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Abstract

This paper studies incomplete-information games in which an information provider,
an oracle, publicly discloses information to the players. One oracle is said to dominate
another if, in every game, it can replicate the equilibrium outcomes induced by the latter.
The companion Part I characterizes dominance under deterministic signaling and under
stochastic signaling with a unique common knowledge component. The present paper
extends the analysis to general environments and provides a characterization of equivalence
(mutual dominance) among oracles. To this end, we develop a theory of information loops,
thereby extending the seminal work of Blackwell (1951) to strategic environments and
Aumann| (1976))’s theory of common knowledge.
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1 Introduction

In settings with incomplete information, whether in peace negotiations, business decisions,
or financial markets, players lack full knowledge of all factors that influence the outcomes of
their decisions. To address such environments, specialized information providers (e.g., peace
mediators, business consultants, and rating agencies) operate as neutral oracles, selectively
disclosing relevant information that can alter strategic behavior and equilibrium outcomes.
This paper studies the role of such oracles in games of incomplete information, modeling them
as agents who transmit information through general signaling functions to the players.

Our primary objective is to characterize when one oracle dominates another and when two
oracles are equivalent. To this end, we define a partial order of dominance: one oracle dominates
another if, in every game, the information structure of the former can induce the same set of
equilibrium outcomes as the latter. Naturally, oracles are equivalent under mutual dominance.ﬂ

Building on |Aumann| (1976)), the notion of a common knowledge component (CKC), i.e., the
inclusion-wise smallest set that all players can agree upon, plays a central role in our analysis.
The intuition for this is rather clear. In an incomplete information game, the relevant set of
states for strategic consideration is the corresponding CKC, however an oracle’s knowledge is
not confined to it. Oracles, who typically possess information that the players do not, cannot
always distinguish between states located in different CKCs. Thus, the structure of CKCs
governs the interplay between the players’ subjective knowledge and the oracle’s informational
limitations.

The CKC also defines the boundary between the companion Part I (i.e.,|Lagziel et al., 2025
and the present paperE| Specifically, Part I characterizes dominance when oracles are restricted
to deterministic signaling functions, and when stochastic signals are permitted but the state
space features a unique CKC. Here, we extend the analysis to environments with multiple CKCs

and, in addition, provide a general characterization of equivalence.

!'Note that we abstract away from cases in which the oracle has preferences over players’ action profiles or
derives utility from their strategic interaction. In this sense, we adopt Blackwell’s approach (see Blackwell, |1951)),
which focuses on comparing signaling structures (namely, experiments) in decision problems, independently of
the sender’s objectives.

2Throughout the paper, we sometimes refer to Lagziel et al.| (2025) as “Part I”.



Using the structure of multiple CKCs, we introduce the concept of an information loop,
the second key element in our characterization. To formally define these loops and present
the main results of the current study, we first partition the state space into distinct CKCs. An
information loop is then defined as a closed path of states that connects different CKCs through
elements of an oracle’s partition.

For example, assume there are 4 states Q = {w;,ws, w3, ws} and two players whose pri-
vate information is given by the following partitions: II; = {{wy,wa}, {ws}, {ws}} and Iy =
{{w1},{w2}, {ws,ws}}. The players’ private information induces two CKCs: C; = {wy,ws} and
Cy = {ws,wy}. That is, the two players can agree on each of these two events. See the illustra-
tion in Figure [l If the oracle’s information is given by the partition Fy = {{wy,ws}, {w2, wa}},
we say that a loop exists, as the different partition elements of F} form a closed path between
the two CKCs. Namely, w; € C; and w3 € (5 are joined by a partition element of F; and
the same holds for wy € € and wy € Cs. This yields a sequence of states that starts in (7,
transitions to Cs, and reverts back again to C7, through different states that serve as entry and

exit points from each CKC.

Figure 1: There are two CKCs {w1, w2} and {ws,ws}. The oracle’s partition F} generates a loop (w1, ws, wq,ws),
which is a closed path connecting the two CKCs using the oracle’s partition elements.

Assuming that an oracle does not generate information loops, which includes the case where
the entire state space comprises a unique CKC, we prove that it dominates the other oracle if
and only if its partition refines that of the other within every CKC (see Theorem |l|in Section .

Importantly, this result extends the characterization result of Part I given a unique CKC, while



the refinement condition does not follow from the criterion used in the deterministic setting.

However, if a loop exists, the characterization becomes more complex. An information loop
imposes (measurability) constraints on the information the oracle can convey. In the previous
example, notice that every signaling function of the oracle over {w;,ws} uniquely defines the
signaling over {ws,w,}. Thus, the oracle is not free to signal any information it wants in one
CKC, without restricting its ability to convey different information in the other CKC.

An obvious question that goes to the heart of information loops and our results is, why
should we care specifically about the signaling structure over the pairs of states that form the
loop in every CKC? Moreover, why should a loop consist of separate entry and exit points
in every CKC? The answer is that, given a CKC, Bayesian updating depends on the ratio of
signal-probabilities for the different states. Thus, an effective constraint imposes restrictions
over such ratios, thus relating to at least two states in every CKC (while keeping in mind the
refinement condition in every CKC; this is a crucial aspect in Lagziel and Lehrer, |2025)).

The concept of information loops hints at a significant connection to Aumann’s theory of
common knowledge, from Aumann| (1976|). This link appears to be central to understanding
how shared and differing information structures impact equilibrium outcomes in incomplete-
information games. For this reason we provide an extensive set of results concerning various
properties of information loops in Section [4

Specifically, the first property of information loops that we study is non-informativeness. A
loop is called non-informative if, in every CKC that it intersects, all the states of the loop are
in the same partition element of that oracle. We refer to this as non-informativeness because,
conditional on the CKC and loop, the oracle has no information to convey to the players. For
example, in Figure |l consider an oracle with a trivial partition F| = Q = {wy,ws, w3, ws}. This
partition creates a closed path between the two CKCs, as well as joining all the states of the
loop (given a CKC) to a single partition element of F|. Building on this notion and assuming
that the partition of Oracle 1 refines that of Oracle 2 in every CKC, as in the previously stated
characterization, then non-informative loops do not pose a problem for dominance and Oracle
1 dominates the other (see Theorem [3|in Section [f]).

However, once a loop is informative (i.e., in at least one CKC that it intersects, there are
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Figure 2: An illustration of a fully-informative and irreducible loop, which intersects three CKCs C7,Cs and
C3 with two states in each.

states in the loop from different partition elements of the oracle; see Figure , then we require
additional conditions for characterization. More specifically, in case there are only two CKCs,
an additional condition is that Oracle 2 also has information loops whose states cover Oracle
1’s loop, roughly stating the up to non-informative set of states, Oracle 2 has similar loops to
those of Oracle 1 (the notion of a cover is formally defined in Section . Using this condition
we provide a characterization for the case of two CKCs (see Proposition [3] in Section [.1)).
While the question of characterization in the case of more than two CKCs remains open, we do
provide necessary conditions for dominance in the general case in Theorem 2] building on the
notion of irreducibility.

The notion of irreducibility, which proves crucial for our analysis, splits to two levels. The
first is irreducible loops, which implies that there exists no (smaller) loop that is based on a
strict subset of states taken from the original loop. The second is referred to as type-2 irreducible
loops, and it implies that the loop does not contain four states from the same partition element
of the oracle (again see Figure . On the one hand, type-2 irreducibility is a weaker notion
compared to irreducible loops, because it allows for a loop to intersect the same CKC several
times, whereas an irreducible loop cannot. On the other hand, a type-2 irreducible loop must
be informative because it does not allow for the entry and exit point in every CKC to be in
the same partition element of that oracle. In fact, it is fully-informative because this condition
holds in every CKC, rather than in a specific CKC.

The somewhat delicate understanding of the relations between these loops properties allows

us to achieve another main result: the characterization of equivalent oracles. Formally, we say
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that two oracles are equivalent if they simultaneously dominate one another. The character-
ization of equivalence, given in Theorem (4] in Section @ is based on: (i) equivalence in every
CKC; (ii) equivalence of irreducible-informative loops; and (iii) a cover over loops. To prove
this result, we use type-2 irreducible loops to compare the information of both oracles. Specifi-
cally, we consider the sets of type-2 irreducible loops that intersect a joint CKC (i.e., connected
loops), also taking into account sequential intersections (i.e., the transitive closure) where loop
1 is connected to loop 2 which is then connected to loop 3 and so on. We observe the set of
CKCs for each of these groups and refer to these sets as clusters. These are used as building
blocks in our analysis, and we prove that the information of equivalent oracles must match on
these clusters. This, in turn, provides some insight into the possible future characterization of
general dominance between oracles, as well as provides another level of extending the theory of

common knowledge, beyond information loops.

1.1 Relation to literature

Part II takes the comparison of oracles beyond the two benchmark environments handled in Part
I (that is, beyond deterministic signaling and stochastic signaling on a state space with a single
CKC), and develops tools for general stochastic signaling when multiple CKCs interact. The
central contribution is the introduction of information loops and associated notions: balance,
covers, irreducibility (including type-2 irreducibility), and cluster-based aggregation, which to-
gether deliver necessary and sufficient conditions in the presence of loops, and a full equivalence
characterization that builds on order-preserving covers of irreducible, fully-informative loops.
Our starting point remains Blackwell’s comparison of experiments (see Blackwell, 1951}
1953)), but the object of comparison and the criterion differ in two key ways. First, an oracle
is an experiment generator, namely, it can implement any public experiment measurable with
respect to its partition, rather than being a fixed experiment. Second, the criterion is strategic
and multi-player, so dominance is defined by equality of the sets of Nash-equilibrium outcome
distributions across all games, holding players’ private partitions fixed. These differences matter
only weakly with a single CKC, but are crucial with multiple CKCs, where the loop calculus

captures exactly how measurability forces cross-component co-movement of posteriors.



Our CKC-based analysis traces back to the epistemic foundations of games, interacting
specifically with the common knowledge ideas of |[Aumann (1976). For Part II, where the
state space decomposes into multiple CKCs, the right lens is the approximation of common
knowledge by common beliefs ¢ la Monderer and Samet| (1989), who formalize p-belief and
common p-belief, showing how implications that classically require exact common knowledge
can be approximated by sufficiently strong common beliefs. The work of Aumann was also
followed by Mertens and Zamir (1985), who construct a universal type space embedding all
coherent hierarchies of beliefs, thus providing a unified measurable framework for Bayesian
games, and by |Brandenburger and Dekel (1993), who clarify the equivalence between hierarchies
of beliefs and type representations, linking them to common knowledge.

Our model builds on these studies by fixing the partition structures while varying only the
oracle’s public experiment. The novel constraints we study arise from global measurability
across CKCs (via loops), not from additional complexity in private belief hierarchies. Our
information loops formalize when public measurability (via the oracle’s information) stitches
distinct CKCs so that posterior ratios must align across components, and when such stitching
is slack (no loops) or binding (informative, irreducible loops). This conceptual bridge clarifies
why refinement within CKCs suffices absent loops, but not in general.

Relative to information design and persuasion, the present analysis is comparative rather
than optimal. The persuasion literatureE] asks which experiment maximizes a sender’s objective.
Here the oracle has no objective, but is evaluated by its replication ability. In this sense, this
project complements persuasion by characterizing when two generators of public experiments
are equivalent or when one dominates another.

Closer to us, |[Kolotilin et al. (2017) analyze persuasion with a privately informed receiver
and establish conditions under which optimal mechanisms can be represented as experiments,
delivering tractable characterizations in linear/monotone environments. Part II treats the play-
ers’ experiments as primitives, but evaluates an oracle by the ability to replicate another across
all games with fixed private information, so that the binding obstacles are global measurability

(loops) rather than incentive constraints.

3For a recent survey, see [Kamenica (2019).



Another strand in the literature studies mediators in games with incomplete information.
Mediators deliver differential recommendations that coordinate players’ actions and implement
variants of correlated equilibria (Forges, 1993)). In many formulations the mediator does not
convey additional information about the realized state; i.e., its role is purely coordinative.
Under complete information, Gossner| (2000) compares mediating structures by the sets of
correlated equilibria they can induce, calling one device “richer” if it generates a superset. This
characterization uses a notion of compatible interpretation in the spirit of garbling. Part II
departs from this strand in two respects: the oracle’s messages are public and informational
about the state, and comparison is by replication power across all games. With multiple CKCs,
feasibility is governed not by recommendation schemes but by measurability links across CKCs,
captured in our framework by information loops (balance and covers).

