) < 1 for every state ω ∈ Ap.

Proof. Fix a posterior p and a state ω0 such that (µi
τ |ω0,s

)i∈N = p for some signal s and τ ∈

{τ 1.0, τ2}. There exists a constant αp,ω0 , independent of s and τ , such that αp,ω0µ(ω0)τ(s|ω0) =∑
ω∈Ap\{ω0} µ(ω)τ(s|ω). This follows from the fact that, in order to induce the posterior p, the

probabilities induced by τ must maintain the same proportions along the different states in Ap,

independently of either the strategy or the signal. Otherwise, the induced posterior would not
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match p. Thus, Equation (3) could be re-formulated as follows,

Pτ (p) =
∑

(ω,s):(µi
τ |ω,s

)i∈N=p

µ(ω)τ(s|ω)

=
∑

s:(µi
τ |ω0,s

)i∈N=p

µ(ω0)τ(s|ω0) +
∑

(ω,s):ω∈Ap\{ω0},
and (µi

τ |ω,s
)i∈N=p

µ(ω)τ(s|ω)

= (1 + αp,ω0)µ(ω0)
∑

s:(µi
τ |ω0,s

)i∈N=p

τ(s|ω0),

which translates to ∑
s:(µi

τ |ω0,s
)i∈N=p

τ(s|ω0) =
Pτ (p)

(1 + αp,ω0)µ(ω0)
.

Summing over all p ∈ Supp(τ2), we get

∑
s

τ(s|ω0) =
1

µ(ω0)

∑
p:(µi

τ |ω0,s
)i∈N=p,

for some s

Pτ (p)

(1 + αp,ω0)
. (5)

Note that the RHS holds for either τ 1.0 or τ2.

Now assume, by contradiction, that p0 is a PS posterior and
∑

s τ 1.0(s|ω0) = 1 for some

state ω0 ∈ Ap0 . Using Equation (5), for both τ2 and τ 1.0, we get

1 =
∑
s

τ2(s|ω0) =
1

µ(ω0)

∑
p:(µi

τ2|ω0,s
)i∈N=p,

for some s

Pτ2(p)

(1 + αp,ω0)

1 =
∑
s

τ 1.0(s|ω0) =
1

µ(ω0)

∑
p:(µi

τ1.0|ω0,s
)i∈N=p,

for some s

Pτ1.0
(p)

(1 + αp,ω0)
,

which implies that

∑
p:(µi

τ2|ω0,s
)i∈N=p,

for some s

Pτ2(p)

(1 + αp,ω0)
=

∑
p:(µi

τ1.0|ω0,s
)i∈N=p,

for some s

Pτ1.0
(p)

(1 + αp,ω0)
<

∑
p:(µi

τ2|ω0,s
)i∈N=p,

for some s

Pτ2(p)

(1 + αp,ω0)
,

where the strict inequality follows from the fact that Pτ1.0
(p) ≤ Pτ2(p) for every posterior p,
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with a strict inequality for p = p0. This yields a contradiction, and the result follows.

Claim 2: If
∑

s τ 1.0(s|ω) < 1 for some state ω, then there exists a PS posterior p such that

ω ∈ Ap.

Proof. Assume, to the contrary, that
∑

s τ 1.0(s|ω0) < 1 for some state ω0, and every posterior

p such that ω0 ∈ Ap is FS. Using Equation (5), we deduce that

1 =
∑
s

τ2(s|ω0)

=
1

µ(ω0)

∑
p:(µi

τ2|ω0,s
)i∈N=p,

for some s

Pτ2(p)

(1 + αp,ω0)

=
1

µ(ω0)

∑
p:(µi

τ1.0|ω0,s
)i∈N=p,

for some s

Pτ1.0
(p)

(1 + αp,ω0)

=
∑
s

τ 1.0(s|ω0) < 1,

where the first equality follows from the fact that τ2 is a strategy, the second and fourth

equations follow from Equation (5), the third equality follows from the fact that every posterior p

such that ω0 ∈ Ap is FP, and the last inequality is by assumption. We thus reach a contradiction,

and the result follows.

We will use Claims 1 and 2 to extend τ 1.0, and show that it cannot be a maximum of H. For

this purpose we need to define the notion of connected posteriors. Formally, we say that two

posteriors p, p′ ∈ Post(τ2) are connected if there exist two states (ω, ω′) ∈ Ap ×Ap′ ⊆ Cp ×Cp′ ,

where Cp ̸= Cp′ are two distinct CKCs, such that F1(ω) = F1(ω
′). Equivalently, in such a

case, we refer to Cp and Cp′ as connected, as well. Let (ω, ω
′) and F1(ω) be the connection and

connecting set of p and p′, respectively.13 We can now relate the notion of connected posteriors

to PS ones through the following claim.

Claim 3: Fix a PS posterior p and ω ∈ Ap. Then, for every connection (ω, ω′), there exists a

PS posterior p′ such that ω′ ∈ Ap′ ∩ F1(ω).

13Equivalently, we refer to (ω, ω′) and F1(ω) as the connection and connecting set of the CKCs Cp and Cp′ .
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Proof. Let p be a PS posterior with a connection (ω, ω′) and F1(ω) = F1(ω
′). Using Claim 1,

if p is PS, then
∑

s τ 1.0(s|ω) < 1 for every ω ∈ Ap, so the F1-measurability constraint implies

that
∑

s τ 1.0(s|ω′) < 1. Thus, according to Claim 2, there exists a PS posterior p′ such that

ω′ ∈ Ap′ , as needed.

Step 4: Extending τ 1.0.

Recall that p∗ is a PS posterior. Let V be the set of all CKCs Cl such that there exists a

sequence of PS posteriors (p∗, p1, . . . , pl) where every two successive posteriors are connected

and Apl ⊆ Cl. Assume that V also contains Cp∗ . Let E ⊆ V 2 be the set of couples (C,C ′) such

that C and C ′ are connected, and denote by P∗ the set of all PS connected posteriors that

generate V . Clearly, (V,E) is a connected graph and we can use it to construct a sub-strategy τ

which mimics τ2 and Post(τ) = P∗. The proof proceeds by induction on the number of vertices

in V .

Preliminary step: |V | = 1. Assume that Cp∗ is the unique CKC in V . Because p∗ ∈ Post(τ2),

there exists a signal s∗ and state ω ∈ Cp∗ such that τ2(s
∗|ω) > 0 and (µi

τ2|ω,s∗)i∈N = p∗. Define

the sub-strategy τ 1.1(s|ω) = τ2(s
∗|ω) for every ω ∈ Ap∗ . Recall that F1 refines F2 in every CKC,

therefore τ 1.1 is well defined. Moreover, it is a sub-strategy that mimics τ2 and Post(τ 1.1) = P∗,

as needed.

Induction step: |V | = m. Assume that for every graph (V,E) where |V | = m, there exists a

sub-strategy τ 1.m that mimics τ2, and Post(τ 1.m) = P∗.

Induction proof for |V | = m+ 1. Assume that |V | = m+ 1. The distance between Cp∗ and

every vertex (i.e., every CKC) in V is defined by the shortest path between the two vertices.

Denote by Cm+1 the vertex in (V,E) with the longest path from Cp∗ .

We argue that Cm+1 has exactly one connecting set with the other vertices. Otherwise,

assume that there are at least two connecting sets. If the two originate from the same CKC in

V , then we get an F1-loop, which cannot exist. Thus, we can assume that the two sets originate

from different CKCs, denoted C and C ′. Since (V,E) is a connected graph, there exists a path

from Cp∗ to each of these CKCs. Consider the two sequences of connecting sets for these two

paths. If the two are pairwise disjoint, then we have an F1-loop from Cp∗ to Cm+1, which again

yields a contradiction. So the sequences must coincide at some stage. Take a truncation of the
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sequences from the last stage in which they coincide until Cm+1. The origin of the two paths are

connected CKCs (sharing the same connecting set), denoted Cl and Cl+1, so we now have two

pairwise disjoint sequences between these two connected CKCs till Cm+1, thus generating an

F1-loop. Therefore, we conclude that there is exactly one connecting set, denoted A, between

Cm+1 and the other CKCs in V .

Consider a refinement of F1 where A is partitioned into two disjoint sets, A1 = A \ Cm+1

and A2 = A∩Cm+1. In such a case, |V | = m and, according to the induction step, there exists

a mimicking sub-strategy τ 1.m supported on every PS connected posterior in P∗ other than the

ones related to the CKC Cm+1. Let pm+1 denote a PS posterior such that A2 ⊂ Apm+1 ⊆ Cm+1.

In case there is more than one PS posterior, the proof works similarly because every additional

posterior shares the same connecting set A.

According to the induction step, Post(τ 1.m) = P∗ \ {pm+1}, so we need to extend this

sub-strategy to support pm+1 as well. Since pm+1 ∈ Post(τ2), there exists a signal, denoted

s∗ w.l.o.g., and states ω ∈ Apm+1 ⊆ Cm+1 such that τ2(s
∗|ω) > 0 and (µi

τ2|ω,s∗)i∈N = pm+1.

Moreover, because Cm+1 is not connected (neither directly, nor indirectly) to the other CKCs in

V under the refined F1, we can assume that
∑

s τ 1.m(s|A1) >
∑

s τ 1.m(s|A2). Otherwise, we can

re-scale τ 1.m in the different unconnected elements of the refined F1. Hence, we can also assume

that there exists a signal, again denoted s∗ w.l.o.g., such that τ 1.m(s
∗|A1) > 0 = τ 1.m(s

∗|A2).

Define the following function

τ 1.m+1(s|ω) =

cmτ 1.m(s|ω), for every (ω, s) s.t. τ 1.m(s|ω) > 0,

c2τ 2(s
∗|ω), for every (ω, s) s.t. ω ∈ Apm+1 , s = s∗,

where the parameters cm > 0 and c2 > 0 are chosen to ensure that τ 1.m+1(s
∗|A1) = τ 1.m+1(s

∗|A2),

thus sustaining the F1-measurability constraint across the connecting set A, and that τ 1.m+1

remains a sub-strategy that mimics τ2 (ensuring that
∑

s τ(s|ω) ≤ 1 for every s and ω and the

that Inequality (4) holds). In conclusion, we constructed a sub-strategy that mimics τ2 and

whose support is P∗, and this concludes the induction.

Let τ 1∗ be the sub-strategy that mimics τ2 and Pτ1∗
(p) > 0 if and only if p ∈ P∗. Assume

that τ 1∗ only uses signals in some set S∗, that are not used by τ 1.0 (i.e., S∗ ∩ S = ϕ). Define
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the following sub-strategy

τ 2.0(s|ω) =

τ 1.0(s|ω), for every (ω, s) s.t. τ 1.0(s|ω) > 0,

cτ 1∗(s|ω), for every (ω, s) s.t. τ 1∗(s|ω) > 0,

where c is a constant. Since τ 1∗(s|ω) supports only PS posteriors of τ 1.0, for every state

ω where there exists a PS posterior p of τ 1∗(s|ω) such that ω ∈ Ap, it follows from Claim

1 that
∑

s∈S τ 1.0(s|ω) < 1. Therefore, by choosing c sufficiently small, we can ensure that∑
s∈S∪S∗ τ 2.0(s|ω) =

∑
s∈S τ 1.0(s|ω) + c

∑
s∈S∗ τ 1∗(s|ω) < 1. Hence, for the extended strategy

τ 2.0(s|ω), we can guarantee that for every ω ∈ Ω,
∑

s∈S∪S∗ τ 2.0(s|ω) ≤ 1. We conclude that τ 2.0

is a sub-strategy that mimics τ2 and H(τ 2.0) > H(τ 1.0) due to the extension over PS posteriors.

This contradicts the definition of τ 1.0 as a mimicking sub-strategy that maximizes H. We can

thus conclude that H(τ 1.0) = 1, and τ 1.0 is an F1-measurable strategy that mimics τ2, as needed.

A.3 Proof of Proposition 1

Proof. iii ⇒ i. Suppose that (ω1, ω1, ω2, ω2, . . . , ωm, ωm) is not F2-balanced. It means that

there is a partition {A,B} s.t. #(A → B) ̸= #(B → A). Define

f(ω) =

 1, if ω ∈ A,

2, if ω ∈ B.

We obtain,
m∏
i=1

f(ωi)

f(ωi)
=

(
1

2

)#(A→B)

· 2#(B→A) ̸= 1.

This contradicts iii.

i ⇒ ii. Assume i . For every i, let Di = {ωj;ωj ∈ F2(ωi)} ∪ {ωj;ωj ∈ F2(ωi)} be

the set which contains all the states in the loop that share the same information set of F2

as ωi. Condition i implies that for every ωi, the partition A = Di and B = (Di)
c satisfies

#(A → B) = #(B → A). Note that |{ωj;ωj ∈ F2(ωi)}| = #(A → B) + #(A → A), and
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|{ωj;ωj ∈ F2(ωi)}| = #(B → A) + #(A → A), where #(A → A) = |{i ∈ {1, ...,m};ωi ∈

A, ωi ∈ A}|. It follows from #(A → B) = #(B → A) that

|{ωj;ωj ∈ F2(ωi)}| = |{ωj;ωj ∈ F2(ωi)}| (6)

for every ωi.

Define J = {i;ωi ∈ F2(ωi)}. We show that the rest of the states are decomposed into

F2-loops. Specifically, we show that if a finite set S = {(ωj, ωj); ωj /∈ F2(ωj)}, not necessarily

an F1-loop, satisfies Eq. (6) for every ωi ∈ S, then it is covered by F2-loops.

When |S| = 2, Eq. (6) implies that this is an F2-loop. We now assume the induction

hypothesis: if Eq. (6) is satisfied for a set S = {(ωj, ωj)} and for every ωi ∈ S, and S contains

less than or equal to m pairs, then it is covered by F2-loops. We proceed by showing this

statement for sets S containing m+ 1 pairs.

We start at an arbitrary pair, say (ω1, ω1), and show that it belongs to an F2-loop. Once

this F2-loop is formed, the states outside of this loop satisfy Eq. (6) for every ωi outside of this

loop. By the induction hypothesis, this set is covered by F2-loops.

Due to Eq. (6), there is at least one ωj such that ωj ∈ F2(ω1). Consider now the two pairs,

(ωj, ωj, ω1, ω1). If this is a loop, Eq. (6) remains true when applied to the states out of this loop.