Closer to the present project are studies on incomplete-information games that establish
partial orderings of information structures. |Peski (2008)) obtains a Blackwell-type ordering in
zero-sum games. |Lehrer et al.| (2010) analyze common-interest games with privately observed,
possibly correlated signals, showing that comparative results hinge on the version of Blackwell
garbling tied to the chosen solution concept. [Lehrer et al.|(2013) extend garbling to characterize
outcome equivalence. Bergemann and Morris| (2016]) study n-player environments via Bayes
correlated equilibrium and characterize dominance through individual sufficiency. Part 11 differs
along two margins crucial with multiple CKCs: (i) players’ private partitions are fixed primitives
while the oracle is an experiment generator of public signals; and (ii) dominance/equivalence
are defined by the ability to reproduce the set of equilibrium outcome distributions in every

game, and thus hinge on the loop calculus rather than garbling alone.

The structure of the paper. The paper is organized as follows. Section [2| depicts the
model. Section [3| provides a characterization of dominance when there are no loops. Section
studies the properties of information loops. Section [foutlines necessary and sufficient conditions
for dominance, as well as a characterization of dominance given two CKCs (in Section [5.1)).

Finally, in Section [6] we characterize the equivalence relation between oracles.



2 The model

A guided game consists of a Bayesian game together with an oracle. The oracle provides
information intended to enable a different, and preferably broader, set of equilibria. It operates
via signaling, and our analysis characterizes the extent to which oracles can expand the set of
equilibrium payoffs.

We begin by defining the underlying Bayesian game. Let N = {1,2,...,n} be a finite set of
n > 2 players, and let €) be a non-empty, finite state space. Each player ¢« € N has a non-empty,
finite action setlﬂ A; and an information partition II; of . Let A = x,cnA; denote the set of
action profiles. Player ¢’s utility is u; : 2 x A — R, mapping states and action profiles to
payofs.

To extend the basic game to a guided game, we introduce an oracle that provides public
information before actions are chosen. The oracle has a partition F' of €2 and a countable signal
set S. A strategy of the oracle is an F-measurable function 7 : ' — A(S) with finite-support
distributions, used to transmit information to all players N, where A(S) denotes the set of
finite-support probability distributions over S. For w € Q and s € S, we write 7(s | w) for
the probability 7(w)(s) that s is sent when the realized state is w. Note that any deterministic
strategy 7 : I' — S is effectively a partition, and we refer to it as such when appropriate.

The guided game evolves as follows. First, the oracle publicly announces a strategy 7.
Then, a state w € € is drawn according to a common prior u € A(Q2). Each player i is privately
informed of II;(w), the atom (i.e., set of states) of player i’s partition that contains w. Finally, if
7 is deterministic, the signal 7(w) € S is publicly announced, and if 7 is stochastic, a realization
s € S is drawn according to 7(w) and publicly announced.

Let the joinﬂ II; V F' denote the updated partition of player ¢ given II; and a partition
F'. If 7 is deterministic, define ,ui‘w = pu(- | [IL; V 7](w)) € A(Q) as player i’s posterior after
observing II;(w) and 7(w). If 7 is stochastic, let uiws = u(- | H;(w),7,s) € A(Q) denote
player i’s posterior after observing II;(w) and a realized signal s according to 7(w). Thus, every

strategy T induces an incomplete-information game G(7) = (N, (A;)ien, (42)ien, (u;)ien). Since

4In this framework, A; is independent of the player’s information, but the setting can also accommodate
cases where it is not.
SCoarsest common refinement of II; and F’; following |Aumann| (1976)).



the state space and action sets are finite, the Nash equilibria exist. When there is no risk of

ambiguity, we denote the incomplete-information game without 7 by G.

2.1 Partial ordering of oracles

To discuss the oracle’s role in this framework, we adopt a solution concept, referred to as a
Guided equilibrium, that incorporates the oracle’s strategy. Let o; : II; x S — A(4;) be a
strategy for player i. A tuple (7,071,...,0,) is a Guided equilibrium if (oq,...,0,) is a Nash
equilibrium of the incomplete-information game G(7).

This notion of a Guided equilibrium induces a partial order over oracles (that is, over their
partitions) via the sets of equilibria they can generate. Let NED(G(7)) C A(£2 x A) denote the
set of distributions over 2 x A induced by Nash equilibria given G and 75| Now consider two
oracles, Oracle 1 and Oracle 2, and let F; and 7; denote the partition and strategy of Oracle j,

respectively. Using this notation, we define a partial order as follows.

Definition 1 (Partial ordering of Oracles). Oracle 1 dominates Oracle 2, denoted Fy =g Fb,
if for every 7o and game G, there exists Ty such that NED(G(m)) = NED(G(72)).

Informally, dominance means that one oracle can replicate the other’s signaling structure so
as to induce the same set of equilibria. A direct comparison of equilibria across games without
conditioning on the signaling rule is problematic because players’ strategies typically depend

on the oracle’s signals.

2.2 More than one CKC: two examples

The partition-refinement condition given in [Lagziel et al.| (2025) ensures that Oracle 1 can
produce the exact same strategy as Oracle 2. This however, hinges on the existence of a unique
CKC. In case there are several CKCs, Oracle 1 may need to follow a different strategy in order

to match the distribution on posteriors generated by 75. Namely, 7, may require more signals

*

6 A Nash equilibrium (o7, ..., 07 ), along with the common prior y, induce a probability distribution on Q2 x A.

rYn

Fix w and an action profile a. The probability of (w,a) under (o7,...,0%), 7 and the common prior u equals

rYn

(W)Y ees (s | w) [Tiy 07 (a; | Oi(w), s). As multiple equilibria may exist, NED(G(7)) is a subset of A(Q x A).



than 75, even if both oracles have the same (complete) information in every CKC. Let us provide

a concrete example for this.
Example 1. More signals are needed.

Consider a uniformly distributed state space Q = {wy, ws, w3, wy}, with two players whose
private information is 11y = {{wy, ws}, {ws}, {ws}} and Iy = {{w:}, {wa}, {ws,ws}}. The oracles
have the following partitions F; = {{wy,ws}, {wa}, {ws}} and Fy = {{w:1}, {ws}, {wa, w4} }. This
information structure is illustrated in Figure[3] Notice that there are two CKCs, {w;,ws} and
{ws, w4}, and both oracles have complete information in each of these components. That is, F}

refines Fy in every CKC, and vice versa.

Q i8] 11, Q

(a) (b)

The players’ information The oracles’ information

Figure 3: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

Consider the stochastic strategy 7o given in Figure [l Notice it is Fy-measurable, as
To(S|wa) = Ta(s|ws) for every signal s, but not Fj-measurable.

The set Post(7y) of To-posteriors is

Post(r:) = ¢ ((2,2,0,0),¢), j=12, (




To(s|lw) | s1 | s2 | s3
o |0 [1/2]1)2
o [ 1/312/3] 0
s | 0 [2/311/3
o [ 1/312/3] 0

Figure 4: A stochastic Fy-measurable strategy of Oracle 2.

and we can now try to mimic 75 using an Fj-measurable strategy. First, this requires at least
two signals to distinguish between w; and w,, as well as w3 and w,. Second, the posterior
((2,2,0,0) ,e1) requires another signal s so that 7(sjw;) = a > 0 and 7(s|ws) = 3a > 0.
However, the Fj-measurability requirement implies that 7(s|lwsz) = «, and the 7-posterior

(es,(0,0,3,3)) necessitates that 7(slws) = a as well. These conditions are jointly given in

Table (a) within Figure [5

T1(s|w) | s3 | sS4 | S5 Ti(s|w) | s3 | sS4 | S5 | S6
W a | B0 Wi 1/211/3] 0 |1/6
wy |30 0]~ wy [2/3] 0 [1/3] 0
ws a|p|0 ws 1/211/3| 0 |1/6
Wy a | 0|~ Wy /21 0 |1/3|1/6

(a) (b)

Figure 5: A strategy 71, either with 3 signals as given in Table (a), or with 4 signals as in Table (b).

Evidently, it must be that «, 5,7 > 0 in order to mimic 75, but the second and fourth
rows in Table (a) cannot jointly sum to 1 unless a = 0, which eliminates the possibility of
a well-defined mimicking strategy. Thus, in order to mimic the stated strategy 15, Oracle 1
requires an additional signal as presented in Table (), in Figure . To conclude, though the
oracles’ partitions refine one another in every CKC, they cannot always produce the exact same

strategy when trying to mimic each other.
Example 2. Dominance need not imply refinement with multiple CKCs

In this example we wish to show that when there are multiple CKCs, Oracle 1 can dom-
inate Oracle 2 although F; does not refine F,. To see this, we revisit an example from
Lagziel et al. (2025) in which Iy = {{wy, w2}, {ws,wa}}, F1 = {{w1,ws,ws},{ws}} and F, =
{{w1, w2}, {ws}, {wa}}. This is illustrated in Figure []

11



Figure 6: Note that Fy strictly refines F; and II;.

Now consider the signaling strategy of Oracle 2 given in Figure [7] where Oracle 2 provides
the players with no additional information regarding states w; and wsy. Thus, the posterior
over these states remains the original one. On the other hand, given the states w3 and wy,
the strategy 7o reveals the true state with a positive probability and induces the posterior

(0,0,2/5,3/5) with the remaining probability.

To(s|lw) | s1 | s2 | s3
w | 1/4] 0 |3/4
w, | 1/4| 0 |3/4
ws | 0 |1/2]1/2

Figure 7: A stochastic Fp-measurable strategy of Oracle 2.

While Oracle 2 can assign different probabilities to a signal conditioned on wy and w3, Oracle
1 cannot. However, there is a signaling strategy for Oracle 1 that produces the same distribution

over the posteriors as 75 does. The following strategy 71, given in Figure [§| does that.

Ti(slw) | s1 | s2 | s3
o | 1/2] 0 |1/2
e |12 0 [1/2
ws | 1/2] 0 |12
wi | 0 |1/4[3/4

Figure 8: A stochastic Fj-measurable strategy of Oracle 1.

In this example, it is straightforward to prove that Oracle 1 can mimic every strategy 75 of

Oracle 2, and we prove this result under more general conditions in Theorem [I|and Proposition

12



Bl Yet, it is clear that Fj is not a refinement of F; in general, but it is a refinement in every

CKC.

3 Multiple CKCs and no loops

We now turn to the general setting in which the players’ information structures induce any
(finite) number of CKCs. Assume that Cy,...,C; are mutually exclusive CKCs such that
Q= U;zl C;. A key aspect of our analysis is the presence of measurability constraints, where
different CKCs are connected by atoms of the oracles’ partitions. To understand the significance
of this, consider a setting where F} does not contain any element intersecting multiple CKCs.
In this case, the characterization result given a unique CKC from Part I (see Theorem
in Appendix applies separately to each CKC, as Oracle 1 faces no constraints when
attempting to mimic some strategy of Oracle 2.

However, when elements of Oracle 1’s partition intersect different CKCs, the analysis be-
comes more complex, because we must account for measurability constraints when attempting
to use the same strategy 7 across different CKCs. Such intersections impose constraints on 7y,
preventing us from naively applying previous results.

This issue becomes even more complicated when multiple elements of Oracle 1’s partition
intersect different CKCs, forming what we call an (information) loop[]

Generally, a loop is an ordered sequence of states from different CKCs such that the partition
of an oracle groups together distinct pairs of states from different CKCs, creating a closed path.
The main result of this section, presented in Theorem [I| below, states that in the absence of
such loops, Oracle 1 dominates Oracle 2 if and only if Fj refines F5 in every CKC. The formal
definition of a loop is provided in Definition [2|

Definition 2. An F;-loop is a sequence (wy,W1,ws,Wa, ..., Wn, W), where m +1 = 1 and

m > 2, such that

o w;,w; € Gy, and w; # wj for all j = 1,...,m.E|

"An (information) loop is different from a loop in graph theory. In graph theory, a loop refers to an edge
that connects a vertex to itself.
8Here Cy; refers to the CKC that contains the j-th pair of states (w;,w;).
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o wii € Fi(w;) forallj=1,...,m.

o ., #C,,,, forallj=1,...,m.

j+1
o The sets {W;,w;t1} are pairwise disjoint for all j =1,... ,m.

To understand information loops, one can view the CKCs as the vertices of a graph. An edge
connects two CKCs if there exist w;y; and @w; such that they belong to the same F;-partition
element (this corresponds to the second requirement). An information loop then parallels an
Eulerian graph, where there is a walk that includes every edge exactly once (the last requirement
in the definition) and ends back at the initial vertex (hence the requirement m + 1 = 1). As
noted at the beginning of Section [3, the key aspect of the general analysis is to consider the
case when the oracle partition atoms intersect different CKCs, so we require that C,., # C,,,,
forall j =1,...,m.

An example of an Fj-loop is provided in Figure [0} (a), which depicts a loop consisting of six
states across three CKCs. Note that a loop can intersect the same CKC multiple times, as long
as the sets {@;,w;;+1} remain pairwise disjoint for each j.