The induction hypothesis completes the argument. Otherwise, there is ωk where k ̸= 1, j, such

that ωk ∈ F2(ωj). Consider now the three pairs, (ωk, ωk, ωj, ωj, ω1, ω1). If this is an F2-loop,

the other states satisfy Eq. (6), and as before, this set is covered by F2-loops. However, if this

is not an F2-loop, Eq. (6) remains true, we annex another pair and continue this way until we

obtain an F2-loop. This loop might cover the entire set, but if not, the remaining states are,

by the induction hypothesis, covered by F2-loops. This shows ii.

ii ⇒ iii. Let f :
{
ω1, ω1, ω2, ω2, . . . , ωm, ωm

}
→ (0,∞) be a positive and F2-measurable

function. Suppose that I1, ..., Ir is a partition of {1, ...,m}, and for each t = 1, ..., r, the set(
(ωi, ωi)

)
i∈It

is an F2-loop. Since,
(
(ωi, ωi)

)
i∈It

is an F2-loop,

∏
i∈It

f(ωi)

f(ωi)
= 1,
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which implies that
m∏
i=1

f(ωi)

f(ωi)
=

r∏
t=1

∏
i∈It

f(ωi)

f(ωi)
= 1.

This proves iii.

A.4 Proof of Proposition 2

Proof. Fix an Fi-loop Li =
(
(ωj, ωj)

)
j∈I

where I = {1, 2, . . . ,m}. Let Cj denote the CKC that

contains every pair (ωj, ωj).

Proof for first statement: Assume that Li intersects the same CKC at least twice, so

that Cl1 = Cl2 , where l1 < l2, is such CKC. Because Li is a loop, the two pairs (ωl1 , ωl1)

and (ωl2 , ωl2) that are in this CKC cannot be adjacent in the loop Li, i.e., l1 ̸= l2 ± 1. De-

fine the following sub-loop of Li by omitting every state from ωl1 to ωl2 . Formally, L′
i =

(ω1, ω1, . . . , ωl1−1, ωl1 , ωl2 , ωl2+1, . . . , ωm, ωm). This is a well-defined sub-loop of Li (as ωl1 , ωl2 ∈

Cl1 while all other parts of the sub-loop match those of Li), which implies that Li is not ir-

reducible. Note that the part we truncated from the loop Li also forms a sub-loop, namely

L′′
i = (ωl2 , ωl1 , ωl1+1, ωl1+1, . . . , ωl2−1, ωl2−1).

Proof for second statement: Assume, by contradiction, that Li is irreducible, yet it has

a pair of states (ωl, ωl) such that ωl ∈ Fi(ωl). This implies that {ωl−1, ωl, ωl, ωl+1} ⊆ Fi(ωl) =

Fi(ωl+1). We can assume that Cl−1 ̸= Cl+1, otherwise the first statement suggests that Li is not

irreducible. So, define the following sub-loop of Li by L′
i =

(
(ωj, ωj)

)
j∈I\{l}

. Note that L′
i is

a well-defined sub-loop, as Cl−1 ̸= Cl+1 and ωl−1 ∈ Fi(ωl+1), thus contradicting the irreducible

property.

Proof for third statement: Assume, w.l.o.g., that Fi(ω1) ̸= Fi(ω1). If Li intersects

the same CKC twice, then we can follow the proof of the first statement, truncate the loop,

and take a sub-loop that has an informative pair of states and intersects every CKC at most

once. Thus, w.l.o.g., assume that Li intersects every CKC at most once. Denote the set of

informative pairs by Ic = {j : Fi(ωj) ̸= Fi(ωj)} and define the following ordered sub-loop of

Li by L′
i =

(
(ωj, ωj)

)
j∈Ic

. In simple terms, L′
i is generated from Li by truncating all non-

informative pairs (ωj, ωj), where Fi(ωj) = Fi(ωj), similarly to the process used in the proof of
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the second statement. Focusing on L′
i, note that: (i) all pairs are pairwise disjoint; (ii) every

CKC is crossed at most once; (iii) ωj+1 ∈ Fi(ωj) as we removed only non-informative pairs;

and (iv) ωj ̸= ωj are both in the same CKC as in the original loop. Hence, L′
i is a well-defined

loop and an Fi-fully-informative sub-loop of Li.

Proof of fourth statement: If the loop Li is irreducible, then the statement holds.

Otherwise, it is not irreducible and we will prove by induction on the number of pairs m in L1.

If m = 2, then Li is irreducible. If m = 3 and Li is not irreducible, then it has a sub-loop with

two pairs. Assume w.l.o.g. that this sub-loop is based on the states {ω1, ω1, ω2, ω2}. It cannot

be that Fi(ω1) = Fi(ω2), because that would make (ω2, ω2) a non-informative pair. So the

sub-loop is (ω1, ω1, ω2, ω2) such that Fi(ω1) = Fi(ω2), but Fi(ω1) = Fi(ω3) and Fi(ω2) = Fi(ω3),

so the pair (ω3, ω3) is non-informative.

Assume the statement holds for m = k pairs, and consider an Li loop with k+1 pairs. If the

loop intersects the same CKC more than once, we can split is to two sub-loops (as previously

done), and use the induction hypothesis for each. Hence, we can assume that the loop does not

intersect the same CKC twice.

Because the loop is not irreducible, there are two states ωi1 and ωi2 that are not adjacent

in the loop (so i1 ≥ i2 + 2), yet Fi(ωi1) = Fi(ωi2). The last equality also suggests that

Fi(ωi1−1) = Fi(ωi2+1). If i1 = i2 + 2, then there exists only one pair between the two states.

This implies that the pair (ωi2+1, ωi2+1) = (ωi1−1, ωi1−1) is non-informative, contradicting the

fact that Li is Fi-fully-informative. So we conclude that i1 ≥ i2 + 3. Define the following two

loops L′
i = (ωi1 , ωi1 , . . . , ωi2 , ωi2) and L′′

i = (ωi2+1, ωi2+1, . . . , ωi1−1, ωi1−1), where the ordering

of states follows the original loop Li. These are two well-defined Fi-loops with less than k + 1

pairs each, so the induction hypothesis holds and the result follows.

If Li does not intersect the same CKC more than once and does not have at least 4 states

in the same partition element, then it is irreducible.

Proof of fifth statement: If the loop has a non-informative pair ωj ∈ Fi(ωi), then it

contains 4 states from the same partition element, so assume that the loop is Fi-fully-informative

and that it does not intersect the same CKC more than once. Thus, we need to prove that it

has at least 4 states in the same partition element of Fi.
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Consider the strict sub-loop L−
i of Li. It consists of pairs, taken from the original loop.

Because Li does not intersect the same CKC more than once, all the pairs of L−
i are a strict

subset of the pairs of Li. This implies that some pairs were omitted from Li when generating

L−
i , so assume w.l.o.g. that the pair {ω1, ω1} is not included in L−

i . This implies that one

pair {ωj, ωj} precedes in L−
i a different one that it precedes in Li. That is, Fi(ωj) = Fi(ωj+1)

according to Li, whereas Fi(ωj) = Fi(ωk) where k ̸= j + 1, according to L−
i . But also Fi(ωk) =

Fi(ωk−1) according to Li. Thus, {ωj, ωj+1, ωk, ωk−1} are in the same partition element of Li, as

stated and the result follows.

A.5 Proof of Theorem 2

Proof. Suppose that Oracle 1 dominates Oracle 2. If there exists a CKC in which F1 does not

refine F2, Theorem 5 from Part I (see Appendix A.1.2) states that Oracle 1 does not dominate

Oracle 2 in that CKC. In other words, there exists τ2 defined on this CKC, such that for every

τ1, it follows that Post(τ1) ⊈ Post(τ2). We extend the definition of τ2 to the entire state space

in an arbitrary way, and still for every τ1, it follows that Post(τ1) ⊈ Post(τ2), and we can follow

the results of Part I accordingly (specifically, the game of beliefs and Proposition 3 therein).