We use the concept of a loop in our first general characterization, presented in Theorem [I}
This theorem builds on the assumption that F; contains no loops and extends the main result
of Part I by showing that one oracle dominates another if the former’s partition refines that of

the latter in every CKC. It is important to note that the proof is extensive, as it must account

for the measurability constraints of 7, across all CKCs.

Theorem 1. Assume there is no Fy-loop. Then, Oracle 1 dominates Oracle 2 if and only if

Fy refines Fy in every CKC.

The proof of Theorem [I] builds on the concept of a sub-strategy. A sub-strategy is a signaling
function without the requirement that the probabilities sum to 1. This relaxation allows us
to study functions that partially mimic a strategy 75, meaning each posterior is drawn from
Post(7;) and is induced with a probability that does not exceed the probability with which
79 induces it. We show that the set of sub-strategies is compact, allowing us to consider an

optimal sub-strategy for mimicking 75. The proof then proceeds by contradiction: if the optimal

14



Cs — Cs Cs Cy
@ Fi(ws) @, w3 >< W,

(a) (b)

Figure 9: Figure (a) depicts an Fj-loop with three CKCs and six states overall. Figure (b) illustrates how the
Fi-loop, presented in (a), is non-balanced with respect to Fy. Namely, F» has two elements A = {w;,ws, w3},
and B = {wy,Ws, w3} such that the number of transitions from A to B are 3, while the reverse equals 0.

sub-strategy is not a complete strategy, we can extend it by constructing an additional sub-
strategy to complement the optimal one for posteriors that are not fully supported (relative to
the probabilities induced by 7). This part is rather extensive as it requires some graph theory

and several supporting claims given in the proof in the appendix.

4 Information loops

Previous sections have examined the problem of oracle dominance in the absence of loops,
considering either a unique CKC or multiple CKCs without loops. However, in order to confront
the general question of dominance in the presence of information loops, we need to have a clear
understanding of their properties and implications.

Specifically, when an Fij-loop exists, it may create challenges for Oracle 1 in mimicking
Oracle 2, because loops introduce measurability constraints across CKCs. Although Oracle 1
can mimic Oracle 2 within each CKC individually, it may be impossible to do so simultaneously
across CKCs if the required combined strategy is not measurable with respect to Fj. This
suggests that any Fj-loop must satisfy certain conditions to ensure that such a strategy is
indeed Fi-measurable. The first condition that we study, which turns out to be a necessary
condition for dominance, is generally referred to as Fy-balanced.

The idea starts with an F}-loop. We examine all states in this loop and determine how they
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can be covered by two Fy-measurable sets. In other words, the loop is divided into two disjoint
sets, each contained in an Fy-measurable set, denoted A and B. Next, we count the number
of transitions along the loop from A to B, where the entry point into one CKC is through a
state in A and the exit is through a state in B. We do the same for transitions from B to A.
An Fi-loop is called Fy-balanced if the number of transitions between A and B is equal in both

directions. The formal definition follows.

Definition 3. An F;-loop (w1, @1, ws, Wa, - . - , Wi, W) s F_;-balanced if for every F_;-measurable
partition of the loop’s states into two disjoint sets {A, B} such that U;{w;,w;} C AU B, it fol-

lows that:
#(A — B) = |{],(JJJ - A and wj € B}‘ = ’{j,w] I~ B and w]- € A}’ = #(B — A) (1)

Note that an Fj-loop (wi, @1, ws, Wa, - . . , W, W), Where w; € Fy(w;) for all j = 1,...,m,
is Fy-balanced. Figure [9](b) examines the Fi-loop from Figure [9](a). The sets A and B are
F>-measurable, restricted to the six states under consideration. The partition into A and B
renders the loop non-Fy-balanced, as #(A — B) = 3, while #(B — A) = 0.

Why are balanced loops crucial? Consider, for example, a non-balanced loop as depicted in

Figure |§|, and assume that 7(s|w) = § — 1.y for some signal s € S. This imposes a specific

1
2
T2(slwi)
T2(slwi)

1 : 2 ratio between any two states described in each CKC, so that II; = %. However, since

w; and w;;1 belong to the same F partition element, the measurability constraints on Oracle 1

along the loop require that 7 (s|w;) = 71 (s|wiy1), hence Hl% =1 for any s in the support

of all states. In other words, Oracle 1 cannot match the ratio dictated by 7, therefore the key
proportionality lemma from Part I (see Lemma |1| from in Appendix [A.1.1)) does not hold in at
least one CKC.

If the loop were balanced—say, with A = {1, ws} and B = {wy, Wy, w3, w3 }—then the same

T2(8|w;)
T2 (s|w;)

strategy 7o would yield 1I; = 1, as required. In general, when all loops are balanced,
this discrepancy is eliminated for any two such sets A and B. The notion of balanced loops is
closely related to the following notion of covered loops, which implies that an Fj-loop can be

decomposed to loops of Fj.
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Definition 4. An F;-loop (wy,w1,ws,Wa, . .., W, W) 18 F_~covered if

o The set {1,....,m} is partitioned to disjoint sets of indices, J, Iy, ..., 1., i.e., {1,...,m} =

JU(Uj_ ).

e Foreacht=1,..,r, ((wj,wj)) 1s an F_;-loop, also referred to as a Sub—loop.ﬂ

Jjelt

o J={jiw; € F_;(w;)}.

The cover is order-preserving if every F_;-loop <(wj,wj)>jejt in the cover follows the same
ordering of pairs as the Fj;-loop.

In simple terms, the definition states that, given an Fi-loop (wy,w,ws, Wa, ...\ Wy, Wm),
we can partition its states to several Fh-loops and a set of states where w; € Fy(w;). Figure
(a) depicts an Fj-loop consisting of ((w;,W;))j=1,.4, which is covered by two Fy-loops:
(w1, w1, ws,w3) and (ws, Wy, wy,ws). In this case, the set J (defined in Definition [f) is empty.
Figure (10| (b) depicts a case in which J = {2,4}, and (wy,w;, w3, ws) forms an Fy-loop, yet it is
not an Fy-sub-loop of the original Fi-loop since w; is linked to w3 instead of ws. Actually, if we
set A = {wy, Wy, wy, Wy, wr,ws} and B = {wy,wWs}, which are Fy-measurable, then #(A — B) =
2, but #(B — A) = 0, so the Fj-loop is not Fy-balanced. Finally, note that the sub-loops in
Figure [10| (a) are order-preserving. By contrast, the sub-loop (w;,®;,ws, w3, ws,wy) in Figure
(c) does not preserve the ordering of the pairs as the Fj-loop, since the pair (ws,@s3) appears
before (ws, Ws).

The following Proposition (1| proves that an Fij-loop is Fy-balanced if and only if it is F5-
covered. This proposition assists with the proof of Theorem [2| below, which provides a necessary

condition for dominance.

Proposition 1. Let (wy,w,ws, Wa, . .., Wn,Wm) be an Fi-loop. The following statements are

equivalent:

i. The loop 1s Fy-balanced;

9The order of the pairs (wj,w;) in the F_;-loop does not have to coincide with their order under the F;-loop.
For instance, an Fi-loop (w1, w1, ws, Ws, w3, ws) might be covered by the following Fy-loop (w1, W1, ws, W3, wa, Wa).
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Figure 10: Two states connected by a colored line are in the same information set of F». In (a), the Fy-sub-loops
that cover the Fi-loop are order-preserving, i.e., following the ordering of pairs in the original Fj-loop, whereas
the sub-loop in (c) is not order-preserving. (b) illustrates a case where (w1,w1,ws,ws) forms an F-2 loop, but
it is not an Fh-sub-loop of the original Fi-loop.

ii. The loop is F5-covered;

iii. For every Fy-measurable function f : {wl,wl,wg,wg, . ,wm,wm} — (0, 00),

m

~~

(wi) _
(@) .

~~

=1

The next two properties that we study are irreducible and informative loops. Starting with
the former, an Fj-loop is irreducible if it does not have a sub-loop, namely, there exists no
‘smaller” Fj-loop that comprises a strictly smaller set of states taken solely from the original
loop. Our analysis would use irreducible loops as building blocks to decompose and compare

loops generated by the oracles’ partitions.

Definition 5. Let L; = (wq,W1,ws,Wa, ..., W, W) be an Fi-loop. We say that the loop is
irreducible if there exists no strict subset of the set {w;,w; : j = 1,...,m} that forms an

F;-loop.

We use the definition of an irreducible loop in the context of covers as well, stating that a

cover is irreducible if every loop in the cover is irreducible. Furthermore, the idea of irreducible
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loops is closely related to the concept of covers, and specifically to the set J = {j;w; € F_;(w;)}
given in Definition 4| above. Specifically, if there exists an Fj-loop with a pair of states (w;, ;)
such that @; € Fj(w;), then it cannot be irreducible unless it comprises only 4 states[| We
typically refer to such cases where w; € Fj(w;) as non-informative because Oracle i cannot
distinguish between the two states. This condition is essentially equivalent to every Fi-loop
being Fs-balanced at 0, meaning that for any choice of the specified Fy-measurable sets A and
B, the number of transitions between these sets is zero. The following Definition [6] captures
the idea of informative loops, which would later be used in Theorem |3| as a sufficient condition

for dominance.

Definition 6. An F;-loop (wy, @1, ws, Wa, . . . , W, W) 1S F-non-informative if Fy(w;) = Fj(w;)
for every j. The loop is Fy-fully-informative if F(w;) # Fj(W;) for every j.

To understand the motivation behind this definition, consider any Fj-loop denoted by

T2 (s|w;)
To(s|w;)

(1,1, W, Wa, . . ., Wiy, Wyy). 1f this loop is Fy-non-informative, it suggests that the ratios
equals 1 for every signal s supported on these states. In simple terms, conditional on any
{w;,w;}, Oracle 2 does not provide any additional information, so the constraints that an Fj-
loop imposes on Oracle 1 in every CKC (i.e., that the product of probability ratios along the
loop equals 1) are met by the measurability requirements of Fj.

The following proposition summarizes key properties of informative and irreducible loops. It
states that an irreducible loop intersects every CKC at most once and must be fully informative
(unless it has only 4 states). In addition, the proposition shows that an informative loop has a

fully-informative sub-loop, as well.

Proposition 2. Consider an F;-loop L;.
o [f L; intersects the same CKC more than once, then it is not irreducible.
o [f L; is irreducible and consists of at least 6 states, then it is F;-fully-informative.
o If L; is F;-informative, then it has an F;-fully-informative sub-loop.

o If L; is F;-fully-informative, then it can be decomposed to irreducible F;-loops.

10Tn general, the smallest possible loop has at least 4 states, so any such loop is, by definition, irreducible.
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o [f L; is not irreducible, then either it intersects the same CKC more than once, or it has

at least 4 states in the same partition element of F;.

We use this proposition in the following subsection to provide necessary and sufficient con-

ditions for the dominance of one oracle over another.

5 Necessary and Sufficient conditions for dominance

In the following section, we address the general case where I has loops, which imposes con-
straints on Oracle 1 across CKCs. Due to the complexity of this problem, we divide our analysis
into two parts: a necessary condition for dominance presented in Theorem [2| and a sufficient
condition given in Theorem 3] These theorems depend strongly on the properties of information
loops, and specifically on the notions of covers, irreducibility and non-informativeness.
Starting with the necessary conditions, the following theorem, which builds on Propositions
and [2] states that if Oracle 1 dominates Oracle 2, then besides the refinement condition in
every CKC, already established in Theorem [1| it must be that every F}-loop is covered by loops
of F5. In addition, it states that every irreducible Fy-loop that cover an irreducible Fi-loop is

order-preserving, essentially stating that the two loops coincide.
Theorem 2. If Oracle 1 dominates Oracle 2, then:

o F| refines Fy in every CKC;
o Any Fi-loop has a cover by Fs-loops; and

o Fvery irreducible Fy-loop that covers an irreducible I -loop is order-preserving.

The proof of the first part is immediate, as it follows directly from the main result of Part
I (see Theorem 4 therein cited in Appendix [A.1.2). The proof of the second part relies on
Proposition [1| by assuming that an Fi-loop is not Fy-balanced, and constructing a strategy
that Oracle 1 cannot mimic without violating measurability constraints. The last part relies on
Proposition , as well as a key lemma from Part I (cited in Appendix, by depicting a two-
signal strategy 75 that one cannot mimic without following the same order of pairs throughout

the Fy-loop.
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Next, we use the understanding regarding covered and balanced loops to present a sufficient
condition for dominance, which indirectly requires that any loop is balanced at 0-—meaning
that there are no transitions between sets A and B. This leads to the following Theorem [3]

which uses the non-informative notion for dominance.

Theorem 3. If I refines Fy in every CKC and every Fi-loop is Fy-non-informative, then

Oracle 1 dominates Oracle 2.