We proceed to show that any F1-loop is F2-balanced, which is equivalent to the existence

of a cover by loops of F2. Suppose, to the contrary, that an F1-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm)

is not F2-balanced. This means that there is an F2-measurable partition {A,B} of these states

such that Eq. (1) is not satisfied. We define an F2-measurable signaling function that obtains

two signals, α and β. Over the states of the loop, let

τ2(α|ω) =

x, if ω ∈ A,

y, if ω ∈ B,

(7)

and τ2(β|ω) = 1− τ2(α|ω). On other states, τ2 is defined arbitrarily. The numbers x, y ∈ (0, 1)

are chosen so that lnx−ln y
ln (1−x)−ln (1−y)

is irrational.

Claim 1: If Post(τ1) ⊆ Post(τ2), then any signal of τ1 induces the same posteriors as α does

or as β does in every CKC.
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Claim 2: For any signal s of τ1 and for any i, τ1(s|ωi)
τ1(s|ωi)

∈ {x
y
, 1−x
1−y

, y
x
, 1−y
1−x

} . Therefore,

m∏
i=1

τ1(s|ωi)

τ1(s|ωi)
=

(
x

y

)ℓ1

·
(
1− x

1− y

)ℓ2

·
(y
x

)k1
·
(
1− y

1− x

)k2

,

where ℓ1 + ℓ2 = |{i;ωi ∈ A and ωi ∈ B}| and k1 + k2 = |{i;ωi ∈ B and ωi ∈ A}|.

Claim 3: For any signal s of τ1,
∏m

i=1
τ1(s|ωi)
τ1(s|ωi)

= 1.

We therefore obtain (x
y
)ℓ1(1−x

1−y
)ℓ2( y

x
)k1( 1−y

1−x
)k2 = 1. We conclude that there are whole num-

bers, say ℓ = ℓ1 − k1 and k = k2 − ℓ2 such that (x
y
)ℓ = (1−x

1−y
)k. Since lnx−ln y

ln (1−x)−ln (1−y)
=

ln x
y

ln 1−x
1−y

is irrational, ℓ = k = 0, implying that Eq. (1) is satisfied. This is a contradiction, so every

F1-loop is F2-balanced.

Moving on to the third part of the theorem, fix an irreducible F1-loop L1, and consider an

irreducible cover by a unique F2-loop L2, i.e., L2 covers L1 and both are irreducible w.r.t. the

relevant partition. Note that if L2 is also order-preserving, it implies that it matches L1.

Assume, by contradiction, that L2 is not order-preserving and the two loops do not match

one another. Denote L1 = (ω1, ω1, . . . , ωm, ωm) and L2 = (ω1, ω1, ωi2 , ωi2 , . . . , ωim , ωim). Thus,

there exist indices k > j > 1 such that ωk precedes ωj in L2. In simple terms, it implies that

though L2 consists of the same pairs as L1, the ordering of pairs throughout the two loops

differs, as suggested in Footnote 9.

Since the two loops are irreducible, it follows from Proposition 2 that they intersect every

CKC at most once and that both are fully-informative. Moreover, for every state ω in every loop

Li, every set Fi(ω) contains two states from the loop Li (otherwise, the loop is not irreducible).

So, one can define an Fi-measurable function τi such that τi(s|ωl) = τi(s|ωl−1) ̸= τi(s|ωl′) for

every ωl ̸= ωl′ in the loop.

To simplify the exposition, partition the states of L2 into three disjoint sets: the set A2
1 =

{ω1, . . . , ωk} contains all the states of L2 from ω1 till ωk (following the order of L2), A
2
k =

{ωk, . . . , ωj} contains all the states of L2 from ωk till ωj, and A2
j = {ωj, . . . , ω1} which contains

all remaining states of L2. Follow a similar process with L1, so that A1
1 = {ω1, . . . , ωj} contains

all the states of L1 from ω1 till ωj (following the order of L1), A
1
j = {ωj, . . . , ωk} contains all

the states of L1 from ωj till ωk, and A1
k = {ωk, . . . , ω1} which contains all remaining states of
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L1.

Denote by Cl the CKC of the pair (ωl, ωl). Fix two distinct signals s1 and s2, and define

the signaling function τ2 as follows:

τ2(s1|ω) = 1− τ2(s2|ω) =



p1, if ω ∈ A2
1 = {ω1, . . . , ωk},

p2, if ω ∈ A2
k = {ωk, . . . , ωj},

p3, if ω ∈ A2
j = {ωj, . . . , ω1},

p4, if ω ∈ Ω \
⋃

i=1,j,k A
2
i ,

where the probabilities {p1, p2, p3, p4} are chosen as in the strategy defined in Equation (2).

Because the loop is irreducible, intersects every CKC at most once and F2-fully-informative, τ2

is a well-defined F2-measurable function.

The result of Lemma 1 from Part I (see Appendix A.1.1) holds in every CKC of the loop

(though with different probabilities). So given a CKC Cl, if there exists τ1 such that Post(τ1) ⊆

Post(τ2), then for every signal t ∈ Supp(τ1) there exists a signal s ∈ {s1, s2} and a constant

c > 0 such that τ1(t|ω) = cτ2(s|ω) for every ω ∈ Cl. Therefore, in every CKC Cl and for every

signal t, there exists a signal s such that τ2(s|ωl)
τ2(s|ωl)

= τ1(t|ωl)
τ1(t|ωl)

. Fix such a strategy τ1.

Notice that in every CKC Cl ̸= C1, Cj, Ck and for every signal s ∈ {s1, s2}, we get τ2(s|ωl) =

τ2(s|ωl). Thus,
τ1(t|ωl)
τ1(t|ωl)

= 1 for every t and every l ̸= i, j, k. This implies that for every feasible

signal t restricted to the loop L1,

τ1(t|ω) =


at, if ω ∈ A1

1 = {ω1, . . . , ωj},

bt, if ω ∈ A1
j = {ωj, . . . , ωk},

ct, if ω ∈ A1
k = {ωk, . . . , ω1},

where at, bt, ct ∈ (0, 1]. Evidently, the parameters at, bt, and ct can vary across the feasible

signals.

In addition, Lemma 1 from Part I (see Appendix A.1.1) states that in every CKC, τ1(t|ω)
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is proportional to τ2(si|ω) for some signal si ∈ {s1, s2}. This yields the following constraints:

τ1(t|ω1)

τ1(t|ω1)
=

ct
at

=
τ2(si|ω1)

τ2(si|ω1)
∈
{p3
p1
,
1− p3
1− p1

}
,

τ1(t|ωj)

τ1(t|ωj)
=

at
bt

=
τ2(si|ωj)

τ2(si|ωj)
∈
{p2
p3
,
1− p2
1− p3

}
,

τ1(t|ωk)

τ1(t|ωk)
=

bt
ct

=
τ2(si|ωk)

τ2(si|ωk)
∈
{p1
p2
,
1− p1
1− p2

}
.