Though we do not yet provide a full characterization, it becomes rather clear that the
requirement that every Fj-loop is Fh-balanced should be the main focus, as it is a necessary
condition, as well as a sufficient one when the balance is set to zero. In the following section

we show that the balance condition is both necessary and sufficient for the case of two CKCs.

5.1 The case of two CKCs

In this section, we assume there are only two CKCs. This assumption simplifies the analysis, as
the case of two CKCs can be resolved using our prior results, allowing us to examine all possible
loops directly. Formally, Proposition |3|states that, given two CKCs, the necessary condition of
an Fy-balanced loop from Theorem [2|is also a sufficient condition.

To build intuition, consider the scenario with two CKCs depicted in Figure featuring
an Fi-loop (wy,w,ws, Ws) across four states. Fix some 75 and assume the loop is Fy-balanced.
There are then only two possibilities: either the loop is Fy-non-informative, as shown in cases
(a) and (b) in Figure[L1] or it is also an Fy-loop, illustrated in case (c) in Figure The first
possibility was covered in Theorem [3| while the second allows Oracle 1 to meet the constraints

imposed by the Fi-loop when attempting to mimic 7.

Proposition 3. Assume there are only two CKCs. Then, Oracle 1 dominates Oracle 2 if and

only if Fy refines Iy in every CKC and any Fi-loop is Fy-balanced.
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Figure 11: Two CKCs with an Fj-loop described by (wy,W1, ws,w2). Graph (a) and (b) depict two Fy-balanced
loops, that are also Fy-non-informative, and (¢) describes an Fy-loop. Any other structure of Fy yields a non-
balanced loop.

6 Equivalent oracles

In this section we tackle a parallel question to dominance, which is the problem of oracles’
equivalence. Specifically, we characterize necessary and sufficient conditions such that both

oracles dominate one another simultaneously, as formally given in the following definition:

Definition 7. F} is equivalent to F,, denoted F| ~ F3, if the two oracles dominate one another,

that is, if F; =Ng F_; for every i =1,2.

Based on the results for the case that loops do not exist and the case of two CKCs, equiv-
alence between oracles obviously requires two-sided refinement within every CKC (i.e., equiva-
lence), and that every Fj-loop is F_;-balanced for every Oracle i. This, however, is insufficient
and equivalence also requires that every irreducible Fj-loop with at least 6 states is also an

irreducible F_;-loop. This result is given in the following Theorem [4]

Theorem 4. F| is equivalent to Iy if and only if for every Oracle i, the partition F; refines
F_; in every CKC, any F;-loop has a cover of F_;-loops, and every irreducible F;-loop with at

least 6 states is an 1rreducible F_;-loop.

The equivalence condition concerning irreducible loops is based on the ability of both oracles
to follow similar measurability constraints when signaling to players in every CKC. That is,
if one oracle is constrained by an information loop, then we require the other to follow suit.

Yet, this still raises the question of why we need to focus on irreducible loops. To understand
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this, consider a single partition element of F; that intersects at least two CKCs where each
intersection contains at least two states. This evidently generates a non-informative loop,
because all pairs are non-informative. But as long as the other oracle cannot distinguish between
the two states in each pair, the ability to separate different pairs in different CKCs is not needed,
as each pair is common knowledge among the players themselves within every CKC.

The proof of Theorem [ also builds on an intermediate irreducibility notion that we refer
to as type-2 irreducible loop. More formally, an Fj-loop is type-2 irreducible if it does not have
four states from the same partition element of F;. This notion refines that of fully-informative
loops (as every type-2 irreducible loop is fully-informative), but also weakens that of irreducible
loops, because a type-2 irreducible loop can intersect the same CKC multiple times, and so be
decomposed into sub-loops.

The notion of type-2 irreducible loops is crucial for our analysis and results, but also in a
more general manner. We use type-2 irreducible loops to generate the basic elements, building
blocks, upon which two oracles must match one another (in terms of their information). These
building blocks are referred to as clusters and they are constructed as follows. First, we take
the set of type-2 irreducible loops. Then, we consider such loops that intersect the same CKC
and consider them as connected. Next, we take the transitive-closure of this relation, which
yield disjoint sets of connected type-2 irreducible loops. Finally, we take every such set (of
connected loops) and consider all the CKCs that it intersects - this is a cluster. We prove
that the oracles’ partitions match one another in each of these clusters. That is, the clusters
are the basic structure upon which we derive an equivalence, and later extend it to ”simpler”

connections between clusters that involve only a single partition element of Fj.

23



References

Aumann, R. J. (1976). Agreeing to Disagree. The Annals of Statistics 4(6), 1236-1239. Pub-

lisher: Institute of Mathematical Statistics.

Bergemann, D. and S. Morris (2016, May). Bayes correlated equilibrium and the comparison of
information structures in games: Bayes correlated equilibrium. Theoretical Economics 11(2),

487-522.

Blackwell, D. (1951). Comparison of Experiments. Proceedings of the Second Berkeley Sympo-
sium on Mathematical Statistics and Probability 2, 93-102.

Blackwell, D. (1953). Equivalent Comparisons of Experiments. Annals of Mathematical Statis-
tics 24(2), 265-272. Publisher: Institute of Mathematical Statistics.

Brandenburger, A. and E. Dekel (1993, February). Hierarchies of Beliefs and Common Knowl-
edge. Journal of Economic Theory 59(1), 189-198.

Forges, F. (1993, November). Five legitimate definitions of correlated equilibrium in games

with incomplete information. Theory and Decision 35(3), 277-310.

Gossner, O. (2000, January). Comparison of Information Structures. Games and Economic

Behavior 30(1), 44-63.

Kamenica, E. (2019, August). Bayesian Persuasion and Information Design. Annual Review of

Economics 11(1), 249-272.

Kolotilin, A., T. Mylovanov, A. Zapechelnyuk, and M. Li (2017). Persuasion of a Privately
Informed Receiver. Econometrica 85(6), 1949-1964.

Lagziel, D. and E. Lehrer (2025, October). Constrained Mediation: Bayesian Implementability
of Joint Posteriors. arXiv:2510.20986 [econ].

Lagziel, D., E. Lehrer, and T. Wang (2025, May). Comparison of Oracles: Part I.

24



Lehrer, E.; D. Rosenberg, and E. Shmaya (2010, March). Signaling and mediation in games

with common interests. Games and Economic Behavior 68(2), 670-682.

Lehrer, E., D. Rosenberg, and E. Shmaya (2013, September). Garbling of signals and outcome

equivalence. Games and Economic Behavior 81, 179-191.

Mertens, J. F. and S. Zamir (1985, March). Formulation of Bayesian analysis for games with

incomplete information. International Journal of Game Theory 14 (1), 1-29.

Monderer, D. and D. Samet (1989, June). Approximating common knowledge with common

beliefs. Games and Economic Behavior 1(2), 170-190.

Peski, M. (2008, March). Comparison of information structures in zero-sum games. Games and

Economic Behavior 62(2), 732-735.

A Appendices

A.1 Key results from the companion Part I
A.1.1 Proportionality lemma from Part I

Fix two distinct signals {s1,ss} and assume that the partition Fy = {4, As,..., A} has m
elements, as noted. Let pi,ps,...,p,n be m distinct probabilities such that all ratios of two
distinct numbers from the set A = {p;, 1 —p; : 7 =1,2,...,m} are pairwise different.E] Define

the signaling function 7 such that
Ta(s1|4j) =1 — ma(s2]ld;) = pj;, V<j<m. (2)

Given this signaling function and assuming that the state space comprises a unique CKC,
Lemmal ] (from Part I) states that the condition Post(71) € Post(r,) implies that 7, is partially

proportional to 7y, restricted to a subset of feasible signals.

I To achieve this, one can consider m distinct prime numbers r| < ry < -+ < 7p,. Define To = Q, and for
every j > 1, let T; be the extended field of T;_; with ,/7;. Take p; € T; \ T;_1.
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Lemma 1. Fiz 1 given in Equation and a unique CKC. If Post(m) C Post(my), then for
every signal t € Supp(7y) there exists a signal s € {s1,s2} and a constant ¢ > 0 such that
T1(tlw) = cra(s|w) for every w € Q.

A.1.2 Unique CKC, characterization result from Part I

Theorem 5. Assume that Q) comprises a unique common knowledge component. Then, the

following are equivalent:

o Fi refines Fy;

Fy =g Fa;

For every 1y, there exists 11, so that Post(r) C Post(7);
o [or every Ty, there exists 11, so that Post(r) = Post();

o For every T, there exists 71, so that ji;, = fir,.

A.2 Proof of Theorem [1

Proof. One direction is straightforward. Assume, to the contrary, that Oracle 1 dominates
Oracle 2, but F} does not refine F, in some CKC. Denote this CKC by (', and consider the set
of all games in which the payoffs of all players are zero in every w ¢ (4, independent of their
actions. Thus, Oracle 1 dominates Oracle 2 in every game restricted to C, although F; does
not refine F» in Cy. This contradicts the ket result from Part I (see Theorem |5 in Appendix
A1)

Moving on to the second part, assume to the contrary that Fj refines F5 in every CKC, but
Oracle 1 does not dominate Oracle 2. Therefore, there exists a strategy 7, such that Oracle 1

cannot produce the same distribution over posteriors as 7. H The proof now splits to 4 steps.

12Qbserve that the condition that Oracle 1 can generate the same distribution over posterior profiles as Oracle
2 implies that Oracle 1 dominates Oracle 2. To see this, consider any game and any signaling strategy 7. Since
the players’ strategies depend on the profile of posteriors, we can then abstract away from the underlying private
and public information and assume that the players play a Bayesian both Oracles can generate distributions
over the profiles of posteriors, which can be generated by both Oracles.
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Step 1: Mimicking sub-strategies.

We start by defining the notion of a sub-strategy, which resembles a strategy, but with
induced probabilities that may sum to less than 1. Formally, a partial distribution p is a
non-negative function from a finite subset of S to [0,1] such that > __.p(s) < 1. A partial
distribution differs from a distribution as the probabilities need not sum to 1. Let A(S) be the
set of partial distributions on S, and define a sub-strategy 7 : {2 — A(S ) as an Fj-measurable
function from 2 to the set of partial distributions on S. That is, 7(s|w) > 0 and ), 7(s|w) < 1,
for every w and s. Evidently, every Fj-measurable strategy is a sub-strategy.

For every sub-strategy 7 and every p € (A(f2))", let P,(p) be the probability that 7 yields

the posterior p, i.e.,

P.(p) = >, p(w)z(sw). (3)

(w,8): T(s|w)>0,
and (“Zz\wys)ieN:P

Similarly, define P, (p) for every posterior p given the stated strategy 7. We say that a sub-
strategy 7 mimics 7o if

P, (p) < P,(p), for every p € (A(Q))". (4)

Hence, a sub-strategy 7 mimics 7y if, for every posterior p, the probability that 7 generates
p does not exceed the probability that 7o generates it. Note that the null sub-strategy (i.e.,
7(s|w) = 0 for every w and s) also mimics 7.

Consider any sub-strategy 7 that mimics 7. Because 75 generates a finite set Post(my) of
possible posteriors, there exists a finite number of combinations of posteriors (which does not
exceed 2Pt} that every signal of 7 supports. So, if some sub-strategy uses more than
2IPost(r2)] signals, we can apply the pigeonhole principle to deduce that the additional signals
support similar combinations of posteriors as some other signals. Therefore, for every such
additional signal s, there exists another signal s’ and a constant ¢ > 0 such that 7(s|lw) =
cr(s'|w) for every w, and we can unify the two signals into one. We can thus assume that there
exists a finite set of signals S, such that every mimicking sub-strategy (i.e., that mimics 73)

uses only signals from S.

27



Step 2: Optimal sub-strategies.

Let A, be the set of sub-strategies that mimic 7. Note that the set of sub-strategies
supported on S is compact, and the (inequality) mimicking condition, P,(p) < P, (p) for every
p € (A(Q))", remains valid when considering a converging sequence of sub-strategies. Thus,
A, is also compact.

Consider the function H(r) = > P,(p) defined from A; to [0,1]. As a piece-

pEPost (72)
wise linear function of 7, it is a continuous, so 7;, = argmax,., H(7) is well-defined. If
H(r,,) = 1, then 7,, is an Fj-measurable strategy that mimics 75. This contradicts the
original premise (that Oracle 1 cannot induce the same distribution over posteriors as 73), so
assume to the contrary that 7, is a proper sub-strategy and H(7r,,) < 1. If that is the case
(ie., if H(z,,) < 1), there exists a posterior p* € Post(7y) so that P, (p*) < Pr,(p*).
Step 3: Partially supported and connected posteriors.

For every posterior p € Post(7), let A4, = {w € Q: p'(w) > 0 for some player i} be the
set of states on which p is strictly positive, contained in some CKC denoted C,. We say that a

posterior p € Post(7) is partially supported (PS) if P,  (p) < P, (p), otherwise we say that p

T1.0
is fully supported (FS). Let us now prove a few supporting claims related to PS posteriors.

Claim 1: If p is PS, then ) 7, c(s|w) < 1 for every state w € A,.

Proof. Fix a posterior p and a state wy such that (Mi\wo s)ien = p for some signal s and 7 €
{710, 72}. There exists a constant «,,,, independent of s and 7, such that a,, ,,(wo)7(s|wy) =
> wea\{wo Mw)T(s|w). This follows from the fact that, in order to induce the posterior p, the
probabilities induced by 7 must maintain the same proportions along the different states in A,,

independently of either the strategy or the signal. Otherwise, the induced posterior would not
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match p. Thus, Equation could be re-formulated as follows,

P.(p) = > (@) (s|w)

(w,8):(ul,, Jien=p

= > ulwo)T(slwo) + > pu(w)7(s]w)
S:(#i‘woﬁ)ieN:p (wvs):w_EAp\{w()}f
and (p7, JieN=P

= (1+ O‘pwo)ﬂ(wo) Z 7(slwo),

Si(ﬂi‘woys)iezv:p

which translates to

el — P, (p)
2 bk = G

Sz(ﬂi‘was)ieN:p

Summing over all p € Supp(7,), we get

1 P,
Srtl - s Y s g

(i -
s P(H7 0,5 )iEN =P
for some s

Note that the RHS holds for either 7, , or 7.
Now assume, by contradiction, that py is a PS posterior and ) 7, o(s|wg) = 1 for some

state wy € A,,. Using Equation , for both 7 and 71, ,, we get

B B 1 PTQ(p)
L= ko =gon Y qia

P(HL, g, s)IEN =P
for some s

1 P, . (p)
1 — slw — *7
2ol =T X Gien)
s p:(p? )ieN=D,

T1.0lwos
for some s

which implies that

Z P7'2 (p) _ Z PI1.0 (p) < Z PT2 (p)
; (1 + apuw) ; (1 + apw) ; (1+ O‘p,wo)’
P(H7, g, s)IEN =P p:(”lm.o\%vs)i@v:p’ P(H7, g, s)IEN =P

for some s for some s for some s

where the strict inequality follows from the fact that P, (p) < P, (p) for every posterior p,
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with a strict inequality for p = py. This yields a contradiction, and the result follows. O]

Claim 2: If ) 7, ,(slw) < 1 for some state w, then there exists a PS posterior p such that

weE A,

Proof. Assume, to the contrary, that ) 7, ((s|wy) < 1 for some state wy, and every posterior

p such that wy € A, is FS. Using Equation , we deduce that

1 = > 7(slwo)

_ 1 3 P.,(p)
M(wo) i . _ (1 + OCILOJO)
DK g, s ) IEN TP
for some s

_ ! v Pl
(wo) (T )
p:(p )ie N=D,

i
71.0lw0,s
for some s

= 211.0(3|W0) <1,

where the first equality follows from the fact that 7, is a strategy, the second and fourth
equations follow from Equation , the third equality follows from the fact that every posterior p
such that wy € A, is FP, and the last inequality is by assumption. We thus reach a contradiction,

and the result follows. O]

We will use Claims 1 and 2 to extend 7, ;, and show that it cannot be a maximum of H. For
this purpose we need to define the notion of connected posteriors. Formally, we say that two
posteriors p,p’ € Post(my) are connected if there exist two states (w,w’) € A, x Ay C C,, x Cy,
where C, # C, are two distinct CKCs, such that Fj(w) = Fi(w’). Equivalently, in such a
case, we refer to C,, and Cyy as connected, as well. Let (w,w’) and Fy(w) be the connection and
connecting set of p and p/, respectivelyﬂ We can now relate the notion of connected posteriors
to PS ones through the following claim.

Claim 3: Fix a PS posterior p and w € A,. Then, for every connection (w,w’), there exists a

PS posterior p’ such that w’ € A, N Fj(w).

13Equivalently, we refer to (w,w’) and Fj(w) as the connection and connecting set of the CKCs C,, and Cy.
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Proof. Let p be a PS posterior with a connection (w,w’) and Fj(w) = Fj(«'). Using Claim 1,
if p is PS, then ) 7, ((s|w) < 1 for every w € A,, so the Fj-measurability constraint implies
that > 7, (s|w’) < 1. Thus, according to Claim 2, there exists a PS posterior p’ such that

W' € Ay, as needed. O

Step 4: Extending 7, ;.

Recall that p* is a PS posterior. Let V be the set of all CKCs () such that there exists a
sequence of PS posteriors (p*,p1,...,p) where every two successive posteriors are connected
and A, C C;. Assume that V also contains C+. Let E C V2 be the set of couples (C, C") such
that C' and C” are connected, and denote by P* the set of all PS connected posteriors that
generate V. Clearly, (V, F') is a connected graph and we can use it to construct a sub-strategy T
which mimics 75 and Post(7) = P*. The proof proceeds by induction on the number of vertices
inV.

Preliminary step: |V| = 1. Assume that Cp- is the unique CKC in V. Because p* € Post(7),
there exists a signal s* and state w € Cp+ such that 7(s*|w) > 0 and (/Jlfrﬂw,s*)ieN = p*. Define
the sub-strategy 7, ;(s|w) = T2(s*|w) for every w € A,-. Recall that I} refines F; in every CKC,
therefore 7, ; is well defined. Moreover, it is a sub-strategy that mimics 7 and Post(7; ;) = P*,
as needed.

Induction step: |V| = m. Assume that for every graph (V, E) where |V| = m, there exists a
sub-strategy 7, ,, that mimics 75, and Post(r, ,,) = P*.

Induction proof for |V|=m + 1. Assume that |V| = m + 1. The distance between Cp~ and
every vertex (i.e., every CKC) in V' is defined by the shortest path between the two vertices.
Denote by Ci,41 the vertex in (V, E)) with the longest path from C,-.

We argue that C),.; has exactly one connecting set with the other vertices. Otherwise,
assume that there are at least two connecting sets. If the two originate from the same CKC in
V', then we get an Fj-loop, which cannot exist. Thus, we can assume that the two sets originate
from different CKCs, denoted C' and C”. Since (V, F) is a connected graph, there exists a path
from C) to each of these CKCs. Consider the two sequences of connecting sets for these two
paths. If the two are pairwise disjoint, then we have an Fj-loop from C- to C,,11, which again

yields a contradiction. So the sequences must coincide at some stage. Take a truncation of the
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sequences from the last stage in which they coincide until C,,, ;. The origin of the two paths are
connected CKCs (sharing the same connecting set), denoted C; and Cj, 1, so we now have two
pairwise disjoint sequences between these two connected CKCs till C),,1, thus generating an
Fi-loop. Therefore, we conclude that there is exactly one connecting set, denoted A, between
Cpny1 and the other CKCs in V.

Consider a refinement of F; where A is partitioned into two disjoint sets, Ay = A\ Cy,1q
and Ay = AN Ch4q. Insuch a case, |V| = m and, according to the induction step, there exists
a mimicking sub-strategy 7, ,, supported on every PS connected posterior in P* other than the
ones related to the CKC Cj,41. Let pp, 41 denote a PS posterior such that Ay C A, C Crqr.
In case there is more than one PS posterior, the proof works similarly because every additional
posterior shares the same connecting set A.

According to the induction step, Post(z;,,) = P*\ {Pm+1}, so we need to extend this
sub-strategy to support p,,+1 as well. Since p,,41 € Post(7y), there exists a signal, denoted

s* w.lo.g., and states w € A C Cpy1 such that m(s*|w) > 0 and (Uiz\w,s*)ieN = D1

Pm+1
Moreover, because C,, 11 is not connected (neither directly, nor indirectly) to the other CKCs in
V under the refined Fy, we can assume that Y 7,,.(s|A1) > >, 7 ,,.(s|A2). Otherwise, we can
re-scale 7, ,,, in the different unconnected elements of the refined F. Hence, we can also assume

that there exists a signal, again denoted s* w.l.o.g., such that 7, ,,(s*|A;) > 0= 1,,,(s%|A2).

Define the following function

CmT1m(slw), for every (w,s) s.t. 7,,,(s|w) >0,
11.m+1(5|w) =

*

CoTy(s*|w),  for every (w,s)st. we A, ., s=s",

where the parameters c,, > 0 and ¢ > 0 are chosen to ensure that 7, ,, ., (s*|A1) = 7, ,,.1(5"|A2),
thus sustaining the Fj-measurability constraint across the connecting set A, and that 7,,,.,
remains a sub-strategy that mimics 7 (ensuring that ) 7(s|w) < 1 for every s and w and the
that Inequality holds). In conclusion, we constructed a sub-strategy that mimics 75 and
whose support is P*, and this concludes the induction.

Let 7,, be the sub-strategy that mimics 7, and P, (p) > 0 if and only if p € P*. Assume

that 7,, only uses signals in some set S*, that are not used by 7,, (i.e., S*N S = ¢). Define
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the following sub-strategy

Tio(8|w), for every (w,s) s.t. 7y o(s|w) > 0,
12.0(5|W) =
T (s|lw), for every (w,s) s.t. 71,(s|w) >0,

where ¢ is a constant. Since 7,(s|w) supports only PS posteriors of 7, , for every state
w where there exists a PS posterior p of 7,,(s|lw) such that w € A,, it follows from Claim
1 that } o7 o(s|lw) < 1. Therefore, by choosing ¢ sufficiently small, we can ensure that
> sesuss T2o(8lw) = Y g Tio(slw) + D cqe Tru(s|w) < 1. Hence, for the extended strategy
Ty0(8|w), we can guarantee that for every w € Q, > g - Too(slw) < 1. We conclude that 7,
is a sub-strategy that mimics 7, and H(7,,) > H (7, ) due to the extension over PS posteriors.
This contradicts the definition of 7, ; as a mimicking sub-strategy that maximizes H. We can

thus conclude that H(r, ,) = 1, and 7, , is an Fj-measurable strategy that mimics 75, as needed.

]

A.3 Proof of Proposition

Proof. iii = i. Suppose that (wy,w1,wq, W, ..., Wn, W) is not Fy-balanced. It means that

there is a partition {A, B} s.t. #(A — B) # #(B — A). Define

1, ifweA,
flw) =
2, ifwe B.
We obtain,
m A—B
f(@i) 2 '

i=1
This contradicts iii.

i = ii. Assume i . For every i, let D; = {wj;w; € Fy(w;)} U{w;;w0; € Fo(w;)} be
the set which contains all the states in the loop that share the same information set of Fj
as w;. Condition i implies that for every w;, the partition A = D; and B = (D;)¢ satisfies
#(A — B) = #(B — A). Note that [{w;;w; € Fo(w)} = #(A — B) + #(A — A), and
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{555 € Bt = #(B = A) + #(A > 4), where #(A — A) = [{i € {L,..,m}iw; €
A, w; € A}|. Tt follows from #(A — B) = #(B — A) that

Hwjswj € Ba(wi)} = {w;;0; € Fa(wi)}] (6)

for every w;.

Define J = {i;w; € F»(w;)}. We show that the rest of the states are decomposed into
Fy-loops. Specifically, we show that if a finite set S = {(w;,W;); wW; ¢ F>(w,)}, not necessarily
an Fi-loop, satisfies Eq. @ for every w; € S, then it is covered by Fy-loops.

When |S| = 2, Eq. @ implies that this is an Fy-loop. We now assume the induction
hypothesis: if Eq. (6] is satisfied for a set S = {(w;,w;)} and for every w; € S, and S contains
less than or equal to m pairs, then it is covered by Fy-loops. We proceed by showing this
statement for sets S containing m + 1 pairs.

We start at an arbitrary pair, say (wi, ), and show that it belongs to an Fs-loop. Once
this Fh-loop is formed, the states outside of this loop satisfy Eq. @ for every w; outside of this
loop. By the induction hypothesis, this set is covered by Fs-loops.