Because the two loops cover one another and specifically because L2 is F1-covered, Proposition

1 states that
∏m

l=1

τ1(t|ωil
)

τ1(t|ωil
)
= 1, which leaves only two possibilities for the ratios { ct

at
, at
bt
, bt
ct
}

above: either they equal {p3
p1
, p2
p3
, p1
p2
} respectively, or {1−p3

1−p1
, 1−p2
1−p3

, 1−p1
1−p2

}. This follows from the

uniqueness of the ratios, as stated in Lemma 1 from Part I (see Appendix A.1.1). Note that

this must hold for every feasible signal t of τ1 across the loop.

τ1(t|ω) t1 t2
ω1 λ1c1 λ2c2
ω1 λ1a1 λ2a2
ωj λ1a1 λ2a2
ωj λ1b1 λ2b2
ωk λ1b1 λ2b2
ωk λ1c1 λ2c2

Figure 12: The structure of τ1 restricted to the states {ω1, ω1, ωj , ωj , ωk, ωk}, where c1
a1

= p3

p1
, b1
c1

= p1

p2
, c2
a2

= 1−p3

1−p1

and b2
c2

= 1−p1

1−p2
and λ1, λ2 > 0.

Thus, if we focus on the states {ω1, ω1, ωj, ωj, ωk, ωk} and group together all signals t with

the same distribution on these states, then for some positive constants λ1, λ2 > 0 we get the

strategy defined in Figure 12. Plugging in the relevant ratios yields the probabilities given in

Figure 13.

Recall that the rows must sum to 1, so that τ1 is a well-defined strategy. So, we get the
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τ1(t|ω) t1 t2
ω1 λ1c1 λ2c2
ω1 λ1c1

p1
p3

λ2c2
1−p1
1−p3

ωj λ1c1
p1
p3

λ2c2
1−p1
1−p3

ωj λ1c1
p1
p2

λ2c2
1−p1
1−p2

Figure 13: The structure of τ1 restricted to the states {ω1, ω1, ωj , ωj}, where probabilities are presented in terms
of c1, c2, λ1 and λ2.

following system of linear equations, in which (x, y) = (λ1c1, λ2c2) and:

x+ y = 1,

p1
p3
x+

1− p1
1− p3

y = 1,

p1
p2
x+

1− p1
1− p2

y = 1,

which does not have a solution since p1, p2, p3 are required to be distinct. Thus, we conclude

that the loops must sustain the same ordering of pairs, and therefore coincide as needed. This

concludes the third and final part of the theorem.

A.6 Proof of Theorem 3

Proof. We first define an auxiliary set Ω, which groups together states that are in the same

partition element of F2 within CKCs. Formally, define the set Ω such that η(ω′) ∈ Ω if and only

if η(ω′) = {ω ∈ Ω : ω, ω′ ∈ Cj, F2(ω) = F2(ω
′)}. Accordingly, define the partition F2 to be

discrete in every CKC, such that F2(η(ω)) = F2(η(ω
′)) if and only if F2(ω) = F2(ω

′). Note that

F2 is essentially a projection of F2 onto Ω. In addition, F1 is defined as follows: (i) discrete in

every CKC, similarly to F2; (ii) F1(η(ω)) = F1(η(ω
′)) if ω and ω′ are not in the same CKC, and

there exist ω ∈ η(ω) and ω′ ∈ η(ω′) such that F1(ω) = F1(ω′); and (iii) F1 forms a partition

(i.e., given (i) and (ii), if two elements of F1 contain the same state η(ω), they are unified into

one element).

We now prove that F1 = F2 in every CKC and that there are no F1-loops. Thus, by Theorem

1, any F2-measurable strategy τ2 (which, extended to Ω, is also F2-measurable) can be imitated

by an F1-measurable strategy τ1.
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Step 1: F1 = F2 in every CKC.

By definition, F2 refines F1, so we need to prove that F1 also refines F2 in every CKC.

Assume, by contradiction, that F1(η(ω)) = F1(η(ω
′)) where ω and ω′ are in the same CKC,

whereas F2(η(ω)) ̸= F2(η(ω
′)). This suggests that F2(ω) ̸= F2(ω

′), which implies that F1(ω) ̸=

F1(ω
′). According to the construction of F1, we conclude that the equality F1(η(ω)) = F1(η(ω

′))

followed from the partition-formation stage described in (iii) above, through at least one other

CKC. Thus, there exists an F1-loop which connects a state in η(ω) with a state in η(ω′).

Without loss of generality, assume these states are ω and ω′. Because every F1-loop is F2-non-

informative, it follows that F2(ω) = F2(ω
′), a contradiction.

Step 2: There are no F1-loops.

An F1-loop implies that an F1-loop exists. By construction, all Ω states in every CKC

are F2-equivalent (i.e., grouped together according to F2). Because every F1-loop is F2-non-

informative, it implies that the loop consists of only one Ω state in every CKC, and not two.

This contradicts the definition of a loop.

Step 3: F1 can mimic F2.

Fix a strategy τ2, and let τ2 be the projected strategy on Ω. Because F1 = F2 in every

CKC and there are no F1-loops, there exists an F1-measurable strategy τ1 that imitates τ2.

Therefore, one can lift τ1 to Ω to create τ1, whose projection onto Ω matches τ1. Thus, the

strategy τ1 imitates τ2, as needed.

A.7 Proof of Proposition 3

Proof. Denote the two CKCs by C1 and C2. One part of the statement follows directly from

Theorem 2, so assume that F1 refines F2 in every CKC and any F1-loop is F2-balanced. If there

are no F1-loops, then the result follows from Theorem 1, so assume there exists at least one

F1-loop, and every such loop is F2-balanced.

Take any F1-loop (ω1, ω1, ω2, ω2) with four states. We argue that either it is also an F2-loop

or it is F2-non-informative. Otherwise, we can assume (without loss of generality) that F2(ω1) ̸=

F2(ωi), for every i = 1, 2. So, there are only two possibilities left: either F2(ω1) = F2(ω2) or

F2(ω1) ̸= F2(ω2). If F2(ω1) = F2(ω2), then there exists an F2-measurable partition of the four
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states such that A = {ω1, ω2} and B = {ω1, ω2}, which is not balanced. Otherwise, there exists

another non-balanced F2-measurable partition of the form A = {ω1} and B = {ω1, ω2, ω2}. In

any case, we get a contradiction.

The proof now splits into two cases: either there exists an F1-loop (ω1, ω1, ω2, ω2) and an

index i such that F2(ωi) ̸= F2(ωi), or every such loop is F2-non-informative. If indeed every

such loop is F2-non-informative, Theorem 3 states that Oracle 1 dominates Oracle 2, so we

need only focus on the former.

Assume that there exists an F1-loop (ω1, ω1, ω2, ω2) and an index i such that F2(ωi) ̸= F2(ωi).

Denote this couple by {ω1, ω1} ⊆ C1. The previous conclusion implies that it is also an F2-loop.

We claim that, under these conditions, every τ2 is F1-measurable. Note that F1 refines F2 in

every CKC, so we need to verify that for every (ω, ω) ∈ C1 × C2 such that F1(ω) = F1(ω), it

follows that F2(ω) = F2(ω).

Take (ω, ω) ∈ C1 × C2 such that F1(ω) = F1(ω). If ω = ω1 or ω = ω1, then (ω, ω) are

part of the previously stated F2-loop, so F2(ω) = F2(ω). Otherwise, we can construct two new

F1-loops (ω, ω, ω1, ω2) and (ω, ω, ω2, ω1). Because F2(ω1) ̸= F2(ω1), either F2(ω) ̸= F2(ω1) or

F2(ω) ̸= F2(ω1). The previous conclusion again implies that (ω, ω) are a apart of an F2-loop,

so F2(ω) = F2(ω), as needed.