Due to Eq. @, there is at least one wW; such that @; € Fy(w;). Consider now the two pairs,
(wj,Wj,wi,wy). If thisis aloop, Eq. @ remains true when applied to the states out of this loop.
The induction hypothesis completes the argument. Otherwise, there is Wy where k # 1, j, such
that @), € F5(w;). Consider now the three pairs, (wg,wk,w;,w;,wi,w). If this is an Fy-loop,
the other states satisfy Eq. @, and as before, this set is covered by Fs-loops. However, if this
is not an Fy-loop, Eq. (@ remains true, we annex another pair and continue this way until we
obtain an Fy-loop. This loop might cover the entire set, but if not, the remaining states are,
by the induction hypothesis, covered by Fs-loops. This shows ii.

ii = iii. Let f : {wl,wl,wg,wg,...,wm,wm} — (0,00) be a positive and Fy-measurable
function. Suppose that I, ..., I, is a partition of {1,...,m}, and for each ¢t = 1,...,r, the set

((wi,wi)> is an Fy-loop. Since, ((wi,wi)> is an Fy-loop,
i€l

i€y

flw)
H f@) b

i€l
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which implies that

This proves iii. O

A.4 Proof of Proposition

Proof. Fix an Fj-loop L; = ((wj,wj)> . where I = {1,2,...,m}. Let C; denote the CKC that
contains every pair (w;,w;). ’

Proof for first statement: Assume that L; intersects the same CKC at least twice, so
that C;, = C),, where [y < [y, is such CKC. Because L; is a loop, the two pairs (wy,,w;,)
and (wy,,w;,) that are in this CKC cannot be adjacent in the loop L;, i.e., I # lo £ 1. De-
fine the following sub-loop of L; by omitting every state from w;, to w;,. Formally, L! =
(W1,T1, -+, Wiy 1, Wiy s Wiy y Wiyt 15 - « - s Win, Wy ). This is a well-defined sub-loop of L; (as wy,,w;, €
(', while all other parts of the sub-loop match those of L;), which implies that L; is not ir-
reducible. Note that the part we truncated from the loop L; also forms a sub-loop, namely
LY = (Wiy, Wiy Wiy 41, W1y 41y« -y Wig—1, Wip—1)-

Proof for second statement: Assume, by contradiction, that L; is irreducible, yet it has
a pair of states (w;,w;) such that w; € F;(w;). This implies that {w;_1,w;, W, wii1} C Fi(w;) =
Fi(wiy1). We can assume that C;_; # C), 1, otherwise the first statement suggests that L; is not
irreducible. So, define the following sub-loop of L; by L} = ((wj,wj)> . Note that L] is

JEI\{1}
a well-defined sub-loop, as C;_1 # Cj;1 and @W;_; € F;(w;+1), thus contradicting the irreducible

property.

Proof for third statement: Assume, w.l.o.g., that Fj(w;) # F;(w;). If L; intersects
the same CKC twice, then we can follow the proof of the first statement, truncate the loop,
and take a sub-loop that has an informative pair of states and intersects every CKC at most
once. Thus, w.l.o.g., assume that L; intersects every CKC at most once. Denote the set of
informative pairs by I° = {j : F;(w;) # Fi(w;)} and define the following ordered sub-loop of
L; by L, = ((wj,wj))j . In simple terms, L, is generated from L; by truncating all non-

ele

informative pairs (w;,w;), where Fj(w;) = F;(@,), similarly to the process used in the proof of
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the second statement. Focusing on L., note that: (i) all pairs are pairwise disjoint; (ii) every
CKC is crossed at most once; (iil) w;41 € F;(@;) as we removed only non-informative pairs;
and (iv) w; # W; are both in the same CKC as in the original loop. Hence, L} is a well-defined
loop and an Fj-fully-informative sub-loop of L;.

Proof of fourth statement: If the loop L; is irreducible, then the statement holds.
Otherwise, it is not irreducible and we will prove by induction on the number of pairs m in L;.
If m = 2, then L; is irreducible. If m = 3 and L; is not irreducible, then it has a sub-loop with
two pairs. Assume w.l.o.g. that this sub-loop is based on the states {wy,w71,ws,wy}. It cannot
be that Fj(w;) = F;(@2), because that would make (wq,@s) a non-informative pair. So the
sub-loop is (w1, Wy, wy, Ws) such that F;(wy) = F;(ws), but F;(w;) = F;(w3) and F;(wy) = F;(ws),
so the pair (w3, ws3) is non-informative.

Assume the statement holds for m = k pairs, and consider an L; loop with £+ 1 pairs. If the
loop intersects the same CKC more than once, we can split is to two sub-loops (as previously
done), and use the induction hypothesis for each. Hence, we can assume that the loop does not
intersect the same CKC twice.

Because the loop is not irreducible, there are two states w;, and w;, that are not adjacent
in the loop (so iy > iy + 2), yet Fj(w;,) = Fi(@w;,). The last equality also suggests that
Fi(w;,—1) = Fi(wiyy1). If i3 = iy + 2, then there exists only one pair between the two states.
This implies that the pair (wi,11,Wiy41) = (Wi -1, -1) 1S non-informative, contradicting the
fact that L; is Fj-fully-informative. So we conclude that i; > i3 + 3. Define the following two
loops L, = (wi,, Wiy, .., Wiy, w;,) and L = (wiy41,Wiys1, - -+, Wi, —1,Wi,—1), where the ordering
of states follows the original loop L;. These are two well-defined Fj-loops with less than k& + 1
pairs each, so the induction hypothesis holds and the result follows.

If L; does not intersect the same CKC more than once and does not have at least 4 states
in the same partition element, then it is irreducible.

Proof of fifth statement: If the loop has a non-informative pair w; € Fj(@;), then it
contains 4 states from the same partition element, so assume that the loop is F;-fully-informative
and that it does not intersect the same CKC more than once. Thus, we need to prove that it

has at least 4 states in the same partition element of F;.
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Consider the strict sub-loop L; of L;. It consists of pairs, taken from the original loop.
Because L; does not intersect the same CKC more than once, all the pairs of L; are a strict
subset of the pairs of L;. This implies that some pairs were omitted from L; when generating
L;, so assume w.l.o.g. that the pair {w;,w,} is not included in L;. This implies that one
pair {w;,w;} precedes in L; a different one that it precedes in L;. That is, F;(@;) = Fi(w;+1)
according to L;, whereas F;(wW;) = F;(wy) where k # j + 1, according to L; . But also F;(wy) =
F;(@Wy—1) according to L;. Thus, {@&;,w;41,wy, Wk_1} are in the same partition element of L;, as

stated and the result follows. OJ

A.5 Proof of Theorem 2|

Proof. Suppose that Oracle 1 dominates Oracle 2. If there exists a CKC in which F; does not
refine F,, Theorem |5 from Part I (see Appendix states that Oracle 1 does not dominate
Oracle 2 in that CKC. In other words, there exists 7 defined on this CKC, such that for every
71, it follows that Post(1) € Post(7s). We extend the definition of 75 to the entire state space
in an arbitrary way, and still for every 7, it follows that Post(1) € Post(72), and we can follow
the results of Part I accordingly (specifically, the game of beliefs and Proposition 3 therein).

We proceed to show that any Fi-loop is Fh-balanced, which is equivalent to the existence
of a cover by loops of F,. Suppose, to the contrary, that an Fi-loop (wq,@1, ws, Wa, - - . , Wi, Wiy
is not Fh-balanced. This means that there is an Fy-measurable partition {A, B} of these states
such that Eq. is not satisfied. We define an Fy-measurable signaling function that obtains
two signals, a and 3. Over the states of the loop, let

z, ifwéeA,
Ta(|w) = (7)
y, ifwebB,

and 1 (6|lw) = 1 — m(a|w). On other states, 7 is defined arbitrarily. The numbers z,y € (0, 1)

Inz—1 .. .
are chosen so that ——22=2Y%____ ig jrrational.
In(1—z)—In (1—y)

Claim 1: If Post(r;) C Post(7y), then any signal of 7; induces the same posteriors as o does

or as 3 does in every CKC.
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Claim 2: For any signal s of 7; and for any 1, zgjgg € {f, %’ 4 i_;g} . Therefore,

m

o - (5) - (120)" ()" (12)°

=1

where ¢; + (5 = [{i;w; € A and w; € B}| and ki + ko = |{i;w; € B and w; € A}|.

Ti(slwi) _

Claim 3: For any signal s of 71, [~

i=1 71 (s]w;)

We therefore obtain (%)El(l_—x)EQ(%)kl(k—y)kQ = 1. We conclude that there are whole num-

1-y 1—x
== — T\l __ 1—xz\k . Inz—In o InZ
bers, say ¢ = {y — ki and k = ky — {3 such that ()" = (=})". Since oyl = m%

is irrational, ¢ = k = 0, implying that Eq. is satisfied. This is a contradiction, so every
Fi-loop is Fy-balanced.

Moving on to the third part of the theorem, fix an irreducible Fi-loop L;, and consider an
irreducible cover by a unique Fs-loop Lo, i.e., Ly covers L; and both are irreducible w.r.t. the
relevant partition. Note that if L, is also order-preserving, it implies that it matches L.

Assume, by contradiction, that Lo is not order-preserving and the two loops do not match
one another. Denote L; = (w1, W1, ..., Wn, wn) and Ly = (w1, W01, Wiy, Wiy, - - -, Wi, , Wy, ). Thus,
there exist indices k > j > 1 such that w;, precedes w; in Ly. In simple terms, it implies that
though Ly consists of the same pairs as Ly, the ordering of pairs throughout the two loops
differs, as suggested in Footnote [9]

Since the two loops are irreducible, it follows from Proposition [2| that they intersect every
CKC at most once and that both are fully-informative. Moreover, for every state w in every loop
L;, every set F;(w) contains two states from the loop L; (otherwise, the loop is not irreducible).
So, one can define an Fj-measurable function 7; such that 7;(s|w;) = 7(s|w—1) # 7(s|wy) for
every w; # wy in the loop.

To simplify the exposition, partition the states of L, into three disjoint sets: the set A? =
{©1,...,wi} contains all the states of Lo from w; till wy (following the order of Lo), A? =
{@k, ..., w;} contains all the states of Ly from wy, till w;, and A? = {W;,...,w;} which contains
all remaining states of L. Follow a similar process with Ly, so that A} = {wy,...,w;} contains
all the states of L from @, till w; (following the order of L), A} = {@j,...,wx} contains all

the states of Ly from w; till wy, and Al = {Wg, . ..,w;} which contains all remaining states of
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L.
Denote by C; the CKC of the pair (w;,@;). Fix two distinct signals s; and s9, and define

the signaling function 7, as follows:

(

P1, lfWEA%:{wl,,(.Uk},
p2, fwe AZ={wy,...,w;},
T(s1|lw) =1 — ma(s2|w) =

Ps, iwaA?:{wj,...,wl},

e, ifwe @\ Uy, A2

\

where the probabilities {p1, p2, ps, ps} are chosen as in the strategy defined in Equation (2)).
Because the loop is irreducible, intersects every CKC at most once and F,-fully-informative,
is a well-defined F,-measurable function.

The result of Lemma [1| from Part I (see Appendix holds in every CKC of the loop
(though with different probabilities). So given a CKC C, if there exists 71 such that Post(r) C
Post(72), then for every signal ¢t € Supp(m) there exists a signal s € {s1,s2} and a constant

¢ > 0 such that 7 (t|w) = c7e(s|w) for every w € C). Therefore, in every CKC () and for every

m2(slw) _ mi(tlen)
mo(slwr) — Ti(tfer)

signal ¢, there exists a signal s such that . Fix such a strategy 7.
Notice that in every CKC C; # C, C;, C, and for every signal s € {s1, s2}, we get 72(s|w;) =

To(s|w;). Thus, 2&'% = 1 for every t and every [ # 1, j, k. This implies that for every feasible

signal ¢ restricted to the loop Ly,

(
. 1_ pa—
a;, ifwe A ={w,...,w;},

ntw) =qb, ifwe Ajl- ={w,,...,wi},

. 1 f—
& ifwe A, ={wk,...,w1},

where a;, b, ¢, € (0,1]. Evidently, the parameters ay, by, and ¢, can vary across the feasible
signals.

In addition, Lemma [1] from Part I (see Appendix |A.1.1)) states that in every CKC, 7 (t|w)
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is proportional to 7o(s;|w) for some signal s; € {s1, s2}. This yields the following constraints:

71 (t]w ) _a To(8|wr) . {]E 1 —p3}
Ti(tfwr) ar m(sifwr) T Up 1—py

T (t | i) a Ta(silwy) {p2 1 —pz}
— — = L e ==,
Tl(ﬂ%) by To(s4|w;) ps 1 —p;3
71 (t|wr) E _ Ta(8i|wr) c {Zﬂ 1 —p1}
Tl(ﬂw}c) Ct TQ(Silwk) p27 1 —po '

Because the two loops cover one another and specifically because Ls is Fj-covered, Proposition

Tl(t‘wl) t’ bt7Ct

1-ps 1-py 1— .
above: either they equal {ii’ gi 7;1} respectively, or {{= gi’, l_gz, 1_22}. This follows from the

uniqueness of the ratios, as stated in Lemma [1| from Part I (see Appendix [A.1.1]). Note that

states that [[", nultley) = 1, which leaves only two possibilities for the ratios {2, 3* be

this must hold for every feasible signal ¢ of 7, across the loop.

Tl(t|u)> tl tQ

w1 Aier | Agco
w1 Arar | Agaq
Wi )\1@1 )\2&2

@ | Abi | Aabe
Wi )\1b1 )\ng

wk /\1 C1 )\202

Figure 12: The structure of 7; restricted to the states {w1, w1, w;, W), wk, Wi }, where 2L = B2 b — b e 1ops

b 1 p1’ P2’ az 1—p1
b2 _ 1=
and o = Top and A1, Ao > 0.