A.8 Proof of Theorem 4

Proof. We start by assuming that F1 and F2 are equivalent. According to Theorem 2, every

Fi refines F−i in every CKC, and every Fi-loop is covered by F−i-loops. Fix an irreducible

Fi-loop with at least 6 states, denoted Li, and consider a cover by F−i-loops. There are two

possibilities: either the cover constitutes a single loop, or else. If the cover contains a shorter

loop, say L′
−i, then that loop is not Fi-covered because Li is irreducible, and this contradicts

Theorem 2. Moreover, the cover cannot have non-informative pairs where F−i(ωi) = F−i(ωi),

because the two partitions match one another in every CKC and Li is irreducible. So, the cover

consists of a single irreducible F−i-loop, and Theorem 2 states that it is order-preserving. Thus,

Li and L−i coincide as stated.

Moving to the other direction, assume that Fi refines F−i in every CKC, that any Fi-loop
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has a cover of F−i-loops, and every irreducible Fi-loop with at least 6 states is an irreducible

F−i-loop. Let us prove that Oracle 1 dominates Oracle 2 (and the reverse dominance follows

symmetrically).

We start with two simple observations. First, in case F1 has no loops, then the statement

follows from previous results, so assume F1 has loops. Second, we say that two CKCs C1 and

C2 are connected if there exist ω1 ∈ C1 and ω2 ∈ C2 such that F1(ω1) = F1(ω2). If there exists

a CKC C which is not connected to any other CKC (i.e., for every ω ∈ C, the partition element

F1(ω) ⊆ C), then Oracle 1 dominates Oracle 2 conditional on that CKC and independently of

all other CKCs. Thus, without loss of generality, we can assume that all CKCs are connected,

either directly or sequentially.

For this part, we will need to define the notion of type-2 irreducible loops, which are fully-

informative loops that do not have four states in the same information set of the relevant

Fi.

Definition 8. Let Li be an Fi-loop. We say that the loop is type-2 irreducible if it does not

have four states in the same information set (i.e., partition element) of Fi.

We shall use this notion of type-2 irreducible F1-loops as building blocks upon which every

F2-measurable τ2 is also F1-measurable. For that purpose, we start by proving in the following

Claim 1 that every type-2 irreducible F1-loop is also an F2-loop. Next, we will extend this

measurability result to every set of type-2 irreducible F1-loops that intersect the same CKCs,

and finally extend it to all CKCs that these loops intersect. This sets of CKCs, to be later

defined as clusters, will be the basic sets upon which every F2-measurable strategy is also

F1-measurable.

Claim 1. Every type-2 irreducible F1-loop L1 is an F2-loop.

Proof. If L1 is irreducible, then it is also an irreducible F2-loop, and the result holds. Thus

assume that L1 is not irreducible. Using the fifth result in Proposition 2, we deduce that L1

intersects the same CKC more than once. Using the proof of the first result in Proposition 2,

we can decompose L1 into two disjoint strict sub-loops of F1. This can be done repeatedly, so

that L1 is decomposed into sub-loops that do not intersect the same CKC more than once. This
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implies that every such loop is type-2 irreducible. Thus, every such sub-loop is irreducible, and

so it is also an F2-loop.

Note that the decomposition process occurs within every relevant CKC C and that F1|C =

F2|C . That is, once there are two pairs of the same loop within the same CKC, we can decompose

the loop into two disjoint loops by rearranging these four states. So, one can reverse the process

and recompose the sub-loops of F2 to regenerate the original loop L1, which is now also an F2-

loop, as needed.

Once we dealt with individual type-2 irreducible loops, we move to loops that intersect the

same CKC. For that purpose, we need to prove the following supporting, general Claim 2 which

states that every Fi-fully-informative loop Li can be decomposed to type-2 irreducible Fi-loops.

Claim 2. Every Fi-fully-informative loop Li that is not type-2 irreducible can be decomposed

to type-2 irreducible Fi-loops.

Proof. The proof is done by induction on the number of pairs m in Li. If m = 2, then it is

irreducible, as needed. Assume that the statement holds for m = k, and consider a loop with

k+1 pairs. If it is not type-2 irreducible, then it has four different states {ωj, ωj+1, ωl, ωl+1} in

the same information set of Fi, where l > j+1 and l+1 < j so that the two pairs are not adjacent

in the original loop Li (otherwise, the loop has a non-informative pair). Note that additional

connection may exists, but in any case ωj+1 is in the same partition element as ωj, and the

same holds for ωl and ωl+1. Consider the loops (ωj, ωj, ωl+1, ωl+1, ωl+2, ωl+2, . . . , ωj−1, ωj−1) and

(ωl, ωl, ωj+1, ωj+1, ωj+2, ωj+2, . . . , ωl−1, ωl−1). The two sub-loops are based on the original loop,

other than the first pair, see Figure 14
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wj wj wj+1 wj+1

wℓ+1 wℓ+1 wℓ wℓ

Fi

Fi Fi

Figure 14: A fully-informative loop that is not type-2 irreducible, with four states in the same information set
of Fi. The red rectangle denotes the same partition element of Fi, and the green edges denote the additional
states of the original loop.

Each of these sub-loops is Fi-fully-informative, and has strictly less than k pairs. Thus,

the induction hypothesis holds, and they are either type-2 irreducible, or can be separately

decomposed to type-2 irreducible loops, so the result follows.

Note that even without the induction hypothesis, we can repeat the decomposition process,

so that all the connections of the original loop that are based on information sets of Fi with no

more than two states (in the loop) are kept in one of the sub-loops.

Using Claim 2, we now prove in the following Claim 3, that every F2-measurable strategy

on two type-2 irreducible F1-loops with a joint CKC (i.e., pass through the same CKC) is

F1-measurable.

Claim 3. Fix two type-2 irreducible F1-loops L1 and L′
1 that share at least one CKC. Then,

every τ2|L1∪L′
1
is F1-measurable.

Proof. Fix two type-2 irreducible F1-loop L1 and L′
1, and assume that they share at least one

CKC. Denote L1 = (ω1, ω1, ω2, ω2, . . . , ωm, ωm) and L′
1 = (ω′

1, ω
′
1, ω

′
2, ω

′
2, . . . , ω

′
m′ , ω′

m′). Assume,

by contradiction, that there exists a strategy τ2|L1∪L′
1
which is not F1-measurable. As already

proven, each of these loops is also an F2-loop, so the measurability constraint implies that there

exist ω ∈ L1 and ω′ ∈ L′
1 such that F2(ω) ̸= F2(ω

′) whereas F1(ω) = F1(ω
′). Because F1 and

F2 match one another in every CKC, this suggests that ω and ω′ are in two different CKCs.

Denote a shared CKC by Cj in which there are the pairs (ωj, ωj) and (ω′
j, ω

′
j) taken from L1
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and L′
1 respectively. Note that the two pairs may coincide, as well as contain one of the states

ω and ω′, but not both (because the two are in different CKCs). See Figure 15

Cj

wj wj

w′
j w′

j

F1

F1

w1

w′
1

F1

Figure 15: Two type-2 irreducible loops of F1 that share at least one CKC.

Let us now compose a type-2 irreducible F1 loop, using the fact that F1(ω) = F1(ω
′).