Thus, if we focus on the states {w;, Wy, w;,w;,wy, Wy} and group together all signals ¢ with
the same distribution on these states, then for some positive constants A, Ay > 0 we get the
strategy defined in Figure [I2] Plugging in the relevant ratios yields the probabilities given in
Figure [13]

Recall that the rows must sum to 1, so that 7, is a well-defined strategy. So, we get the
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Tl(t|(.O) tl t2

w1 A1cy AoCy

5 p1 —Dp1

w1 /\101][,—3 A2Co 1_ps
4 pL 1-py

W )\161 v3 )\202 T—p3

7. p1i —P1

Wy /\101p2 )\262171)2

Figure 13: The structure of 7y restricted to the states {wi,w1,w;,w;}, where probabilities are presented in terms
of ¢1,co, A1 and As.

following system of linear equations, in which (x,y) = (Ajc1, Aec2) and:

r+y = 1,
1_
]ﬂx—l— ply = 1,
D3 1—ps
1_
Plop =Py = 1,
D2 1—po

which does not have a solution since p;, po, ps3 are required to be distinct. Thus, we conclude
that the loops must sustain the same ordering of pairs, and therefore coincide as needed. This

concludes the third and final part of the theorem. m

A.6 Proof of Theorem [3

Proof. We first define an auxiliary set Q, which groups together states that are in the same
partition element of F, within CKCs. Formally, define the set Q such that n(w') € Q if and only
if n(w) ={w € N: w,w € Cj, Fw)= F(w)}. Accordingly, define the partition I to be
discrete in every CKC, such that Fy(n(w)) = Fy(n(w’)) if and only if Fy(w) = Fy(w'). Note that
Fy is essentially a projection of Fy onto Q. In addition, F} is defined as follows: (i) discrete in
every CKC, similarly to Fy; (i) F1(n(w)) = Fi(n(w")) if w and w’ are not in the same CKC, and
there exist w € n(w) and W’ € n(w') such that Fy(w) = Fy(W'); and (iii) F; forms a partition
(i.e., given (i) and (ii), if two elements of F} contain the same state n(w), they are unified into
one element).

We now prove that F; = F; in every CKC and that there are no Fy-loops. Thus, by Theorem
, any Fy-measurable strategy 75 (which, extended to €2, is also Fy-measurable) can be imitated

by an Fi-measurable strategy 77.
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Step 1: F}, = F}, in every CKC.

By definition, F, refines Fy, so we need to prove that F; also refines Fj in every CKC.
Assume, by contradiction, that Fy(n(w)) = Fi(n(w')) where w and ' are in the same CKC,
whereas Fy(n(w)) # Fa(n(w')). This suggests that Fy(w) # Fb(w'), which implies that Fy(w) #
Fy(w'). According to the construction of Fy, we conclude that the equality F(n(w)) = Fi(n(w'))
followed from the partition-formation stage described in (iii) above, through at least one other
CKC. Thus, there exists an Fj-loop which connects a state in n(w) with a state in n(w’).
Without loss of generality, assume these states are w and w’. Because every Fj-loop is Fy-non-
informative, it follows that Fy(w) = Fy(w'), a contradiction.

Step 2: There are no Fj-loops.

An Fi-loop implies that an Fj-loop exists. By construction, all Q states in every CKC
are Fy-equivalent (i.e., grouped together according to Fy). Because every Fj-loop is Fy-non-
informative, it implies that the loop consists of only one Q state in every CKC, and not two.
This contradicts the definition of a loop.

Step 3: F) can mimic F.

Fix a strategy 75, and let 75 be the projected strategy on . Because Fy = F, in every
CKC and there are no Fl-loops, there exists an Fj-measurable strategy 77 that imitates 7.
Therefore, one can lift 77 to  to create 7, whose projection onto  matches 7;. Thus, the

strategy 7, imitates 7, as needed. O]

A.7 Proof of Proposition

Proof. Denote the two CKCs by €} and C5. One part of the statement follows directly from
Theorem [2] so assume that Fj refines Fy in every CKC and any Fj-loop is Fy-balanced. If there
are no Fj-loops, then the result follows from Theorem [I] so assume there exists at least one
Fi-loop, and every such loop is Fs-balanced.

Take any Fi-loop (wy, w1, ws,ws) with four states. We argue that either it is also an Fy-loop
or it is Fy-non-informative. Otherwise, we can assume (without loss of generality) that Fy(w;) #
Fy(w;), for every i = 1,2. So, there are only two possibilities left: either Fy(w;) = Fp(ws) or

Fy(wy) # Fy(ws). If Fo(wy) = Fy(ws), then there exists an Fy-measurable partition of the four
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states such that A = {wy,wy} and B = {wy, w2}, which is not balanced. Otherwise, there exists
another non-balanced Fy-measurable partition of the form A = {w;} and B = {&y, ws,ws}. In
any case, we get a contradiction.

The proof now splits into two cases: either there exists an Fj-loop (wy,wr, ws,ws) and an
index i such that Fy(w;) # F2(w;), or every such loop is Fy-non-informative. If indeed every
such loop is Fs-non-informative, Theorem |3| states that Oracle 1 dominates Oracle 2, so we
need only focus on the former.

Assume that there exists an Fj-loop (wy, w7, w2, ws) and an index ¢ such that Fy(w;) # Fa(@;).
Denote this couple by {w;,w7} C C}. The previous conclusion implies that it is also an Fy-loop.
We claim that, under these conditions, every 75 is Fj-measurable. Note that Fj refines F5 in
every CKC, so we need to verify that for every (w,w) € Cy x Cy such that Fi(w) = Fi(@), it
follows that Fy(w) = F3(W).

Take (w,w) € C; x Cy such that Fi(w) = Fi(@). If w = wy or w = wy, then (w,w) are
part of the previously stated Fy-loop, so Fy(w) = F,(w). Otherwise, we can construct two new
Fi-loops (w,w,ws,ws) and (w,w,ws,w;). Because Fy(wy) # Fo(wy), either Fy(w) # Fy(wy) or
Fy(w) # Fy(wy). The previous conclusion again implies that (w,@) are a apart of an Fy-loop,

so Fy(w) = Fy(w), as needed. O

A.8 Proof of Theorem {4

Proof. We start by assuming that F; and Fy are equivalent. According to Theorem [2] every
F; refines F_; in every CKC, and every Fj-loop is covered by F_;-loops. Fix an irreducible
F;-loop with at least 6 states, denoted L;, and consider a cover by F_;-loops. There are two
possibilities: either the cover constitutes a single loop, or else. If the cover contains a shorter
loop, say L’ ,, then that loop is not Fj-covered because L; is irreducible, and this contradicts
Theorem [2| Moreover, the cover cannot have non-informative pairs where F_;(w;) = F_;(@;),
because the two partitions match one another in every CKC and L; is irreducible. So, the cover
consists of a single irreducible F_;-loop, and Theorem [2|states that it is order-preserving. Thus,
L; and L_; coincide as stated.

Moving to the other direction, assume that F; refines F; in every CKC, that any Fj-loop
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has a cover of F_;-loops, and every irreducible Fj-loop with at least 6 states is an irreducible
F_;-loop. Let us prove that Oracle 1 dominates Oracle 2 (and the reverse dominance follows
symmetrically).

We start with two simple observations. First, in case F} has no loops, then the statement
follows from previous results, so assume Fj has loops. Second, we say that two CKCs C; and
Cy are connected if there exist w; € C} and wy € Cy such that Fj(w;) = Fj(ws). If there exists
a CKC C which is not connected to any other CKC (i.e., for every w € C, the partition element
Fi(w) C (), then Oracle 1 dominates Oracle 2 conditional on that CKC and independently of
all other CKCs. Thus, without loss of generality, we can assume that all CKCs are connected,
either directly or sequentially.

For this part, we will need to define the notion of type-2 irreducible loops, which are fully-
informative loops that do not have four states in the same information set of the relevant

E;.

Definition 8. Let L; be an F;-loop. We say that the loop is type-2 irreducible if it does not

have four states in the same information set (i.e., partition element) of F;.

We shall use this notion of type-2 irreducible Fi-loops as building blocks upon which every
Fy-measurable 75 is also Fi-measurable. For that purpose, we start by proving in the following
Claim [1] that every type-2 irreducible Fij-loop is also an Fy-loop. Next, we will extend this
measurability result to every set of type-2 irreducible Fij-loops that intersect the same CKCs,
and finally extend it to all CKCs that these loops intersect. This sets of CKCs, to be later
defined as clusters, will be the basic sets upon which every F,-measurable strategy is also

Fi-measurable.

Claim 1. Fvery type-2 irreducible Fy-loop Ly is an Fy-loop.

Proof. 1f Ly is irreducible, then it is also an irreducible Fs-loop, and the result holds. Thus
assume that L is not irreducible. Using the fifth result in Proposition [2| we deduce that L,
intersects the same CKC more than once. Using the proof of the first result in Proposition [2]
we can decompose L into two disjoint strict sub-loops of F}. This can be done repeatedly, so

that L; is decomposed into sub-loops that do not intersect the same CKC more than once. This
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implies that every such loop is type-2 irreducible. Thus, every such sub-loop is irreducible, and
so it is also an Fy-loop.

Note that the decomposition process occurs within every relevant CKC C' and that F|c =
Fy|c. That is, once there are two pairs of the same loop within the same CKC, we can decompose
the loop into two disjoint loops by rearranging these four states. So, one can reverse the process
and recompose the sub-loops of F5 to regenerate the original loop L1, which is now also an Fj-

loop, as needed. O

Once we dealt with individual type-2 irreducible loops, we move to loops that intersect the
same CKC. For that purpose, we need to prove the following supporting, general Claim [2| which

states that every Fj-fully-informative loop L; can be decomposed to type-2 irreducible Fj-loops.

Claim 2. Fvery F;-fully-informative loop L; that is not type-2 irreducible can be decomposed
to type-2 irreducible F;-loops.

Proof. The proof is done by induction on the number of pairs m in L;. If m = 2, then it is
irreducible, as needed. Assume that the statement holds for m = k, and consider a loop with
k+1 pairs. If it is not type-2 irreducible, then it has four different states {w;, w;41,@;, Wit} in
the same information set of F;, where [ > j+1 and [+1 < j so that the two pairs are not adjacent
in the original loop L; (otherwise, the loop has a non-informative pair). Note that additional
connection may exists, but in any case w;; is in the same partition element as w;, and the
same holds for @; and w;4;. Consider the loops (wj, Wj, wit1, Wit1, Wit2, Wit2, - - -, Wj—1,wWj—1) and
(wi, Wi, Wjg1, Wi, Wita, Wjt2, - - -, wWi—1,w0;—1). The two sub-loops are based on the original loop,

other than the first pair, see Figure
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Figure 14: A fully-informative loop that is not type-2 irreducible, with four states in the same information set
of F;. The red rectangle denotes the same partition element of F;, and the green edges denote the additional
states of the original loop.

Each of these sub-loops is Fj-fully-informative, and has strictly less than k pairs. Thus,
the induction hypothesis holds, and they are either type-2 irreducible, or can be separately
decomposed to type-2 irreducible loops, so the result follows.

Note that even without the induction hypothesis, we can repeat the decomposition process,
so that all the connections of the original loop that are based on information sets of F; with no

more than two states (in the loop) are kept in one of the sub-loops. O

Using Claim [2] we now prove in the following Claim [3] that every Fy-measurable strategy
on two type-2 irreducible Fi-loops with a joint CKC (i.e., pass through the same CKC) is

Fi-measurable.

Claim 3. Fiz two type-2 irreducible Fy-loops Ly and L) that share at least one CKC. Then,

every 7'2|L1uL’1 is Fi-measurable.

Proof. Fix two type-2 irreducible Fj-loop L; and L/, and assume that they share at least one

— — — li ! —/ ! —/ / —/
CKC. Denote L; = (wy, w1, ws, @2, . . ., W, W) and L] = (W), @, wh, @h, ... W, W,

). Assume,
by contradiction, that there exists a strategy 7a|r,ur; which is not Fj-measurable. As already
proven, each of these loops is also an Fh-loop, so the measurability constraint implies that there
exist w € Ly and w’ € L} such that Fy(w) # Fy(w') whereas Fi(w) = Fi(w'). Because F; and
F5 match one another in every CKC, this suggests that w and w’ are in two different CKCs.

Denote a shared CKC by C; in which there are the pairs (w;,w;) and (w},@}) taken from L,
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and L) respectively. Note that the two pairs may coincide, as well as contain one of the states

w and w’, but not both (because the two are in different CKCs). See Figure

AgyA
\§.