Without loss of generality, assume that ω = ω1 and ω′ = ω′
1, and that ω1 is not in Cj. Moreover,

it cannot be the case that ω1 and ω′
1 are both in the same loop, say L1, because L1 is also an

F2-loop and that would imply that either F2(ω) = F2(ω
′) in case ω′

1 = ωm, or that L1 is not a

type-2 irreducible loop in case ω′
1 ̸= ωm. Also, it must be that F1(ω

′
1) = F1(ω

∗) where ω∗ ∈ L1

if and only if ω∗ ∈ {ω1, ωm}, otherwise L1 is not type-2 irreducible.

We now split the proof into four possibilities:

• ω′
1 ∈ Cj.

• ω′
1 /∈ Cj and |{ωj, ωj} ∩ {ω′

j, ω
′
j}| = 0, 1, 2.

Assume that ω′
1 ∈ Cj. Consider the loop (ω1, ω1, ω2, ω2, . . . , ωj, ω

′
1). This loop matches L1

up to state ωj and F1(ω1) = F1(ω
′
1). Thus, it is a well-defined type-2 irreducible F1-loop, hence

also an F2-loop. Therefore, F2(ω1) = F2(ω
′
1) and we reach a contradiction.

Moving on to the next possibility, assume that ω′
1 /∈ Cj and |{ωj, ωj} ∩ {ω′

j, ω
′
j}| = 0.

Consider the loop (ω1, ω1, ω2, ω2, . . . , ωj, ω
′
j, ω

′
j+1, ω

′
j+1, . . . , ω

′
1, ω

′
1). If ωj and ω′

j are in different

partition elements of F1, then this is a well-defined F1-fully-informative loop. If the two states

are in the same partition element, then we can omit this pair from the loop and get a shorter
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loop (in terms of pairs). This process could be done repeatedly, until we get a well-defined

F1-fully-informative loop which starts with ω1 and ends with ω′
1. If it is a type-2 irreducible

F1-loop, then it is also an F2-loop, and F2(ω1) = F2(ω
′
1). Thus, assume that it is not type-2

irreducible, which implies that it has at least four states in the same partition element of F1.

These four states include neither ω1 nor ω′
1, because that would imply that either L1 or L′

1 is

not type-2 irreducible. Now we can apply Claim 2, to decompose this F1-fully-informative loop

to type-2 irreducible F1-loops, where at least one maintains the connection between ω1 nor ω′
1

(see the comment at the end of the proof of Claim 2). We thus conclude that it is also an

F2-loop and F2(ω1) = F2(ω
′
1).

The next possibility is that ω′
1 /∈ Cj and |{ωj, ωj} ∩ {ω′

j, ω
′
j}| = 1. If either ω′

j ∈ {ωj, ωj} or

ω′
j = ωj , then we can follow a similar proof as in the previous case where |{ωj, ωj}∩{ω′

j, ω
′
j}| =

0, so assume that ω′
j = ωj. In that case, we can redefine the previous loop by omitting ωj and

ω′
j to get (ω1, ω1, ω2, ω2, . . . , ωj−1, ω

′
j+1, ω

′
j+1, . . . , ω

′
1, ω

′
1). Again, this is either a well-defined

F1-fully-informative loop, or could be reduced to such a loop. Applying the same arguments as

before, we conclude that there exists a type-2 irreducible F1-loop which maintains the connection

between ω1 nor ω′
1, so it is also an F2-loop and F2(ω1) = F2(ω

′
1).

The last possibility is that ω′
1 /∈ Cj and |{ωj, ωj}∩{ω′

j, ω
′
j}| = 2, but in that case the analysis

in the previous possibilities holds, and we reach the same conclusion that F2(ω1) = F2(ω
′
1), as

needed.14

Next, we extend the result of Claim 3 to more than two loops. Specifically, we say that two

loops Li and L′
i are connected if either they share at least one CKC, or there exists a sequence

of loops starting with Li and ending with L′
i where each two consecutive loops share at least

one CKC.

Claim 4. Consider a set A of type-2 irreducible and connected F1-loops, i.e., every two loops

are connected by one of these type-2 irreducible loops. Then, every F2-measurable τ2|A is F1-

measurable.

14Note that the proof of Claim 3 also holds if ω and ω′ are not in the original L1 and L′
1 loops, respectively,

but are simply states in different CKCs that these loops intersect. That is, if ω and ω′ are in different CKCs
that L1 and L′

1 intersect and F1(ω) = F1(ω
′), we can construct an F1-fully-informative loop that starts with ω

and ends with ω′ in a similar manner as before, and eventually conclude that F2(ω) = F2(ω
′).
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Proof. Let us prove this by induction on the number of loops. The case of two loops is proved

in Claim 3, so assume the statement holds for m loops, and consider a set of m + 1 type-2

irreducible and connected F1-loops. Further assume, by contradiction, that there exists an

F2-measurable strategy over this set that is not F1-measurable. Thus, there exists ω and ω′

such that F2(ω) ̸= F2(ω
′) whereas F1(ω) = F1(ω

′). Evidently, ω and ω′ are in different loops

and different CKCs. Denote the loops of ω and ω′ by L1 and L′
1, respectively.

If L1 and L′
1 are connected directly (through a joint CKC) or through at most m loops

(including L1 and L′
1), then the induction hypothesis holds and every F2-measurable strategy

this set of loops is F1-measurable, implying that F2(ω) = F2(ω
′). Thus, assume that L1 and

L′
1 are connected through a sequence of all the m + 1 loops (including L1 and Lm+1). Note

that ω′ cannot be the in the same partition element as any other state from this set of loops,

other than ω, the state connected to ω in L1, and the state connected to ω′ in L′
1. Otherwise,

either one of these loops is not type-2 irreducible, or the F2-measurability constraints with every

intermediate loop is met (by the induction hypothesis), and again we get that F2(ω) = F2(ω
′).

Thus, we can now follow the same stages as in the proof of Claim 3 and generate an F1-

fully-informative loop based on the sequence of loops connecting L1 and L′
1 (as well as ω and

ω′), which starts with ω1 and ends with ω′
1. In this case, Claim 2 holds and we get a type-2

irreducible F1-loop, which starts with ω1 and ends with ω′
1, that is also an F2-loop. We therefore

conclude that F2(ω) = F2(ω
′) and the induction follows accordingly.

After we established that every F2-measurable strategy over a set of connected loops is

F1-measurable, let us extend this result to all the CKCs that these loops intersect. For that

purpose, let A be a maximal set of connected loops, where every two are connected, and let

CA be the set of all CKCs that intersect one of these loops (that is, every CKC contains a

pair of states from one of these loops). We refer to every CA as a cluster. We argue that

every F2-measurable strategy over a cluster CA is F1-measurable. To see this, recall Footnote

14 which states that the proof of Claim 3 holds for every ω and ω′ in two different CKCs that

intersect two connected loops L1 and L′
1, respectively. Namely, for every two such states ω and

ω′ where F1(ω) = F1(ω
′), it follows that F2(ω) = F2(ω

′). So, as argued in the proof of Claim 4,

we conclude that every F2-measurable strategy over a cluster is F1-measurable.
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Observation 1. Every F2-measurable strategy over a cluster is F1-measurable.

Once we have established that every F2-measurable strategy over a cluster is F1-measurable,

let us consider a partition Ω∗ of Ω into clusters and individual CKCs that are not part of clusters.