Figure 15: Two type-2 irreducible loops of F} that share at least one CKC.

Let us now compose a type-2 irreducible F; loop, using the fact that Fj(w) = Fi(&').
Without loss of generality, assume that w = w; and w’ = @}, and that w; is not in C;. Moreover,
it cannot be the case that w; and @} are both in the same loop, say L;, because L; is also an
Fy-loop and that would imply that either Fy(w) = Fy(w') in case @) = Wy, or that L; is not a
type-2 irreducible loop in case W) # wW,,. Also, it must be that Fy(@)) = F}(w*) where w* € Ly
if and only if w* € {wy,w,,}, otherwise L; is not type-2 irreducible.

We now split the proof into four possibilities:
® wll € Cj.

o &) ¢ C; and {w;,w;} N{w},w;}| =0,1,2.

37
Assume that @) € C;. Consider the loop (wy, w1, ws, Wa,...,w;,w]). This loop matches L;
up to state w; and Fy(w;) = F1(w)). Thus, it is a well-defined type-2 irreducible Fj-loop, hence
also an Fy-loop. Therefore, Fy(w;) = F5(@)) and we reach a contradiction.
Moving on to the next possibility, assume that @} ¢ C; and [{w;,w;} N {w), @)} = 0.
Consider the loop (wy, W1, w2, Wy, - - ., Wj, W), Wiy 1, Wiy, - -, wp, wh). If w; and @} are in different
partition elements of Fi, then this is a well-defined Fi-fully-informative loop. If the two states

are in the same partition element, then we can omit this pair from the loop and get a shorter
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loop (in terms of pairs). This process could be done repeatedly, until we get a well-defined
F\ -fully-informative loop which starts with w; and ends with @}. If it is a type-2 irreducible
Fi-loop, then it is also an Fy-loop, and Fy(w;) = F3(w)). Thus, assume that it is not type-2
irreducible, which implies that it has at least four states in the same partition element of Fj.
These four states include neither w; nor @), because that would imply that either L; or L] is
not type-2 irreducible. Now we can apply Claim [2| to decompose this Fi-fully-informative loop
to type-2 irreducible Fi-loops, where at least one maintains the connection between w; nor @)
(see the comment at the end of the proof of Claim [2). We thus conclude that it is also an
Fy-loop and Fy(wy) = F5(@)).

The next possibility is that @) ¢ C; and [{w;,w;} N{w}, W)} = 1. If either w} € {w;,w;} or
W) = w;j , then we can follow a similar proof as in the previous case where [{w;, w;} N{w, @)} =
0, so assume that w; = wj. In that case, we can redefine the previous loop by omitting w; and
W to get (wi,Wr,wa, Wa, -, Wy 1, W)y, W5, ... ,wy,Wp). Again, this is either a well-defined
F -fully-informative loop, or could be reduced to such a loop. Applying the same arguments as
before, we conclude that there exists a type-2 irreducible Fi-loop which maintains the connection
between wy nor @}, so it is also an Fy-loop and Fy(w;) = Fy(W)).

The last possibility is that @) ¢ C; and [{w;,w; }N{w}, W} }| = 2, but in that case the analysis
in the previous possibilities holds, and we reach the same conclusion that Fy(wy) = F»(w)), as

needed [ O]

Next, we extend the result of Claim [3[to more than two loops. Specifically, we say that two
loops L; and L. are connected if either they share at least one CKC, or there exists a sequence

of loops starting with L; and ending with L, where each two consecutive loops share at least

one CKC.

Claim 4. Consider a set A of type-2 irreducible and connected F-loops, i.e., every two loops
are connected by one of these type-2 irreducible loops. Then, every Fy-measurable To|4 is Fi-

measurable.

4 Note that the proof of Claim [3[also holds if w and w’ are not in the original L; and L) loops, respectively,
but are simply states in different CKCs that these loops intersect. That is, if w and w’ are in different CKCs
that Ly and L] intersect and F(w) = Fj(w'), we can construct an Fi-fully-informative loop that starts with w
and ends with w’ in a similar manner as before, and eventually conclude that Fy(w) = Fa(w').
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Proof. Let us prove this by induction on the number of loops. The case of two loops is proved
in Claim [3| so assume the statement holds for m loops, and consider a set of m + 1 type-2
irreducible and connected Fi-loops. Further assume, by contradiction, that there exists an
Fy-measurable strategy over this set that is not Fj-measurable. Thus, there exists w and '
such that Fy(w) # Fy(w') whereas Fi(w) = Fi(w'). Evidently, w and w’ are in different loops
and different CKCs. Denote the loops of w and w’ by Ly and L}, respectively.

If Ly and L} are connected directly (through a joint CKC) or through at most m loops
(including L; and L), then the induction hypothesis holds and every Fy-measurable strategy
this set of loops is Fj-measurable, implying that F(w) = Fy(w’). Thus, assume that L; and
L} are connected through a sequence of all the m + 1 loops (including L; and L,,.1). Note
that w’' cannot be the in the same partition element as any other state from this set of loops,
other than w, the state connected to w in Ly, and the state connected to w’ in L. Otherwise,
either one of these loops is not type-2 irreducible, or the Fy-measurability constraints with every
intermediate loop is met (by the induction hypothesis), and again we get that Fy(w) = Fp(w').

Thus, we can now follow the same stages as in the proof of Claim [3| and generate an F}-
fully-informative loop based on the sequence of loops connecting L; and L (as well as w and
w’), which starts with w; and ends with @}. In this case, Claim [2| holds and we get a type-2
irreducible Fj-loop, which starts with w; and ends with @, that is also an Fy-loop. We therefore

conclude that Fy(w) = Fy(w’) and the induction follows accordingly. O

After we established that every Fhs-measurable strategy over a set of connected loops is
Fi-measurable, let us extend this result to all the CKCs that these loops intersect. For that
purpose, let A be a maximal set of connected loops, where every two are connected, and let
C's be the set of all CKCs that intersect one of these loops (that is, every CKC contains a
pair of states from one of these loops). We refer to every Cy as a cluster. We argue that
every Fy-measurable strategy over a cluster C'y is Fi-measurable. To see this, recall Footnote
which states that the proof of Claim |3 holds for every w and w’ in two different CKCs that
intersect two connected loops L; and L}, respectively. Namely, for every two such states w and
w’ where Fy(w) = Fy(w'), it follows that Fy(w) = F5(w’). So, as argued in the proof of Claim [4]

we conclude that every Fy-measurable strategy over a cluster is Fj-measurable.
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Observation 1. Fvery Fy-measurable strategy over a cluster is Fi-measurable.

Once we have established that every Fy-measurable strategy over a cluster is F}-measurable,
let us consider a partition 2* of €2 into clusters and individual CKCs that are not part of clusters.
Note that any two elements of the partition Q* jointly intersect at most one partition element
of Fi, otherwise the two components would be in the same cluster. To see this, consider the
different possible intersections of elements in 2*. If both elements A; and Ay are CKCs, then
any two different partition elements of F; that intersect both A; and Ay would form a type-2
irreducible Fi-loop. Otherwise, one of these elements is a cluster, say A;, and it follows from
previous proofs that for every w and w’ that belong to the same cluster (but in different CKCs)
and Fi(w) = Fi(w'), then one can form an Fi-fully-informative loop that starts with w and ends
with w’. Thus, in case w and w’ are in cluster A; and in different partition elements of F} that
intersect Ay (whether A, is a CKC or another cluster), one can form an Fj-fully-informative
loop that intersects A; and Ay. Using Claim [2] we can conclude that A; and Ay belong to the

same cluster. This result is summarized in the following observation.

Observation 2. Fiz two elements Ay, Ay € Q*. Then, there exists at most one partition

element Fy(w) of Fy such that Fy(w) N Ay and Fi(w) N As are non-empty sets.

We would now want to prove that Oracle 1 can mimic every Fy-measurable strategy de-
fined over 2*. For this purpose, we present the following Lemma [2| which relates to the F3-
measurability constraints over different sets of CKCs, that are not in the same cluster (i.e.,

they are not connected by type-2 irreducible Fj-loops).

Lemma 2. Fiz two disjoint sets Ay, Ay C Q that do not intersect the same CKCs, and denote
A=A UA,y. Assume that:

e For every i and for every Fy-measurable m5|y4,, there exists an Fy-measurable TlilAl., such

that pr,

Ai = Hra]A;-

o [or every wy,w; € Ay and ws,w)y € As such that Fy(wy) = Fi(wq) and Fy(w]) = Fi(w)),
it follows that Fy(w;) = Fi(w)).

Then, for every To|a, there exists Ti|a such that pi;|a, = pr,|a, for everyi=1,2.

20



Proof. Fix 1|4 and 7{|4, where i = 1,2, such that pi,,|4, = [iri|a, for every i. Define the sets
A ={w € A; - 3w_; € A_;, Fi(w;) = Fi(w_;)} for every i = 1,2. The second condition of the
claim implies that all the states in AU 1212 are in the same partition element of F;. To see this,
fix w; € A; and, by definition, there exists a state wy € Ay such that Fy (w1) = Fy(wse). If there
exists another w| € Ay, it is either connected to wy (i.e., Fi(w}) = Fi(ws)), or to some w) € A,
and in that case the condition implies that F(w;) = Fy(w}). The same holds for every wy € A,

For every i = 1,2, let S; be the signals induced by 7{|4,. Define the following strategy 7;:

7'11(81’00)7'12<82’A2), if w € Al, (81752) < Sl X 52,
71((s1, 82)|w) = B
71 (s1]A1)TE(82|w), if w € Ag, (s1,82) € S X Ss.

One can easily verify that 71((81, 82)|w) = 1 for every w, so 71 is indeed a strategy.

51,52)

Let us now prove that 7 is Fj-measurable and pi,, |4 = pir,|a. If we restrict 7 to A;, it is
clearly Fj-measurable as 7 Z‘(s_i|/~1_i) is fixed for every w € A; and s; € S;. Thus, consider
T1((81, 82)|w) where w € A;. All the states in A; U Ay are in the same partition element of Fj,

so for every (wy,ws) € Ay x Ay we get

T ((s1,82)|lw1) = 7

and the Fj-measurability condition holds. Moreover, for every w;,w, € A; and for every (sq, s2)

such that 7{(s;|w) > 0 where w € {w;,w}}, it follows that

7'1((51,52)|Wi714¢) _ Tf(8i|wz‘)
T1((s1,82) Wi, i) Ti(silw))’

which implies that conditional on A;, 7 yields the same distribution over posteriors profiles as

74, thus mimicking 7, on every A;, as needed. [
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We can thus finalize the proof using induction on the number of elements in 2*. Until now,

we established in Observation [l Observation [2] and Lemma [2] that, given either |Q*| = 1 or

|2*| = 2, then for every Fy-measurable strategy 7|+, there exists 71|+ such that i |4 = pir,|a
for every A € Q. Assume this holds for |Q2*| = k > 2, and consider |2*| =k + 1.

Denote the elements of 2" by Ay, Ao, ..., Ag, Ap1. If there exists only one partition element
of Fy that intersects Ay, and at least one A; for ¢ < k, then Lemma [2] holds and the result
follows. Thus, assume there are at least two different partition elements Fj(w) = Fj(w;) and
Fi(w") = Fi(ws) of F; such that w,w’ € Axyy and w; € A; for every i = 1,2.

The proof now splits into two parts: either A; and Ay are connected (i.e., there exists a
sequence of partition elements of F} that sequentially intersect elements in * \ A1, starting
with A; and ending with Ay) or A; and A, are unconnected. If they are unconnected, we can
apply Lemma [2] for A; and Ay and then use the induction hypothesis, so we assume they are
connected.

Whether A, is a CKC or a cluster and assuming that A; and A, are connected, we argue
that there exists a type-2 irreducible Fj-loop that include w and w’, implying that Ay is part
of a cluster with other elements in Q*. To see this, recall whenever w and w’ belong to the same
cluster and Fj(w) = Fj(w'), then there exists an Fi-fully-informative loop that start with w
and ends with w’. So consider such a sequence of states I, = (w,...,w’), which would have
been an Fi-loop had Fj(w) = Fy(&).

Next, fix the entire path of connections of elements in 2* that starts with A; and ends with
Ag. Again, the connection between A; and A, implies that there exists a sequence of states
loy—wy, = (Wi, ..., ws) in QF\ Agyq, that would have been an Fj-loop had Fij(wi) = Fi(ws).
Hence, consider the sequence of states | = (w,...,w',ws...,w;) which forms an informative
Fi-loop, because Fi(w) # Fi(w'). Using Proposition 2] and Claim [2, we know that this loop has

a type-2 irreducible Fij-sub-loop that contains w and w’. Thus, Ay, is in the same cluster as

other elements in Q*, thus contradicting the assumption that [Q*| = k + 1. O
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