Note that any two elements of the partition Ω∗ jointly intersect at most one partition element

of F1, otherwise the two components would be in the same cluster. To see this, consider the

different possible intersections of elements in Ω∗. If both elements A1 and A2 are CKCs, then

any two different partition elements of F1 that intersect both A1 and A2 would form a type-2

irreducible F1-loop. Otherwise, one of these elements is a cluster, say A1, and it follows from

previous proofs that for every ω and ω′ that belong to the same cluster (but in different CKCs)

and F1(ω) = F1(ω
′), then one can form an F1-fully-informative loop that starts with ω and ends

with ω′. Thus, in case ω and ω′ are in cluster A1 and in different partition elements of F1 that

intersect A2 (whether A2 is a CKC or another cluster), one can form an F1-fully-informative

loop that intersects A1 and A2. Using Claim 2, we can conclude that A1 and A2 belong to the

same cluster. This result is summarized in the following observation.

Observation 2. Fix two elements A1, A2 ∈ Ω∗. Then, there exists at most one partition

element F1(ω) of F1 such that F1(ω) ∩ A1 and F1(ω) ∩ A2 are non-empty sets.

We would now want to prove that Oracle 1 can mimic every F2-measurable strategy de-

fined over Ω∗. For this purpose, we present the following Lemma 2 which relates to the F2-

measurability constraints over different sets of CKCs, that are not in the same cluster (i.e.,

they are not connected by type-2 irreducible F1-loops).

Lemma 2. Fix two disjoint sets A1, A2 ⊆ Ω that do not intersect the same CKCs, and denote

A = A1 ∪ A2. Assume that:

• For every i and for every F2-measurable τ2|Ai
, there exists an F1-measurable τ i1|Ai

, such

that µτ1|Ai
= µτ2|Ai

.

• For every ω1, ω
′
1 ∈ A1 and ω2, ω

′
2 ∈ A2 such that F1(ω1) = F1(ω2) and F1(ω

′
1) = F1(ω

′
2),

it follows that F1(ω1) = F1(ω
′
1).

Then, for every τ2|A, there exists τ1|A such that µτ1|Ai
= µτ2|Ai

for every i = 1, 2.

50



Proof. Fix τ2|A and τ i1|Ai
where i = 1, 2, such that µτ2|Ai

= µτ i1
|Ai

for every i. Define the sets

Ãi = {ωi ∈ Ai : ∃ω−i ∈ A−i, F1(ωi) = F1(ω−i)} for every i = 1, 2. The second condition of the

claim implies that all the states in Ã1∪ Ã2 are in the same partition element of F1. To see this,

fix ω1 ∈ Ã1 and, by definition, there exists a state ω2 ∈ Ã2 such that F1(ω1) = F2(ω2). If there

exists another ω′
1 ∈ Ã1, it is either connected to ω2 (i.e., F1(ω

′
1) = F1(ω2)), or to some ω′

2 ∈ Ã2,

and in that case the condition implies that F1(ω1) = F1(ω
′
1). The same holds for every ω2 ∈ Ã2

For every i = 1, 2, let Si be the signals induced by τ i1|Ai
. Define the following strategy τ1:

τ1((s1, s2)|ω) =

τ 11 (s1|ω)τ 21 (s2|Ã2), if ω ∈ A1, (s1, s2) ∈ S1 × S2,

τ 11 (s1|Ã1)τ
2
1 (s2|ω), if ω ∈ A2, (s1, s2) ∈ S1 × S2.

One can easily verify that
∑

(s1,s2)
τ1((s1, s2)|ω) = 1 for every ω, so τ1 is indeed a strategy.

Let us now prove that τ1 is F1-measurable and µτ1|A = µτ2 |A. If we restrict τ1 to Ai, it is

clearly F1-measurable as τ−i
1 (s−i|Ã−i) is fixed for every ω ∈ Ai and si ∈ Si. Thus, consider

τ1((s1, s2)|ω) where ω ∈ Ã1. All the states in Ã1 ∪ Ã2 are in the same partition element of F1,

so for every (ω1, ω2) ∈ Ã1 × Ã2 we get

τ1((s1, s2)|ω1) = τ 11 (s1|ω1)τ
2
1 (s2|Ã2)

= τ 11 (s1|Ã1)τ
2
1 (s2|Ã2)

= τ 11 (s1|Ã1)τ
2
1 (s2|ω2)

= τ1((s1, s2)|ω2),

and the F1-measurability condition holds. Moreover, for every ωi, ω
′
i ∈ Ai and for every (s1, s2)

such that τ i1(si|ω) > 0 where ω ∈ {ω1, ω
′
1}, it follows that

τ1((s1, s2)|ωi, Ai)

τ1((s1, s2)|ω′
i, Ai)

=
τ i1(si|ωi)

τ i1(si|ω′
i)
,

which implies that conditional on Ai, τ1 yields the same distribution over posteriors profiles as

τ i1, thus mimicking τ2 on every Ai, as needed.
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We can thus finalize the proof using induction on the number of elements in Ω∗. Until now,

we established in Observation 1, Observation 2 and Lemma 2 that, given either |Ω∗| = 1 or

|Ω∗| = 2, then for every F2-measurable strategy τ2|Ω∗ , there exists τ1|Ω∗ such that µτ1|A = µτ2|A
for every A ∈ Ω∗. Assume this holds for |Ω∗| = k ≥ 2, and consider |Ω∗| = k + 1.

Denote the elements of Ω∗ by A1, A2, . . . , Ak, Ak+1. If there exists only one partition element

of F1 that intersects Ak+1 and at least one Ai for i ≤ k, then Lemma 2 holds and the result

follows. Thus, assume there are at least two different partition elements F1(ω) = F1(ω1) and

F1(ω
′) = F1(ω2) of F1 such that ω, ω′ ∈ Ak+1 and ωi ∈ Ai for every i = 1, 2.

The proof now splits into two parts: either A1 and A2 are connected (i.e., there exists a

sequence of partition elements of F1 that sequentially intersect elements in Ω∗ \ Ak+1, starting

with A1 and ending with A2) or A1 and A2 are unconnected. If they are unconnected, we can

apply Lemma 2 for A1 and Ak+1 and then use the induction hypothesis, so we assume they are

connected.

Whether Ak+1 is a CKC or a cluster and assuming that A1 and A2 are connected, we argue

that there exists a type-2 irreducible F1-loop that include ω and ω′, implying that Ak+1 is part

of a cluster with other elements in Ω∗. To see this, recall whenever ω and ω′ belong to the same

cluster and F1(ω) = F1(ω
′), then there exists an F1-fully-informative loop that start with ω

and ends with ω′. So consider such a sequence of states lω→ω′ = (ω, . . . , ω′), which would have

been an F1-loop had F1(ω) = F1(ω
′).

Next, fix the entire path of connections of elements in Ω∗ that starts with A1 and ends with

A2. Again, the connection between A1 and A2 implies that there exists a sequence of states

lω1→ω2 = (ω1, . . . , ω2) in Ω∗ \ Ak+1, that would have been an F1-loop had F1(ω1) = F1(ω2).

Hence, consider the sequence of states l = (ω, . . . , ω′, ω2 . . . , ω1) which forms an informative

F1-loop, because F1(ω) ̸= F1(ω
′). Using Proposition 2 and Claim 2, we know that this loop has

a type-2 irreducible F1-sub-loop that contains ω and ω′. Thus, Ak+1 is in the same cluster as

other elements in Ω∗, thus contradicting the assumption that |Ω∗| = k + 1.
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